JPS5867909A - Warming-up device for steam turbine - Google Patents

Warming-up device for steam turbine

Info

Publication number
JPS5867909A
JPS5867909A JP16414081A JP16414081A JPS5867909A JP S5867909 A JPS5867909 A JP S5867909A JP 16414081 A JP16414081 A JP 16414081A JP 16414081 A JP16414081 A JP 16414081A JP S5867909 A JPS5867909 A JP S5867909A
Authority
JP
Japan
Prior art keywords
steam
warm
pressure
turbine
condenser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16414081A
Other languages
Japanese (ja)
Inventor
Toyoo Takeshita
竹下 豊男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP16414081A priority Critical patent/JPS5867909A/en
Publication of JPS5867909A publication Critical patent/JPS5867909A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/08Cooling; Heating; Heat-insulation
    • F01D25/10Heating, e.g. warming-up before starting

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

PURPOSE:To prevent liquefaction of residual steam by furnishing a residual steam exhaust pipeline, which is to exhaust the steam remaining in the turbine casing, between the steam room and the condenser. CONSTITUTION:A hole d is bored in the high-pressure external casing 24 forming part of steam room 27, and a exhaust pipe 30 for the warming-up steam is connected to this hole d. This exhaust pipe 30 is connected to the condenser 8 through a exhaust valve 31. According to this arrangement, opening the exhaust valve 31 immediately after completion of warming-up will permit the steam to go out to the condenser 8 from the steam room 27. Accordingly, there is no risk of causing condensation of the steam remaining in the steam room 27 after completion of warming-up, contributing to prevention of deformation of a casing due to flush of the residual steam.

Description

【発明の詳細な説明】 本発明は蒸気タービンの暖機装置に関するものである。[Detailed description of the invention] The present invention relates to a warm-up device for a steam turbine.

大容量の蒸気タービンにおいては500℃以上の高温蒸
気を主蒸気として用いること力;広く行われている。こ
のような高温蒸気を用いると、冷機起動時におけるター
ビンの金属部材の温度と蒸気温度との差が大きいため、
過大な熱応力を発生して機器の損傷を生じる虞れがある
In large-capacity steam turbines, high-temperature steam of 500° C. or higher is widely used as main steam. When such high-temperature steam is used, there is a large difference between the temperature of the metal parts of the turbine and the steam temperature during cold startup, so
There is a risk of generating excessive thermal stress and damaging the equipment.

特に主蒸気導入部にある高圧タービンにおいては上記の
温度差が大きく、高圧タービンのロータは遠心応力と熱
応力とを受けるため、ロータ表面に亀裂を生じることが
ある。
Particularly in the high-pressure turbine located in the main steam introduction section, the above-mentioned temperature difference is large, and the rotor of the high-pressure turbine is subjected to centrifugal stress and thermal stress, which may cause cracks to occur on the rotor surface.

上記のような熱応力による損傷の発生を防止するため、
冷機を起動する際予め暖機が行われる。
To prevent damage caused by thermal stress as described above,
When starting the cold machine, it is warmed up in advance.

これは起動前にロータをターニングさせながら高圧ター
ビンに補助蒸気系から加熱用の蒸気を送シこんで、該高
圧タービンのロータを規定温度まで昇温させる操作であ
る。
This is an operation in which heating steam is sent from the auxiliary steam system to the high-pressure turbine while turning the rotor before startup, and the rotor of the high-pressure turbine is heated to a specified temperature.

第1図は高圧タービン暖機機構を備えた再熱式蒸気ター
ビンプラントの系統図、第2図は高圧タービンの縦断面
図である。
FIG. 1 is a system diagram of a reheat steam turbine plant equipped with a high-pressure turbine warm-up mechanism, and FIG. 2 is a longitudinal sectional view of the high-pressure turbine.

