JPS5867016A - Manufacture of thin film - Google Patents

Manufacture of thin film

Info

Publication number
JPS5867016A
JPS5867016A JP16568481A JP16568481A JPS5867016A JP S5867016 A JPS5867016 A JP S5867016A JP 16568481 A JP16568481 A JP 16568481A JP 16568481 A JP16568481 A JP 16568481A JP S5867016 A JPS5867016 A JP S5867016A
Authority
JP
Japan
Prior art keywords
film
mask
thin film
substrate
shield
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16568481A
Other languages
Japanese (ja)
Inventor
Shigeru Hirono
廣野 滋
Yasushi Maeda
前田 安
Iwao Hatakeyama
畠山 巌
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP16568481A priority Critical patent/JPS5867016A/en
Publication of JPS5867016A publication Critical patent/JPS5867016A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/14Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates
    • H01F41/18Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates by cathode sputtering

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Thin Magnetic Films (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)
  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)

Abstract

PURPOSE:To provide a thin film with high orientation, by a method wherein the film is formed by eliminating atoms that do not incident in the vertical direction agaist a substrate. The method is related to the dry process such as the sputtering, the vacuum deposition and the ion plating processes. CONSTITUTION:RF diode sputtering device is used to form film, and it is fully baked. Before starting of sputtering, the vacuum degree in a belljar must be made less than 5.0X10<-7> Torr. A mask made of stainless steel is attached on the front surface of a substrate. Film is formed for each mask Fig (d), (e) and (f) show-the masks eliminating the atoms that incidents in the inclined direction. H-cut mask is used to form film on the atoms that incident in the vertical direction against the subtrate. The length of a pipe 4 is in order of (d), (e), (f). The angle between the center P of the substrate 3 and the upper edge of the pipe 4, that is potential angle alpha from the substrate center becomes 30 deg. for (d),40 deg. for (e), and 60 deg. for (f). The film made by using the masks is I0002/d larger than the one made without using the masks, and its crystallizability as well as the orientation in the C axis direction is improved.

Description

【発明の詳細な説明】 本発明は向い結晶の配向性を有する薄膜の作製方法に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing a thin film having oriented crystal orientation.

今日向い結晶配向性を有する薄膜作製技術の確立か強く
望1tしている。尚配向性薄膜を応用する例としてはC
o−Ru 、 Co−Cr hcp#g造膜においてC
軸配回膜7用いる尚Wi:8*密度用垂直記録媒坏、塾
らにはZnU 、 CdS 、 ALNなどのC軸配向
性mを用いる表面弾性波素子などかめけられる。
Today, there is a strong hope that a technology for producing thin films with oriented crystal orientation will be established. An example of applying an oriented thin film is C.
o-Ru, Co-Cr hcp#g C in film formation
In addition, perpendicular recording media for Wi:8* density using the axis alignment film 7, surface acoustic wave elements using C-axis orientation m such as ZnU, CdS, ALN, etc. can be used.

磁性薄膜にふ・いて垂直磁化状態を実現するには、膜面
垂直方向の巣万性@場(HK )全最大反磁場(4πM
s )よりも大きくする必資がめる。従って、yisの
尚いCO盆オリ用して垂直磁化状態ケ実現するためには
、(1)合雀化にエクMsf低下δせ、反蝮楊會減少さ
せる。(2)hcp相C@を基板に対して垂直方向に鋭
く配同芒ぜHK會できる限り大きくするこ従来型ih磁
化状態を示すCo系合金薄膜はRFスパッタ法、真空蒸
宥法により作製さCたGo−’Ru膜およびCo−Cr
膜が報告されている。(S、Hiron。
To achieve a perpendicular magnetization state in a magnetic thin film, the total maximum demagnetizing field (4πM
s). Therefore, in order to realize the perpendicular magnetization state by using the CO basin in yis, (1) the ex-Msf decrease δ and the reciprocal reciprocation must be reduced. (2) The hcp phase C@ is sharply distributed in the direction perpendicular to the substrate, and the HK phase is made as large as possible.The Co-based alloy thin film exhibiting the conventional IH magnetization state is fabricated by RF sputtering and vacuum evaporation. Co-Go-'Ru film and Co-Cr
membrane has been reported. (S. Hiron.

et at : Jpn、 J、 Appl 、 Ph
ya、 201981 L571 、 Y、Maeda
et at: Jpn、 J、 Appl、 Pb)’
s、20 (1981)、 L467 )従来検討さt
てきた作製方法上用いると、膜形成初期ではC@は基板
に対し鋭く配向できないことが知られている。Go−C
r膜においでは[’0002]面のロッキングカーブの
半値巾は膜形成初期では大きく、膜形成が進むにつnて
半値巾が減少する。νI」ち、膜形成初期にはC軸の分
散は大きくC軸配向性は良好ではない。−万、co−R
u膜においては膜形成初期は[1000:]配向であ9
%膜厚か増加するにつ扛て配向力向が変化し、おる程度
で浮くなめと〔0001〕配向の膜が得られることが報
告さ扛ている。lた、垂直磁化状Mを示すCo−Ru膜
に求いては基板に対し、水平方向および垂直方向の11
+ −Hカーブは外部a場が14.5 K(ト)におい
ても飽和せ丁、磁気的にハードな膜でろることも知らf
している。(S、 Hiron。
et at: Jpn, J, Appl, Ph
ya, 201981 L571, Y, Maeda
et at: Jpn, J, Appl, Pb)'
s, 20 (1981), L467) previously considered
It is known that C@ cannot be sharply aligned with respect to the substrate in the initial stage of film formation when using the manufacturing method that has been developed. Go-C
In the r film, the half-width of the rocking curve of the ['0002] plane is large at the initial stage of film formation, and as the film formation progresses, the half-width decreases. νI'' In the initial stage of film formation, the C-axis dispersion is large and the C-axis orientation is not good. -Man, co-R
In the U film, the initial stage of film formation is [1000:] orientation 9
It has been reported that as the film thickness increases, the direction of the orientation force changes, and a film with a floating slant and [0001] orientation can be obtained. In addition, for a Co-Ru film exhibiting perpendicular magnetization shape M, it is necessary to
It is also known that the + -H curve is saturated even when the external a field is 14.5 K (g), and that this is true for magnetically hard films.
are doing. (S. Hiron.

etaj:同上)このC1111配向の不足は合金膜の
塩の低下をもたらし垂直磁化状態実現に対し抑制効果を
もたらすた6ブでなく、保磁力(Ha)の低下をもたら
し、その鮎果浅貿磁化(Mr)の低下、即ち再生出力の
低下tもたらすという欠点ケ有している。
etaj: Same as above) This lack of C1111 orientation causes a decrease in the salt content of the alloy film, which has a suppressive effect on realizing the perpendicular magnetization state, but also causes a decrease in coercive force (Ha), resulting in shallow trade magnetization. This method has the disadvantage that it causes a decrease in (Mr), that is, a decrease in reproduction output t.

さらに従来の磁気的にノ・−ドなCo−Ru膜では、記
録に際しマイナーM −Hカーブ勿たどることになり、
この現象も1fcMrの低下即ち再生出力の低下金もた
らすという欠点金有している0 以上述べてきたように、従来の作製法ではC軸配向は不
足であり、より配向性を向上させる技術の確立が必懺と
される。
Furthermore, with the conventional magnetically noded Co-Ru film, a minor M-H curve is followed during recording.
This phenomenon also has the disadvantage of causing a decrease in 1fcMr, that is, a decrease in the reproduction output.As mentioned above, the C-axis orientation is insufficient in the conventional manufacturing method, and technology has been established to further improve the orientation. is required.

本発明はスパッタリング法、真空蒸看法、およびイオン
グレーティング法尋の乾式法により薄膜全作製する場合
、基板に対し垂直方向からはずnた方向より入射する原
子を除去しつつ薄膜を形成することを特徴とし、その目
的は従来の作製法に比し、高配向性の薄膜上作製すると
ころにある。
The present invention is characterized by forming a thin film while removing atoms incident from a direction deviated from the perpendicular direction to the substrate when the entire thin film is manufactured by a dry method such as a sputtering method, a vacuum evaporation method, or an ion grating method. The purpose of this method is to fabricate a thin film with a higher degree of orientation than conventional fabrication methods.

本発明者勢は鍋配同性膜が要求さnる垂直磁化媒体に関
して、その作製方法2作製因子について詳細に検討した
。その結果、従来知ら7’してぃた、残留ガスおよびh
cp相以外の他相(fee、テトラゴナル相)の析出、
堆積速度等の作製因子以外に、入射原子の基板に対する
入射角度が膜の配向性に著しい効果を与えることが判っ
た。入射原子の基板に対する入射角度が基板平行成分を
多く有する場合、C軸配向は限外され%  [0001
)面だけではなく、〔1010〕面、 (xoig面も
基板に平行に析出し、膜のC軸配向性は著しく低下し、
膜面垂直方向の結晶磁気異方性が低下すること全観測し
た。一方、入射角度が基板平行成分を多く有する入射原
子全除去し、基板に対し垂直成分を主体とする入射原子
により、IIを作製する場合では、従来得らtしていた
膜よりも著しくC軸配向性が向上し、烏い結晶磁気異方
性を有することが分った。このように、基板に対し垂直
方向からはず扛た方向よジ入射する原子を除去する遮蔽
物を基板の前面に設置することにより、膜のC軸配向性
は者しく向上する。
The inventors of the present invention have conducted a detailed study on two manufacturing factors regarding a perpendicular magnetization medium that requires a pan-isolated film. As a result, residual gas and h
Precipitation of phases other than the cp phase (fee, tetragonal phase),
In addition to fabrication factors such as deposition rate, it has been found that the angle of incidence of the incident atoms with respect to the substrate has a significant effect on the orientation of the film. When the angle of incidence of incident atoms on the substrate has many components parallel to the substrate, the C-axis orientation is limited and % [0001
) plane, but also [1010] plane and (xoig plane) are deposited parallel to the substrate, and the C-axis orientation of the film is significantly reduced.
It was observed that the magnetocrystalline anisotropy in the direction perpendicular to the film surface decreased. On the other hand, when forming II by removing all of the incident atoms whose incident angle has many components parallel to the substrate and using incident atoms whose main component is perpendicular to the substrate, the C-axis It was found that the orientation was improved and the crystalline magnetic anisotropy was improved. In this way, the C-axis orientation of the film can be clearly improved by providing a shield in front of the substrate to remove atoms incident on the substrate in a direction deviating from the perpendicular direction.

以下、実施例に基づき本発明の詳細な説明する。Hereinafter, the present invention will be explained in detail based on Examples.

〔実施例1〕 膜形成にRFダイオードスパンタ装置1
111.金用いた。ターゲットとして、直径83の純コ
バルト円板上にL径4日のルテニウムのペレットを設置
し、Co−Ru膜を作製した。ターゲット囲槓中ルテニ
ウムペレットの占める割付w 27xに定めた。基板に
はコーニング社製加×加×0.5調のガラス板金用いた
0スパツタ装置を十分ベーキングし、スハツタ開始前の
ペルジャー内の真空度’i 5.OX 1O−7Tor
r以下にする。スパッタ条件はアルゴン圧1.0 X 
10”−2Torr 、ターゲットと基板間距離4副、
基板温度200℃、スパッタパワー密度4W/−である
。さらに、第1図に示すステンレス製のマスクを基板前
面にと9つけて、各マスクごとに膜形成を行った。第1
図中(a) = Q)) 、 (c)のマスクは基板垂
直方向の入射原子を除去し、斜め入射原子主体に膜形成
を行うためのマスクであジ、この構造は円板1に脚2會
設けた構造を示しており、脚の長さは(a) 、 (b
) 、 (c)へと順次長くなっている0基板の中心P
から円板の周縁を見る線と基板との間に形成される見込
み角αは(a)は30°、伽)は45’ 、 (c)は
60’になるように作製さnている。この(a) 、 
(b) 。
[Example 1] RF diode spanner device 1 for film formation
111. I spent money. As a target, a ruthenium pellet with an L diameter of 4 days was placed on a pure cobalt disk with a diameter of 83 mm to produce a Co-Ru film. The allocation of the ruthenium pellets in the target surrounding area was determined to be 27x. A sputtering device using a glass sheet metal manufactured by Corning Co., Ltd. with a scale of 0.5 is thoroughly baked, and the degree of vacuum in the Pelger before starting sputtering is 5. OX 1O-7Tor
Make it less than or equal to r. Sputtering conditions are argon pressure 1.0X
10"-2 Torr, 4 sub distances between target and board,
The substrate temperature was 200° C., and the sputtering power density was 4 W/−. Further, stainless steel masks shown in FIG. 1 were attached to the front surface of the substrate, and a film was formed for each mask. 1st
In the figure, the masks shown in (a) = Q)) and (c) are masks for removing incident atoms in the vertical direction of the substrate and forming a film mainly on obliquely incident atoms. The structure has two legs, and the lengths of the legs are (a) and (b).
), the center P of the 0 substrate becomes longer sequentially to (c)
The angle of view α formed between the line viewed from the periphery of the disk and the substrate is 30° in (a), 45' in (a), and 60' in (c). This (a),
(b).