(第1図参照)、通常の運転の際は、ボイラ5で発生し
た主蒸気は主蒸気止弁3、主蒸気系15及び加減弁4を
経て高圧タービン1に流入して仕事をした後、高圧排気
口13、低温再熱系16を経て再熱器6に流入する。再
熱器6で加熱された蒸気は高温再熱系17、再熱蒸気止
弁12を経て中圧タービン(図示せず)に供給されて仕
事をした後、低圧タービン2に流入して仕事をし、復水
器8に回収される。
(See Figure 1) During normal operation, main steam generated in the boiler 5 passes through the main steam stop valve 3, the main steam system 15, and the control valve 4, flows into the high-pressure turbine 1, performs work, and then It flows into the reheater 6 via the high-pressure exhaust port 13 and the low-temperature reheat system 16. The steam heated in the reheater 6 is supplied to an intermediate pressure turbine (not shown) to perform work through a high temperature reheat system 17 and a reheat steam stop valve 12, and then flows into the low pressure turbine 2 to perform work. and is collected in the condenser 8.

一方、冷機の起動に先立って高圧タービン1を暖機する
には、復水器8を作動させてタービン内部を真空式し、
ターニングによってロータを低速回転させ、かつ蒸気加
減弁4を開いた状態で暖機−気系11に設けた暖機弁9
を開き、補助蒸気ヘッダ7から暖機蒸気29を低温再熱
系16を経て高圧タービン1の高圧排気口13に送シこ
む。
On the other hand, in order to warm up the high-pressure turbine 1 before starting the cold engine, the condenser 8 is operated to vacuum the inside of the turbine.
The warm-up valve 9 provided in the warm-up air system 11 rotates the rotor at a low speed by turning, and the steam control valve 4 is opened.
is opened, and warm-up steam 29 is sent from the auxiliary steam header 7 to the high-pressure exhaust port 13 of the high-pressure turbine 1 via the low-temperature reheat system 16.

高圧排気口13に流入した暖機蒸気29は高圧タービシ
1内を流通して該高圧タービンを加熱する。即ち、(第
2図参照)暖機蒸気29は高圧排気口13から高圧排気
室28を経て高圧ロータ20に沿って矢印の方向に流れ
ながら高圧ロータ20を加熱し、古の大部分は加減弁4
から流出する。、(第1図参照)、加減弁4から流出し
た暖機蒸気は主蒸気系15、主蒸気ドレン弁10及び主
蒸気ドレン管18を経て復水器8に流入する。
The warm-up steam 29 that has flowed into the high-pressure exhaust port 13 flows through the high-pressure turbine 1 and heats the high-pressure turbine. That is, (see Fig. 2), the warm-up steam 29 heats the high-pressure rotor 20 while flowing from the high-pressure exhaust port 13 through the high-pressure exhaust chamber 28 and along the high-pressure rotor 20 in the direction of the arrow. 4
flows out from (See FIG. 1) The warm-up steam flowing out of the control valve 4 flows into the condenser 8 via the main steam system 15, the main steam drain valve 10, and the main steam drain pipe 18.

(第2図参照)高圧タービンのロータ20を流通した暖
気蒸気29の一部は、゛第1段ブレード21と第1段ノ
ズル22との間隙を通り、高圧ロータ20と高圧内車室
23との間に設けたグランドパツキン26とロータとの
間隙を通って蒸気室27に流入する。この蒸気室27は
高圧内車室23と、高圧外車室24と、仕切壁25とに
よって囲まれた空間である。
(See Figure 2) A part of the warm steam 29 that has passed through the rotor 20 of the high-pressure turbine passes through the gap between the first-stage blades 21 and the first-stage nozzle 22, and is transferred to the high-pressure rotor 20 and the high-pressure inner casing 23. It flows into the steam chamber 27 through the gap between the gland packing 26 and the rotor. This steam chamber 27 is a space surrounded by a high-pressure inner compartment 23, a high-pressure outer compartment 24, and a partition wall 25.

上記の高圧内車室23と高圧外車室24との間の隙間e
は、一般に、構造上杵される範囲で出来るだけ狭くしで
あるので、蒸気室27に流入した蒸気は同室内に停滞し
たままとなる。
Gap e between the high-pressure inner casing 23 and the high-pressure outer casing 24
Generally, the steam chamber 27 is designed to be as narrow as possible within the scope of its construction, so that the steam that has flowed into the steam chamber 27 remains stagnant within the same chamber.