(e)のマスクt−■カットマスクと呼ぶ。一方、第1
図中、 (d) 、 (e) 、 (f)のマスクは斜
め入射原子全除去し、基板垂直方向の入射原子主体に膜
形成を行うためのマスクであり、この構造は円板状の台
3上に円筒形のパイプ4を取りつけた構造をしており、
パイプ4の長さは(d) 、 (e) 、 (f)の順
に長くなっている。基板の中心Pから基板はこのパイプ
の中におかれるもので、基板の中心Pから、パイプの上
縁を見る線と基板との間の角度すなわち基板中心からの
見込み角aは(d)が30°、(e)が45’ 、 (
f)が■°になるように作製されている。この(ct)
 p (e)、 (f)のマスクf:Hカットマスクと
呼ぶ。
The mask in (e) is called t-■ cut mask. On the other hand, the first
In the figure, the masks (d), (e), and (f) are used to remove all obliquely incident atoms and form a film mainly on the incident atoms in the vertical direction of the substrate. It has a structure in which a cylindrical pipe 4 is attached on top of the pipe 3.
The length of the pipe 4 increases in the order of (d), (e), and (f). The board is placed in this pipe from the center P of the board, and the angle between the board and the line looking at the upper edge of the pipe from the center P of the board, that is, the viewing angle a from the center of the board is (d). 30°, (e) is 45', (
f) is manufactured to be ■°. This (ct)
Mask f of p (e), (f): It is called an H-cut mask.

初めに、■カッ)−rスフを用いて作製した膜の特性に
ついて述べる。第2図(イ)に(a)のマスクを用いて
作製した膜とマスクを用いないで作製した膜のX線回折
パターン(CuKa線を用いた。)全示す。マスクを用
いないで作製した膜(ロー参照)では(0002)回折
線しか存在せず、完全なC軸配置口」した膜でおる。し
かし、(a)マスクを用いて作製した膜では、 [xo
io) 、 cxoix:+回折縁が紹めら扛、C軸配
向が著しく低下していることが判る。C軸配向性の程一
度を評価するため、マスクの見込み角に対するI 10
00 / I 0002 k第3図に示す。この図より
、■カットマスクを用いた場合では、マスクを使用しな
い場合に比し、11010回折線が存在し、C軸配向性
か低下することが判る。以上が、垂直入射成分を除去し
、斜め入射成分主体に膜形成した結果であり、次に、こ
扛とは逆にHカットマスクを用い′fc場合、即ち垂直
成分主体に膜形成さnた場合について述べる。
First, the characteristics of the film produced using ① Ka)-r will be described. FIG. 2(a) shows the complete X-ray diffraction patterns (using CuKa rays) of the film produced using the mask of (a) and the film produced without using the mask. In the film produced without using a mask (see Low), only the (0002) diffraction line exists, and the film has a complete C-axis alignment. However, in the film prepared using (a) mask, [xo
io), cxoix: It can be seen that the + diffraction edges are introduced and the C-axis orientation is significantly reduced. In order to evaluate the degree of C-axis orientation, I 10 with respect to the viewing angle of the mask
00/I 0002 k shown in Figure 3. From this figure, it can be seen that when the cut mask is used, the 11010 diffraction line is present and the C-axis orientation is lower than when no mask is used. The above is the result of removing the vertically incident component and forming a film mainly on the obliquely incident component.Next, in contrast to this method, when using an H-cut mask, the film is formed mainly on the vertically incident component. Let's talk about the case.

Rカットマスク(d) 、 (e) 、 (f) を用
いた作製した膜のX線回折パターンには(0002)回
折線しか認めら扛ず、C軸配向した膜であることが判っ
た。基板面垂直方向の結晶性を評価するため、単位膜厚
あたりの(0002)回折iut度を第4図に示す。こ
の図より、Hカットマスクを用いて作製された膜は、マ
スクを用いないで作製され九膜に比し、 1000g/
dが大きく、特に見込み角が60°のマスク(マスクf
)を用いて作製さnた膜では約10倍も大きな値會有す
ることが判る。このように、Hカットマスクを用いて作
製した膜はC軸方向の結晶性が同上し。
In the X-ray diffraction patterns of the films produced using R-cut masks (d), (e), and (f), only the (0002) diffraction line was observed, indicating that the films were C-axis oriented. In order to evaluate the crystallinity in the direction perpendicular to the substrate surface, the degree of (0002) diffraction iut per unit film thickness is shown in FIG. From this figure, the film produced using the H-cut mask has a lower weight of 1000 g/m compared to the nine films produced without using a mask.
d is large, especially a mask with a viewing angle of 60° (mask f
) is found to have a value about 10 times larger. In this way, the film produced using the H-cut mask has the same crystallinity in the C-axis direction.

C軸配向性が同上する。C軸配向性を磁気的性たら評価
するため、膜面垂直方向に測定した残留磁化(Mr(±
))/膜面平行方向に測定した残留磁化(Mr(//)
 )を第5図に示す。
The C-axis orientation is the same as above. In order to evaluate the C-axis orientation as a magnetic property, the residual magnetization (Mr (±
))/Residual magnetization measured in the direction parallel to the film surface (Mr(//)
) is shown in Figure 5.

Hカットマスクを用いた膜では、Mr(±) / Mr
(//)は、マスクを使用しないで作製した膜よりも大
きく、特に60°−rxり全相いた場合Mr(±) /
 Mr (、//)は約2.2倍の同上が紹めらnた。
For the film using H-cut mask, Mr(±)/Mr
(//) is larger than the film prepared without using a mask, especially when all phases are present at 60°-rx, Mr(±)/
Mr (, //) was introduced as above about 2.2 times.

こりようにHカットマスクを用いると膜面垂直方向の磁
気異方性が向上しており、このことからも、C軸配向性
が向上していることが分る。
When an H-cut mask is used, the magnetic anisotropy in the direction perpendicular to the film surface is improved, and this also shows that the C-axis orientation is improved.

第6図(イ)にマスクを使用しない場合と、(ロ)に6
0゜マスクを使用して作製しfcMlkの膜面垂直方向
に測定し九M−Hループを示す。マスクを使用していな
い膜では、M−Hループは外部tIa場が10KOeで
も飽和していないのに対し、60’マスクを使用した膜
では約5K(ト)で飽和している。
Figure 6 (a) shows when no mask is used, and (b) shows 6
It was prepared using a 0° mask and measured in the direction perpendicular to the film surface of fcMlk, showing nine M-H loops. In the film without a mask, the M-H loop is not saturated even with an external tIa field of 10 KOe, whereas in the film with a 60′ mask, it is saturated at about 5 K(t).

以上説明してきたように、基板垂直方向に入射する原子
を除去し、斜め入射原子主体に膜形成させると、C軸配
向性は著しく劣化するのに対し、斜め入射原子全除去し
垂直方向に入射する原子主体に膜形成ちせると、C軸配
向性が著しく向上する0 〔実施例2 )  Co−Cr膜f:RFダイオードス
パッタ法で作製した。スパッタ条件基板は実施例1と同
じである。Crベレット面積がターゲット全体の面積に
占める割合は加%である。第1図のHカットマスクを用
いて膜形成全行った。第7図に、Mr(±) / Mr
(〃)のマスク見込み角依存性を示す。
As explained above, if the atoms incident perpendicularly to the substrate are removed and the film is formed mainly by obliquely incident atoms, the C-axis orientation deteriorates significantly, whereas if all obliquely incident atoms are removed and the film is formed mainly by obliquely incident atoms, When the film is formed mainly by atoms, the C-axis orientation is significantly improved. Example 2 Co--Cr film f: Produced by RF diode sputtering method. The sputtering conditions and substrate were the same as in Example 1. The ratio of the area of the Cr pellet to the area of the entire target is %. All film formation was performed using the H-cut mask shown in FIG. In Fig. 7, Mr(±)/Mr
The dependence of (〃) on the mask viewing angle is shown.

Co−Cr膜においても% Co−Ru膜同様Hカット
マスク?用いるとC軸配向性が向上するため、マスクを
使用しないで作製した腺に比しMr(±) / Mr(
〃)の向上が認められる。
%H cut mask for Co-Cr film as well as Co-Ru film? Since the C-axis orientation improves when using a mask, Mr(±) / Mr(
Improvement in 〃) was observed.

〔実施例3〕 直径8cfRのディスク基板に膜形成を
行うため第8図に示すマスクを作製した。このマスクは
直径10mの円筒11の内部に、シ@シ板1211−軸
方向に平行に設けたものである。このマスク全土から見
た場合、内部では1辺が5mの正方形になるようにしき
り板νが設けられている。このマスクの厚さが4.5■
及び2.5 teaの2棟のマスクを使用した。膜形成
にはRFタイオードスパッタ装置を用いた。ターゲット
としては、直径17cInの0円板上に直径4■のルテ
ニウムベレットヲ設置し、Co−RuW!1.を作製し
た。ターゲット面積中ルテニウムペレットの占める割合
に71’Xに定めた。
[Example 3] A mask shown in FIG. 8 was prepared in order to form a film on a disk substrate having a diameter of 8 cfR. This mask is provided inside a cylinder 11 with a diameter of 10 m, parallel to the axial direction of the shingle plate 1211. When viewed from the entire surface of this mask, a partition plate ν is provided so that the inside of the mask forms a square with one side of 5 m. The thickness of this mask is 4.5cm
and 2.5 tea masks were used. An RF diode sputtering device was used for film formation. As a target, a ruthenium pellet with a diameter of 4 cm was set on a 0 disc with a diameter of 17 cIn, and Co-RuW! 1. was created. The proportion of ruthenium pellets in the target area was set at 71'X.

基板には、直径8備、厚さ0.2cn1.表面をアルマ
イト化(アルマイト層2μm>したAt基板金用いた。
The substrate has a diameter of 8 mm and a thickness of 0.2 cm. An At substrate gold whose surface was anodized (an alumite layer of 2 μm thick) was used.

スパッタ装置を十分ベーキングし、スパッタ開始前のペ
ルジャー内の真空度’k 5.OX 1O−7Torr
以下にする。スパッタ条件はアルゴン圧1.0X10”
−2Torr。
Thoroughly bake the sputtering equipment and check the degree of vacuum in the Pelger before starting sputtering. 5. OX 1O-7Torr
Do the following. Sputtering conditions are argon pressure 1.0 x 10"
-2 Torr.

ターゲットと基板間圧1w15 cm 、基板温度15
0 ℃。
Pressure between target and substrate 1w15 cm, substrate temperature 15
0℃.

スパッタパワー密度2W/cIIである。The sputtering power density was 2 W/cII.

基板、マスク、ターゲットとも平行かっ、基板。The substrate, mask, and target are parallel to each other.

マスク、ターゲットと中心が1直線上にならぶように配
置した。さらに、マスクと基板間距離全1圏とした。第
9図に、Mr(±) / Mr(yy)のマスク厚さ依
存性を示す。この因から分るように、マスクを用いない
場合に比し、マスク金柑いて作製した膜では、 Mr(
1) / Mr (//)に向上が認められ、この場合
でも膜のC軸配向性が向上していることが分る。尚前記
の遮蔽物において、管の長さの2乗が、しきυ板により
分割さnた部分の、分割面積の平均値の11500がら
200倍であることが好ましい。
The mask and target were placed so that their centers were aligned in a straight line. Furthermore, the distance between the mask and the board was set to one circle. FIG. 9 shows the mask thickness dependence of Mr(±)/Mr(yy). As can be seen from this factor, compared to the case where no mask is used, the film prepared using the masked kumquat has a lower Mr(
1) An improvement was observed in / Mr (//), indicating that the C-axis orientation of the film was also improved in this case. In the above-mentioned shield, it is preferable that the square of the length of the pipe is 11,500 to 200 times the average value of the divided areas of the parts divided by the υ plates.

〔実施例4〕 基板を1秒間に3°、6°、 12°回
転させlがら膜形成全行った。基板回転以外の膜形成条
件は実施例3と全く同じである。この場合も、マスクの
無い場合に比しMr(±) / Mr (//)は同上
し、基板を回転しても、マスクによるC軸配向性の向上
は認められた。第10図に基板の回転角6°/ aec
で作製した膜のMr(1) / Mr(//)を示す。
[Example 4] All film formation was performed while rotating the substrate by 3°, 6°, and 12° per second. The film forming conditions other than substrate rotation are exactly the same as in Example 3. In this case as well, Mr(±)/Mr(//) was the same as that without the mask, and even when the substrate was rotated, the improvement in C-axis orientation due to the mask was observed. Figure 10 shows the rotation angle of the board 6°/aec
Mr(1)/Mr(//) of the film prepared in is shown.

〔実施例5〕 第11図(イ)に示す内径6m、長さ2
.5 m及び4.5 wi、の円筒21を(ロ)図に示
すように、並行に配列したハテノス状の構造を有するマ
スク22ヲ作製した。このマスクを用い、実施例3と同
じ条件で膜形成を行った。第ν図にMr (J−) /
 Mr (tυのマスク厚依存性を示す。このマスクを
使用しても、実施例3同様、C軸配向性の向上が認めら
れる。さらに、実施例4同様このマスクを用いて基面、
前記の遮蔽物において、管の長さの2乗が、各管の平均
断面積のvsooから200倍であることが好ましい。
[Example 5] Inner diameter 6 m, length 2 as shown in Figure 11 (a)
.. A mask 22 having a hateno-like structure in which cylinders 21 of 5 m and 4.5 wi were arranged in parallel as shown in FIG. Using this mask, film formation was performed under the same conditions as in Example 3. In figure ν, Mr (J-) /
The mask thickness dependence of Mr (tυ is shown. Even when this mask is used, the C-axis orientation is improved as in Example 3. Furthermore, as in Example 4, using this mask, the base surface,
In the above-mentioned shield, it is preferable that the square of the length of the tube is 200 times the average cross-sectional area of each tube vsoo.

〔実施例6〕 実施例5で用いた小円筒21を、マスク
の厚さ方向に対し、6°傾けた、第13図に示すマスク
23を作製した。ディスクの直径は10 on 。
[Example 6] A mask 23 shown in FIG. 13 was manufactured in which the small cylinder 21 used in Example 5 was tilted at 6 degrees with respect to the thickness direction of the mask. The diameter of the disc is 10 on.