゛ 暖機に用いる蒸気は、通常、同一発電所内で稼動し
ている他ユニットから供給を受け、一旦補助蒸気ヘツダ
7(第1図)に貯えて使用され、その最適蒸気条件はエ
ンタルピー705 Kcal 7Kg前後とされている
。そして、暖気、弁9および主蒸気ドレン弁10.10
の開度を加減して高圧タービン1内が約5Kg/cm2
g前後に加圧されるように調整して高圧タービン1に送
入される。
゛ The steam used for warming up is usually supplied from other units operating within the same power plant, and is temporarily stored in the auxiliary steam header 7 (Figure 1) for use, and its optimal steam conditions are enthalpy 705 Kcal 7Kg It is said to be before and after. and warm-up valve 9 and main steam drain valve 10.10
The inside of the high pressure turbine 1 is approximately 5Kg/cm2 by adjusting the opening degree.
It is adjusted so that it is pressurized around g and is sent to the high-pressure turbine 1.

暖機の進行状態は高圧第1段後に設けである温度計(図
示せず)によって監視し、通常、この温度が150℃以
上になると暖機弁9を閉じて暖気蒸気の供給を停止する
The progress of warm-up is monitored by a thermometer (not shown) provided after the high-pressure first stage, and normally, when this temperature reaches 150° C. or higher, warm-up valve 9 is closed to stop the supply of warm steam.

上記のようにして暖機を完了した後、高圧タービン1内
の蒸気は加減弁4、主蒸気ドレン弁10および主蒸気ド
レン管18を経て復水器8に排出される。また、低温再
熱系16及び高温再熱系17内の残留蒸気は再熱ドレン
弁14および再熱ドレン管19を経て復水器8に排出さ
れる。
After the warm-up is completed as described above, the steam in the high-pressure turbine 1 is discharged to the condenser 8 via the control valve 4, the main steam drain valve 10, and the main steam drain pipe 18. Further, residual steam in the low-temperature reheat system 16 and the high-temperature reheat system 17 is discharged to the condenser 8 via the reheat drain valve 14 and the reheat drain pipe 19.

以上説明した従来技術による暖機においては、(第2図
参照)蒸気室27に停滞した暖気蒸気は暖気完了後、流
入経路を逆流して間隙eを通シ、グランドパツキン゛2
6とロータ20との隙間を通り、第1段ブレード21と
第1段ノズル22との間を通って加減弁4から排出され
るルートをたどるが、上記の各隙間は狭く、特にグラン
ドパツキン26とこれに対向するロータとの間隙は0.
4聴前後であるた−め、前記ルー十の暖気残留蒸気排出
は迅速には進行しない。
In the warm-up according to the conventional technology described above (see FIG. 2), after the warm-up is completed, the warm steam stagnant in the steam chamber 27 flows backward through the inflow path and passes through the gap e, and the warm steam stagnates in the steam chamber 27.
6 and the rotor 20, and between the first-stage blade 21 and the first-stage nozzle 22, and the discharge from the control valve 4 follows the route. The gap between this and the opposing rotor is 0.
Since it takes about 4 hours, the discharge of warm residual steam does not proceed quickly.

タービンの構造上、高圧ロータ20に比して高圧内車室
23および高圧外車室24の体容積は蓬かに太き込ので
、暖機の際の昇温速度が゛遅い。
Due to the structure of the turbine, the volumes of the high-pressure inner casing 23 and the high-pressure outer casing 24 are significantly larger than that of the high-pressure rotor 20, so that the rate of temperature rise during warm-up is slow.

従って、暖機運転を完了したとき高圧内、外車室23.
24は未だ完全に暖まっていない。このため、蒸気室2
7に残留した暖気蒸気は高圧内、外車室23.24に熱
を奪われて冷却し、一部が水滴となる虞れがある。
Therefore, when the warm-up operation is completed, the high-pressure interior and the exterior compartment 23.
24 hasn't warmed up completely yet. For this reason, steam room 2
There is a possibility that the warm steam remaining in the tank 7 will be cooled down by losing heat in the high-pressure interior and the outer compartment 23, 24, and some of it will turn into water droplets.