厚さは2.5冒又は4.5 mである。このマスクを使
用し、実施例4と同じスパッタ条件で膜作製を行った。
The thickness is 2.5 mm or 4.5 m. Using this mask, a film was formed under the same sputtering conditions as in Example 4.

基板回転角は6°/ secである。第13図に示すよ
うに、基板の回転方向に小円筒が傾くように設定されて
いる。第14図に、マスクを用いないで作製した膜、実
施例5で使用し7cマスクを用いて作製した膜(図中、
直角マスクに対応)、第12図のマスクを用いて作製し
た膜(図中、#I斜マスクに対応)のMr(±) / 
Mr(//) (−v スフ厚4.5sam)k示す。
The substrate rotation angle is 6°/sec. As shown in FIG. 13, the small cylinder is set to be inclined in the direction of rotation of the substrate. Figure 14 shows a film produced without using a mask, and a film produced using a 7c mask used in Example 5 (in the figure,
Mr (±) / of the film produced using the mask shown in FIG.
Mr (//) (-v thickness 4.5 sam)k is shown.

マスクを用いて作製した膜は、マスクを使用しない膜に
比しMr (±) 、/ Mr(//)が大きくC軸配
向性が向上している。さらに、マスクを用いた膜でも、
傾斜マスクを用いた膜は直角マスクを用いの方がC軸配
向性にはより効果が認められる。なお遮蔽物において仕
切板あるいは中空の管の傾き角は、基板の1秒当りの回
転角の115〜5倍とすることが好lしい0 〔実施例7〕 真空蒸着法でCo−Cr l[’を作製
した。蒸着前にチャンバーを十分ベーキングし、2、O
Xl0−7Torr以下にする。真空ポンプにはイオン
ポンプおよびTi サブリメーションポンプ會使用した
。基板と蒸発源量販aは155IでめるO加熱方法とし
て′電子ビーム加熱方式を用いた。アーク溶解法により
作製したCo−Cr (Cr 20 at%)インゴッ
トを使用した0基板温度は150℃、堆積速度は500
 ; 7分にv4gMした0基板にはコーニング社製2
0 X 20 X O,5txmのガラス板を使用した
○マスクとしては第1図に示しfcHカットマスク(e
) 、 (f) k使用した0第15図にMr(±) 
/ Mr(//)のマスク見込み角依存性を示す。マス
クを用いないで作製した膜に比し、Hカットマスクを用
いて作製し7’CMは、スパッタ法程崩着ではないが、
Mr(±) / Mr(tt)が大さく、真空蒸着法に
おいてもHカットマスクは、C軸配向性を向上させるこ
とが分る。
The film produced using a mask has larger Mr (±) and /Mr (//) and improved C-axis orientation compared to a film that does not use a mask. Furthermore, even with a membrane using a mask,
For films using a tilted mask, use of a right-angled mask is more effective in terms of C-axis orientation. In addition, it is preferable that the inclination angle of the partition plate or hollow tube in the shield is 115 to 5 times the rotation angle per second of the substrate. [Example 7] Co-Cr l [ ' was created. Before deposition, thoroughly bake the chamber and
Xl0-7 Torr or less. An ion pump and a Ti sublimation pump were used as vacuum pumps. The substrate and evaporation source mass market a were heated using 155I, and an electron beam heating method was used as the heating method. Using a Co-Cr (Cr 20 at%) ingot produced by arc melting, the substrate temperature was 150°C and the deposition rate was 500°C.
; Corning 2 was used for the 0 board that was v4gM in 7 minutes.
The fcH cut mask (e
), (f) Mr (±) in 0 Figure 15 using k
/ Mr(//) shows mask viewing angle dependence. Compared to the film produced without using a mask, 7'CM produced using an H-cut mask does not suffer from collapse as much as the sputtering process, but
It can be seen that the H-cut mask has a large Mr(±)/Mr(tt) and improves the C-axis orientation even in the vacuum evaporation method.

実施例1,2.7で示したように乾式法で薄膜を形成さ
せる場合、基板に対し垂直方向からはずnた方向よシ入
射する原子を除去する遮蔽物全基板とターゲットもしく
位蒸発源の間に設置すると薄膜の配向性は著しく向上す
る。一方、逆に垂直入射成分を除去し斜め入射原子を主
体に膜形成させると膜の配向性は著しく劣化する。従っ
て本発明に2いては、膜形成時に斜め入射原子全除去す
ることが、本質的な要件であり、この方法音用いる゛と
膜の配向性は著しく向上する○垂直磁イビ媒体として用
いられるCo−Ru 、 Co−Cr膜では、本発明を
用いることによ5.C軸配向性が向上し、膜面垂直方向
の結晶磁気異方性が同上する結果、尚記録密度化が可能
な媒体を作製でさる利点がろる0さらにCo−Ru膜に
おいては、従来の作製法では外部磁場が10KOeでも
M−Hループが飽和しない膜しか作製できない欠点金有
していたが、本発明を用いることによル、外部磁場が5
 K Oeでも飽和する膜が作製でき、高記鍮密度化阻
害因子を除去することか可能となった。
As shown in Examples 1 and 2.7, when forming a thin film by a dry method, a shield is used to remove atoms incident on the substrate from directions deviating from the perpendicular direction, and a target or an evaporation source is used. When placed between the two, the orientation of the thin film is significantly improved. On the other hand, if the perpendicularly incident component is removed and a film is formed mainly of obliquely incident atoms, the orientation of the film will be significantly degraded. Therefore, in the present invention, it is an essential requirement to remove all obliquely incident atoms during film formation, and when this method is used, the orientation of the film is significantly improved. -Ru, Co-Cr film, by using the present invention, 5. As a result of improved C-axis orientation and improved crystalline magnetic anisotropy in the direction perpendicular to the film surface, there is a further advantage in producing media that can increase recording density. The manufacturing method had the disadvantage that it could only produce a film in which the M-H loop was not saturated even with an external magnetic field of 10 KOe, but by using the present invention, the external magnetic field could be reduced to 5 KOe.
A film that is saturated even with K Oe could be produced, making it possible to remove high-density inhibiting factors.

実施例3〜7は本発明全磁気ディスク作製を可能とする
ため試みられたものである。再度ここで述べるが、本発
明の要件は斜め入射原子を除去するところにあり、実施
例3〜7で述べた方法はその1例にすき゛ず、斜め入射
原子を除去する遮蔽物を基板とターゲットもしくは蒸発
源の間に設置する方法は、その遮蔽物がいかなる形状を
有していても、本発明にきまnることは明らかである。
Examples 3 to 7 were attempted in order to make it possible to manufacture an all-magnetic disk according to the present invention. As I will state again here, the requirement of the present invention is to remove obliquely incident atoms, and the methods described in Examples 3 to 7 are just one example of this. It is clear that the method of installing the shield between the evaporation sources is applicable to the present invention regardless of the shape of the shield.