また、前述のごとく暖気蒸気はエンタルピー705Kc
al/Kg前後の過熱蒸気が望ましいとされているが、
暖気蒸気を他ユニットから供給されるため必ずしも最適
条件の過熱蒸気が得られるとは限らず、飽和蒸気を供給
されることもある。
Also, as mentioned above, warm steam has an enthalpy of 705Kc.
Superheated steam around al/Kg is said to be desirable, but
Since warm steam is supplied from another unit, it is not always possible to obtain superheated steam under optimal conditions, and saturated steam may be supplied.

このような場合は暖機運転中においても蒸気室27内の
停滞蒸気の一部が液化して蒸気室27内に溜まる。
In such a case, some of the stagnant steam in the steam chamber 27 liquefies and accumulates in the steam chamber 27 even during warm-up operation.

上述の事情によって暖機中に蒸気室2・7内に液状の水
が溜まっていると、暖機完了時に蒸気を加減弁4から排
出する際にフラッシュして蒸発潜熱を奪うので、せっか
く暖めたロータを冷却して暖機効果を減殺する。
If liquid water accumulates in the steam chambers 2 and 7 during warm-up due to the above-mentioned circumstances, it will flash when the steam is discharged from the control valve 4 upon completion of warm-up, and the latent heat of vaporization will be taken away. Cools the rotor to reduce the warming effect.

また、暖機運転中に蒸気室27内に液状の水が溜まって
いなくても、前述した事情によって暖機完了後に蒸気室
27内の残留蒸気が液化すると、タービン起動時にフラ
・ツシュし、高圧内、外車室23.24が蒸気室27に
接している部分を局部的に冷却させて車室変形などの悪
影響を生じる。
In addition, even if liquid water does not accumulate in the steam chamber 27 during warm-up operation, if residual steam in the steam chamber 27 liquefies after warm-up due to the above-mentioned circumstances, it will flash when the turbine is started, resulting in high pressure. The portions of the inner and outer compartments 23, 24 that are in contact with the steam chamber 27 are locally cooled, causing adverse effects such as deformation of the compartment.

本発明の目的は、上述のような従来技術の欠点を無くし
、(a)蒸気室内に暖気蒸気が残留することを防止して
残留蒸気の液化を未然に予防し、かつφ)飽和蒸気を用
いて暖機しても充分な暖機効果が得られるような、蒸気
タービン暖機装置を提供す季ことにある。
The purpose of the present invention is to eliminate the drawbacks of the prior art as described above, and (a) prevent warm steam from remaining in the steam chamber to prevent the residual steam from liquefying, and φ) use saturated steam. It is desirable to provide a steam turbine warm-up device that can provide a sufficient warm-up effect even when warmed up.

上記の目的を達成するため、本発明は、蒸気タービンの
内部車室と外部車室との間に形成された蒸気室と、復水
器との間に蒸気タービンの暖機完了後に該蒸気タービン
車室内の残留蒸気を排出する残留蒸気排出管路を設けた
ことを特徴とする。
In order to achieve the above object, the present invention provides a space between a steam chamber formed between an internal casing and an external casing of a steam turbine, and a condenser after the steam turbine is warmed up. The vehicle is characterized by being provided with a residual steam discharge pipe for discharging residual steam in the vehicle interior.

次に、本発明の一実施例を第3図及び第4図について説
明する。
Next, an embodiment of the present invention will be described with reference to FIGS. 3 and 4.

第3図は本発明に係る高圧タービン暖機機構を備えた再
熱式蒸気タービンプラントの系統図で、縦来技術におけ
る第1図に対応する図である。第4図は同じく高圧ター
ビンの縦断面図で、従来技術における第2図に対応する
図である。
FIG. 3 is a system diagram of a reheat steam turbine plant equipped with a high-pressure turbine warm-up mechanism according to the present invention, and corresponds to FIG. 1 in the conventional technology. FIG. 4 is also a longitudinal cross-sectional view of the high-pressure turbine, and corresponds to FIG. 2 in the prior art.