又遮蔽物において、軸方向に直角に切った断面形状が円
、角、楕円などの任意の形状をしておシ、かつしきり板
により2つ以上の複数の部分に分割されているもの分用
いることは、すべて本発明に含まれることは明らかであ
る0
In addition, for shielding objects, those whose cross-sectional shape when cut at right angles to the axial direction has an arbitrary shape such as a circle, square, or ellipse, and are divided into two or more parts by a cutting board are used. It is clear that all of these are included in the present invention.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は基板へ入射する原子の入射方向を制御するマス
クで、 (a) 、 (b) 、 (c)は垂直入射成
分を除去するマスクでありs (d) 、(e) t 
(f)は斜め入射成分を除去するマスク、第2図tri
 Co−Ru [のX線回折)(ターンで、(イ)は第
1図で示したマスク(a) を用いて作製したCo−R
uスノくツタ膜の回折ノ(ターン、(ロ)はマスクを用
いないで作製したCo−Ruスノ(ツタ膜の回折パター
ン、第3図はVカットマスクを用いた場合のCo−Ru
スパッタ膜Ixoio / I 0002のマスク見込
み角依存性、第4図はHカットマスクを用いた場合の単
位膜厚あたりの回折線強度10002 / dのマスク
見込み角依存性、第5図はHカットマスクを用いた場合
のCo−Ruスノくツク膜における垂直方向に対する面
内方向の残留磁化の比のマスク見込み角依存性、第6図
はC6−Ruス/: ツp p )M −Hループを示
したもので、(イ)はマスクを用いないで作製し九膜の
M−Hループ、(ロ)は(f)マスクを用いて作製した
膜のM−Hループ、第7図はHカットマスクを用いた場
合のCo−Crスノくツタ膜における垂直方向に対する
面内方向の残留磁化の比のマスク見込み角依存性、第8
図1”を管の中空方向に複数のしきり板を設け、ノ・チ
ノス状の構造を有するマスク、第9図は第8図に示した
マスクを用いた場合のCo−Ruスパッタ膜における垂
直方向に対する面内方向の残留磁化の比のマスク厚さ依
存性、第10図(1第8図に示したマスクを用い、基板
を1枦・間6反回転した場合のCo−Ruスパッタ膜に
おける垂直方向に対する面内方向の残留磁化の比のマス
ク厚さ依存性、第1L図G)はマスクを構成する下学の
管、(ロ)は(イ)のwを並行配列したマスク、第12
図は第11図に示したマスクを用いた場合の、 Co−
動スバッタ膜における垂直方向に対する面内方向の残留
磁化の比のマスク厚依存性、第13図は中空の管を用い
たマスクの他の実施例、第14図は第11図および第1
3図で示したマスクを使用したCo−Ruスパッタ膜、
マスクを使用せず作製したCo−Ruスパッタ膜の、垂
直方向に対する面内方向の残留磁化の比、第15図は、
第1図で示した(e) 、 (f)のマスクを使用した
場合のCo−Cr蒸層膜における垂直方向に対する面内
方向の残留磁化の比を示す。 1・・・・・・円板、2・・・・・・脚、 11・・・
・・・円筒、L・・・・・・しきり板、21・・・・・
・円筒、22・・・・・・マスク、23・・・・・・マ
スク 第1図 (a)       (b)     (c)(d) 
      (e)     (f)第2図 2e (、り          2e(71)第3図 マスクも込み角 (崖) 第6図 第7図 第813IO 第9図 マスク4  (mm) 第10図 マスク4   (mm) 第11図 (イ)               (ロ)第12図 マスク4 (mm) 第13yA 第145A 第15図 E込と角(度) 手続補正省(自発〕 昭和5年12廊21 特許庁長官 島 1)春 411  殿1、事件の表示 昭和56年 特Wlf願第165684号2、発明の名
称 薄膜の製造方法 3、補正をする者 事件との関係  特許出願人 名 称 (422)日本電@砥砧公社 4、代  理  人  〒160 明細書のrIl#許請求の範囲」及び「発明の詳細な説
明」の― 6、補正の内容 別紙のとおり 1、 特ilr!l−珀氷の軛囲金次のように訂正する
。 1(リ スパッタリング法、真空蒸着法、イオンブレー
ティング法等の乾式形成法により薄膜を作製する楊脅、
基板に対し垂直方向からは1扛た方向より入射する原子
全除去する遮蔽物を、基板とターケラトもしくに蒸発源
の間VC設置すること全特徴とする薄膜の製造方法。 (2〕  膜形I!X、時に基板全回転すること全特徴
とする%許請求の範囲第1項記載の薄膜の製造方法。 (3)外形がi+:慧の形状の中空の管のFF3部を、
管の長さ方向に複数のし@り板を設けたハテノス状の遮
蔽物、あるいに任意の外形を有する中空の管を複数個並
行に配列したハチノス状の遮蔽物を用いること全t?!
f徴とする特許請求の範囲第1項記載の薄膜の製造方法
。 (4)管の円部がしさり板により分割された構造含有す
るハチノス状遮蔽物において、管の長さの2乗が、しさ
り板によρ分割さnfCvh分の1分割面積の平均11
11の11500から200倍までの値を有する遮蔽物
を設置することt−特徴とする特許請求の範囲第1項、
第3項記載の薄膜のIR造方法0 (5)任意の外形を有する中空のW?複数個並行に配列
したハテノス状の遮蔽物にふ・いて、管の長さの2乗が
、6管の平均断面積の11500から200倍1での筐
會有する遮蔽物音設置することを特徴とする特許請求の
範囲第1項、第3項記載の薄膜の製造方法。 (6) 管の内Sがしきり板により分割された構造を有
するハテノス状の遮蔽物、あるいは中空の管を複数個並
行配列せしめた構造を有するハテノス状の遮蔽物におい
て、しきり板あるいに中空の管が基板自転方向に、基板
垂直方向から基板1秒間あたりの同転角の115〜5倍
傾いた構造含有することt−特徴とする%欝開求の範囲
第1項、第3項、第4項及び第5項記載の薄膜の製造方
法〇 (7)  コバルト−ルテニウム、コバルト−クロムを
主成分とするコバルト合金垂直磁気異方性薄膜を作製す
ることを特徴とする特許請求の薄囲第1項乃至第6項記
載の薄膜の製造方法。」2.明細書第3頁第12行目の
r ZnL] jt= l ZnOJと訂正する。 3、同第8頁第7行目1基板の中心Pから」全削除する
Figure 1 shows a mask that controls the direction of incidence of atoms incident on the substrate, and (a), (b), and (c) are masks that remove vertically incident components; s (d), (e) t
(f) is a mask that removes obliquely incident components;
X-ray diffraction of Co-Ru
(b) is the diffraction pattern of the Co-Ru vine film produced without using a mask.
Mask viewing angle dependence of sputtered film Ixoio/I 0002, Figure 4 shows mask viewing angle dependence of diffraction line intensity 10002/d per unit film thickness when using H-cut mask, Figure 5 shows H-cut mask. Figure 6 shows the mask viewing angle dependence of the ratio of residual magnetization in the in-plane direction to the perpendicular direction in a Co-Ru snow film when using a C6-Ru film. In the diagrams, (a) is the M-H loop of nine films made without using a mask, (b) is the M-H loop of (f) the film made with a mask, and Figure 7 is the H cut. Mask viewing angle dependence of the ratio of residual magnetization in the in-plane direction to the vertical direction in a Co-Cr snow ivy film when using a mask, 8th
Figure 1'' shows a mask with a No-Tinos-like structure provided with multiple partition plates in the hollow direction of the tube, and Figure 9 shows the vertical direction of the Co-Ru sputtered film when using the mask shown in Figure 8. Figure 10: Mask thickness dependence of the ratio of residual magnetization in the in-plane direction to Mask thickness dependence of the ratio of the residual magnetization in the in-plane direction to the direction, Figure 1L G) is the lower tube constituting the mask, (B) is a mask in which w of (A) is arranged in parallel, 12th
The figure shows the Co-
The mask thickness dependence of the ratio of residual magnetization in the in-plane direction to the perpendicular direction in a dynamic spatter film, FIG. 13 shows another example of a mask using a hollow tube, and FIG. 14 shows FIGS.
Co-Ru sputtered film using the mask shown in Figure 3,
Figure 15 shows the ratio of residual magnetization in the in-plane direction to the perpendicular direction of the Co-Ru sputtered film produced without using a mask.
The ratio of residual magnetization in the in-plane direction to the perpendicular direction in the Co--Cr vaporized film when using the masks (e) and (f) shown in FIG. 1 is shown. 1... Disc, 2... Legs, 11...
...Cylinder, L...Shikiri plate, 21...
・Cylinder, 22...Mask, 23...Mask Figure 1 (a) (b) (c) (d)
(e) (f) Fig. 2 2e (,ri 2e (71) Fig. 3 Mask angle (cliff) Fig. 6 Fig. 7 Fig. 813IO Fig. 9 Mask 4 (mm) Fig. 10 Mask 4 (mm ) Figure 11 (a) (b) Figure 12 Mask 4 (mm) Figure 13yA Figure 145A Figure 15 E included and angle (degrees) Ministry of Procedure and Correction (self-motivated) 1930 Corridor 12 21 Commissioner of the Patent Office Shima 1) Spring 411 Lord 1, Indication of the case 1982 Special WLF Application No. 165684 2, Name of the invention Method for producing thin film 3, Relationship with the person making the amendment Patent applicant name (422) Nippon Electric @ Tokina Public Corporation 4 , Agent 〒160 Specification rIl #Claims” and “Detailed Description of the Invention” - 6. Contents of amendments as shown in Attachment 1, Special Ilr!l-Silver ice yoke as follows: Corrected to 1.
A method for manufacturing a thin film, which is characterized in that a shield for removing all atoms incident from a direction perpendicular to the substrate is installed between the substrate and the terkelat or evaporation source. (2) A method for producing a thin film according to claim 1, characterized in that the film shape is I! Department,
Is it possible to use a hatenose-like shield with a plurality of baffles installed in the length direction of the tube, or a hatenose-like shield with a plurality of hollow tubes with arbitrary external shapes arranged in parallel? !
The method for producing a thin film according to claim 1, wherein the thin film has a f-character. (4) In a structure in which the circular part of the pipe is divided by a sill plate, the square of the length of the pipe is divided by ρ by the sill plates, and the average area divided by nfCvh is 11
Claim 1, characterized in that: installing a shield having a value of 11500 to 200 times 11;
IR manufacturing method of thin film described in Section 3 0 (5) A hollow W having an arbitrary external shape? It is characterized by installing a shielding object having a housing in which the square of the tube length is 11,500 to 200 times the average cross-sectional area of the six tubes, based on a plurality of hateno-shaped shields arranged in parallel. A method for producing a thin film according to claims 1 and 3. (6) In a Hateno-like shielding structure in which the inner S of the tube is divided by a partition plate, or in a Hateno-shaped shielding structure in which a plurality of hollow tubes are arranged in parallel, the partition plate or the hollow The first and third terms of the range of % depression, characterized in that the tube has a structure that is tilted in the direction of substrate rotation from the vertical direction of the substrate by 115 to 5 times the rotation angle per second of the substrate. Method for producing a thin film according to Items 4 and 5 (7) A thin film according to a patent claim, characterized in that a perpendicular magnetic anisotropic thin film of a cobalt alloy whose main components are cobalt-ruthenium and cobalt-chromium is produced. A method for producing a thin film according to items 1 to 6. ”2. It is corrected as r ZnL] jt= l ZnOJ on page 3, line 12 of the specification. 3. From the center P of the 1st board, page 8, line 7, delete all 0