第3図および第4図において第1図および第2図と同一
の図面参照番号を附したものは従来装置におけると同様
若しくは類似の構成部材である。
In FIGS. 3 and 4, the same drawing reference numbers as in FIGS. 1 and 2 indicate the same or similar components as in the conventional device.

本実施例は、第4図に示すごとく、蒸気室27の一部を
形成している高圧外車室24に孔dを穿ち、上記の孔d
に暖機蒸気排出管3oを接続する。
In this embodiment, as shown in FIG.
Connect the warm-up steam exhaust pipe 3o to.

この暖機蒸気排出管3oを、第3図に示すごとく、暖機
蒸気排出弁31を介して復水器8に接続する。
This warm-up steam exhaust pipe 3o is connected to the condenser 8 via a warm-up steam exhaust valve 31, as shown in FIG.

本実施例は以上のように構成しであるので、暖機完了後
すみやかに暖機蒸気排出弁31を全開にすると蒸気室2
7内の残留蒸気が復水器8に排出される。従って、暖機
完了後に蒸気室27内の残留蒸気が液化する虞れが無く
、液化した残留蒸気のフラッシュによる車室変形などを
予防し得る。
Since the present embodiment is configured as described above, when the warm-up steam discharge valve 31 is fully opened immediately after the warm-up is completed, the steam chamber 2
Residual steam in 7 is discharged to condenser 8. Therefore, there is no risk that the residual steam in the steam chamber 27 will liquefy after completion of warm-up, and deformation of the cabin due to flash of liquefied residual steam can be prevented.

また、暖機蒸気のエンタルピーが低くて飽和蒸気若しく
は飽和に近い状態の蒸気である場合には、暖機運転中に
暖機蒸気排出弁31を開いておくと蒸気室27内で液化
した水が復水器8に排出され、蒸気室27内に溜まらな
いので、起動時に蒸気室27内の水がフラッシュして暖
機効果を減殺する虞れを無くすことができる。
In addition, if the warm-up steam has a low enthalpy and is saturated steam or steam in a state close to saturation, if the warm-up steam discharge valve 31 is opened during warm-up operation, the water liquefied in the steam chamber 27 will be discharged. Since the water is discharged to the condenser 8 and does not accumulate in the steam chamber 27, there is no possibility that the water in the steam chamber 27 will flash at the time of startup and reduce the warming effect.

さらに加えて、暖機を開始する際に暖機蒸気排出弁31
を開いておくと、加減弁4を閉じたままでも暖機蒸気を
高圧タービレ1内に循環させることができ、かつ暖機蒸
気排出弁31の開度調節によって高圧タービン1内め加
圧状態を調節jることができる。このため、暖機運転に
おける加減弁4の開閉操作や主蒸気ドレン弁1oの開閉
操作を省略できるので、運転操作の簡素化をはかること
も可能である。
In addition, when starting warm-up, the warm-up steam exhaust valve 31
By keeping the control valve 4 open, warm-up steam can be circulated into the high-pressure turbine 1 even when the control valve 4 is closed, and the pressurized state inside the high-pressure turbine 1 can be maintained by adjusting the opening of the warm-up steam discharge valve 31. It can be adjusted. Therefore, it is possible to omit the opening/closing operation of the control valve 4 and the opening/closing operation of the main steam drain valve 1o during warm-up operation, and it is also possible to simplify the operating operation.

以上説明したように、本発明は、蒸気タービンの内部車
室と外部車室との間に形成された蒸気室と、復水器とを
接続する残留蒸気排出管路を設けて、蒸気タービンの暖
機完了後に該蒸気タービンの車室内の残留蒸気を速やか
に排出することを可能ならしめて暖機効を持続せしめる
ことができる。
As explained above, the present invention provides a residual steam exhaust pipe that connects a steam chamber formed between an internal casing and an external casing of a steam turbine, and a condenser. After the warm-up is completed, the residual steam in the cabin of the steam turbine can be promptly discharged, so that the warm-up effect can be maintained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来技術における高圧タービンの暖機系統図、
第2図は従来形高圧ターピ/の縦断面図、83図は本発
明の一実施例に係る蒸気タービン暖機装置を備えた高圧
タービン暖気系統図、第4図は本発明の一実施例に係る
高圧タービンの縦断面図である。
Figure 1 is a warm-up system diagram of a high-pressure turbine in the conventional technology.
Fig. 2 is a vertical cross-sectional view of a conventional high-pressure turbine; Fig. 83 is a diagram of a high-pressure turbine warm-up system equipped with a steam turbine warm-up device according to an embodiment of the present invention; and Fig. 4 is a diagram of a high-pressure turbine warm-up system according to an embodiment of the present invention. FIG. 2 is a longitudinal cross-sectional view of such a high-pressure turbine.

Claims (1)

【特許請求の範囲】[Claims] 1、蒸気タービンの内部車室と外部車室との間に形成さ
れた蒸気室と蒸気タービンカ為らの杉ト気蒸気を凝縮す
る復水器との間に蒸気タービンの暖気完了後に該蒸気タ
ービンの車室内の残留蒸気を#ト出する残留蒸気排出管
路を設けたことを特徴とする蒸気タービン暖機装置。
1. After the steam turbine has been warmed up, the steam turbine A steam turbine warm-up device characterized by being provided with a residual steam exhaust pipe for discharging residual steam in a vehicle compartment.
JP16414081A 1981-10-16 1981-10-16 Warming-up device for steam turbine Pending JPS5867909A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16414081A JPS5867909A (en) 1981-10-16 1981-10-16 Warming-up device for steam turbine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16414081A JPS5867909A (en) 1981-10-16 1981-10-16 Warming-up device for steam turbine

Publications (1)

Publication Number Publication Date
JPS5867909A true JPS5867909A (en) 1983-04-22

Family

ID=15787505

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16414081A Pending JPS5867909A (en) 1981-10-16 1981-10-16 Warming-up device for steam turbine

Country Status (1)

Country Link
JP (1) JPS5867909A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4878303A (en) * 1972-01-28 1973-10-20
JPS5354604A (en) * 1976-10-27 1978-05-18 Hitachi Ltd Turbine casing warming-up system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4878303A (en) * 1972-01-28 1973-10-20
JPS5354604A (en) * 1976-10-27 1978-05-18 Hitachi Ltd Turbine casing warming-up system

Similar Documents

Publication Publication Date Title
KR100284392B1 (en) Method of effecting start-up of a cold steam turbine system in a combined cycle plant.
US11274573B2 (en) Plant control apparatus, plant control method and power plant
KR101014011B1 (en) Method for heating a steam turbine
JP5715697B2 (en) Carbon dioxide supply and recovery device for supercritical carbon dioxide gas turbine and method for adjusting carbon dioxide filling amount
EP0919706B1 (en) Recovery type steam cooled gas turbine
JP4814143B2 (en) Combined power plant
JP7166247B2 (en) A closed circuit functioning according to the Rankine cycle with a device for emergency stop of the circuit and a method of using such a circuit
JP3559574B2 (en) Startup method of single-shaft combined cycle power plant
JPS5867909A (en) Warming-up device for steam turbine
JPH04148002A (en) Prewarming method for steam turbine
JPS62101809A (en) Single-shaft combined plant having reheating system
JPH0238167Y2 (en)
JP3559573B2 (en) Startup method of single-shaft combined cycle power plant
JPH03294605A (en) Quick cooling device for steam turbine
JPS60159311A (en) Starting method for steam turbine
JP2003120328A (en) Gas turbine, method for operating the same, and gas turbine combined electric power plant
JPH11336510A (en) Single-shaft combined plant starting system
JPH09303110A (en) Warming system for steam turbine
JP3553314B2 (en) Cooling steam supply method for combined cycle power plant
SU1164447A1 (en) Device for starting and cooling steam turbine
JP2003083004A (en) Gas turbine, method for operating the same, and gas turbine combined power generating plant
JPS62159704A (en) Warming up method of steam turbine
JPS6267206A (en) Warming up device for intermediate pressure turbine
JPS62159705A (en) Intermediate pressure turbine warming apparatus of reheating condensing turbine
JPH0399101A (en) Controller of exhaust heat recovering heat exchanger