Claims (7)

【特許請求の範囲】[Claims] (1)  スパッタリング法、Ji4空蒸7/jif:
、イオンル−ティング法等の乾式形成法により薄膜全作
製する一合、基板に対し垂直方向からはすrした方向よ
り入射する原子を除去する遮蔽物音、私版とターゲット
もしくは蒸発源の間に設置することを特徴とする薄膜の
製造方法。
(1) Sputtering method, Ji4 air vaporization 7/jif:
, a thin film is entirely fabricated using a dry formation method such as the ion routing method, and a shield is installed between the private plate and the target or evaporation source to remove atoms incident from the direction perpendicular to the substrate. A method for producing a thin film, characterized by:
(2)膜形成時に基板ケ回転すること′1に%像とする
特許請求の範囲第1項記載の薄膜の製造方法。
(2) The method for manufacturing a thin film according to claim 1, wherein the substrate is rotated during film formation.
(3)外形が任意の形状の中空の管の内部を、宮の長さ
方向に収載のしきシ板を設けた71テノス状の遮蔽物、
あるいは任意の外形を有’tゐ申r&1jの1を金複畝
憫並行に配列したハ1ノス状の遮蔽物を用いることγ待
似とする特許請求の範囲第1項目ピ載の薄膜の製造方法
(3) A 71 tenos-shaped shield, which has a hollow tube with an arbitrary external shape and is provided with a board in the length direction of the shrine;
Alternatively, manufacturing a thin film according to the first item of the claims, which has an arbitrary external shape and uses a shielding member in the shape of a cylindrical shape in which 1 of 1 is arranged in parallel with multiple gold ribs. Method.
(4)宮の内部かしさり板により分割さrLfc榊怠會
有するハナノス状遮蔽物において、宮の量るり。 2乗が、しきり板により分割された部分の、分割面積の
平均値の11500から200倍盪での値を有する遮蔽
物を設置することを特徴とする特許請求の範囲第1項、
第3項記載の薄膜の製造方法。
(4) In a Hananos-like shield having rLfc Sakaki slack divided by an internal sill plate, the height of the mount is measured. Claim 1, characterized in that a shield is installed whose square value is 11,500 to 200 times the average value of the divided area of the portion divided by the partition plate,
The method for producing a thin film according to item 3.
(5)任意の外形を有する中空の管金仮数個並行に配列
したハテノス状の遮蔽物VCおいて、宮の長嘔の2乗が
1各管の平均断面極り11500カーら200倍までの
kk有する遮蔽物全敗にすることt特徴とする付肝詞氷
の範囲第1項、第3狽記載の薄膜のa選方法。
(5) In a Hateno-like shield VC in which mantissas of hollow tubes with arbitrary external shapes are arranged in parallel, the square of Miya's Naga-O is 1. A method for selecting a thin film as described in paragraphs 1 and 3 above, characterized in that it completely defeats all shielding objects.
(6)管の内部がしきり板により分割された構造會有す
るハチノス状の遮蔽物、わるいは中空の管を複数個並行
配列セしめた構造會有するハナノス状の遮蔽物に2いて
、シ@ジ板めるいは中空の管が基板回転方向に、基板垂
ml゛力向刀・ら基板1秒間あ7c9の回転角の115
〜5倍傾いた構造を壱す5ることを特徴とする特許請求
の範囲第1JJ 、第3項、第4項及び第5項記載の薄
膜の製造方法。
(6) A cylindrical shield with a structure in which the inside of the tube is divided by a partition plate, or a cylindrical shield with a structure in which multiple hollow tubes are arranged in parallel. The plate plate or hollow tube rotates in the direction of substrate rotation, with a rotation angle of 115 ml for 1 second per 7c9 from the substrate vertically.
The method for manufacturing a thin film according to claims 1, 3, 4, and 5, characterized in that the structure has a structure tilted by a factor of ~5.
(7)  コバルト−ルテニウム、コバルト−クロム會
主成分とするコバルト合金垂直磁気・異方性゛薄膜を作
製すること?特徴とする特許請求の範囲第1項乃至第6
項BG載の薄膜の製造方法。
(7) Is it possible to produce a perpendicular magnetic/anisotropic cobalt alloy thin film with cobalt-ruthenium or cobalt-chromium as the main components? Features Claims 1 to 6
Method for manufacturing the thin film listed in Section BG.
JP16568481A 1981-10-19 1981-10-19 Manufacture of thin film Pending JPS5867016A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16568481A JPS5867016A (en) 1981-10-19 1981-10-19 Manufacture of thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16568481A JPS5867016A (en) 1981-10-19 1981-10-19 Manufacture of thin film

Publications (1)

Publication Number Publication Date
JPS5867016A true JPS5867016A (en) 1983-04-21

Family

ID=15817071

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16568481A Pending JPS5867016A (en) 1981-10-19 1981-10-19 Manufacture of thin film

Country Status (1)

Country Link
JP (1) JPS5867016A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5133849A (en) * 1988-12-12 1992-07-28 Ricoh Company, Ltd. Thin film forming apparatus
US5223108A (en) * 1991-12-30 1993-06-29 Materials Research Corporation Extended lifetime collimator
US5330628A (en) * 1990-01-29 1994-07-19 Varian Associates, Inc. Collimated deposition apparatus and method
US5393398A (en) * 1991-06-19 1995-02-28 Sony Corporation Magnetron sputtering apparatus
US5415753A (en) * 1993-07-22 1995-05-16 Materials Research Corporation Stationary aperture plate for reactive sputter deposition
US5516403A (en) * 1994-12-16 1996-05-14 Applied Materials Reversing orientation of sputtering screen to avoid contamination
US5527438A (en) * 1994-12-16 1996-06-18 Applied Materials, Inc. Cylindrical sputtering shield
US5635036A (en) * 1990-01-26 1997-06-03 Varian Associates, Inc. Collimated deposition apparatus and method
US6362097B1 (en) 1998-07-14 2002-03-26 Applied Komatsu Technlology, Inc. Collimated sputtering of semiconductor and other films

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5133849A (en) * 1988-12-12 1992-07-28 Ricoh Company, Ltd. Thin film forming apparatus
US5635036A (en) * 1990-01-26 1997-06-03 Varian Associates, Inc. Collimated deposition apparatus and method
US5330628A (en) * 1990-01-29 1994-07-19 Varian Associates, Inc. Collimated deposition apparatus and method
US5393398A (en) * 1991-06-19 1995-02-28 Sony Corporation Magnetron sputtering apparatus
US5223108A (en) * 1991-12-30 1993-06-29 Materials Research Corporation Extended lifetime collimator
US5415753A (en) * 1993-07-22 1995-05-16 Materials Research Corporation Stationary aperture plate for reactive sputter deposition
US5516403A (en) * 1994-12-16 1996-05-14 Applied Materials Reversing orientation of sputtering screen to avoid contamination
US5527438A (en) * 1994-12-16 1996-06-18 Applied Materials, Inc. Cylindrical sputtering shield
US6362097B1 (en) 1998-07-14 2002-03-26 Applied Komatsu Technlology, Inc. Collimated sputtering of semiconductor and other films

Similar Documents

Publication Publication Date Title
US4407894A (en) Method for producing a perpendicular magnetic recording medium
US20040166376A1 (en) Magnetic recording medium, method for producing the same, and magnetic recording apparatus
JP2555057B2 (en) Corrosion resistant ferromagnetic film
JPS5867016A (en) Manufacture of thin film
EP0333101B1 (en) Process for manufacturing magnetic recording material
Kadokura et al. Deposition of Co-Cr films for perpendicular magnetic recording by improved opposing targets sputtering
JP2007164941A (en) Perpendicular magnetic recording medium
JP2674132B2 (en) Magnetic recording media
US4486498A (en) Magnetic recording medium
US4623439A (en) Thin film of Ni-Co-Fe ternary alloy and process for producing the same
JP2710441B2 (en) Soft magnetic laminated film
JP3304382B2 (en) Magnetic recording medium and method of manufacturing the same
JPH07192244A (en) Perpendicular magnetic recording medium and its production
JPH0827927B2 (en) Magnetic recording media
JPH0775062B2 (en) Magnetic recording medium
JP2001134929A (en) Magnetic recording medium and magnetic recording device
JPH04111302A (en) Artificial lattice film
JP3520751B2 (en) Perpendicular magnetic recording medium, method of manufacturing the same, and storage device using the same
JPH05303734A (en) Perpendicular magnetic recording medium
KR920008436B1 (en) Magnetic medium
JPH0462814A (en) Method for producing artificial grid film
JPS6235605A (en) Magnetically soft thin film
JPS59148121A (en) Magnetic recording medium
JPS59112426A (en) Magnetic recording medium
JPH0512765B2 (en)