JPS5864408A - Combustion method of fossil fuel utilizing waste heat - Google Patents

Combustion method of fossil fuel utilizing waste heat

Info

Publication number
JPS5864408A
JPS5864408A JP16394681A JP16394681A JPS5864408A JP S5864408 A JPS5864408 A JP S5864408A JP 16394681 A JP16394681 A JP 16394681A JP 16394681 A JP16394681 A JP 16394681A JP S5864408 A JPS5864408 A JP S5864408A
Authority
JP
Japan
Prior art keywords
hydrogen
fuel
waste heat
thermo
cooling water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16394681A
Other languages
Japanese (ja)
Inventor
Tokio Oota
太田 時男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP16394681A priority Critical patent/JPS5864408A/en
Publication of JPS5864408A publication Critical patent/JPS5864408A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C99/00Subject-matter not provided for in other groups of this subclass

Abstract

PURPOSE:To recover waste heat in the form of hydrogen fuel and conseqently contrive to economize fuel by a method wherein a part of the waste heat is converted by means of a thermo-electric element system into electric power, which electrolyzes the cooling water of the thermo-electric element system into hydrogen used for multi- fuel firing. CONSTITUTION:In order to apply the titled combustion method to a conventional kerosene burner, a plurality of sets of the thermo-electric element system 5 comprising in connecting, for example, thirty two pairs of cylindrical p-n junction thermo- electric element (Bi-Te type alloy) pairs in series are installed onto the vessel wall 2 forming the side surface of a combustion tube 1. A cooling water pipe 8 consisting of a cooling water system 7 is fitted to the heat radiating part 6 of the thermo-electric element system 5 in order to feed cooling water W by means of a pump 9. An electrolysis system 10, in which high temperature water is electrolyzed for generating hydrogen and oxygen by employing the DC current produced at the thermo-electric element system 5 as electric source of electrolysis, is provided at the lower part of the combustion tube 1. Furthermore, said hydrogen is led through a means 13 for preventing a reversed flow to the combustion tube 1 and as well a said oxygen is sent together with fuel through a supply pipe 3 in the combustion tube 1 to be fired mixedly.

Description

【発明の詳細な説明】 本発明は、灯油、天燃ガス等の化石燃料の燃焼に際し、
廃熱を利用して水素を生成し、これを燃料と混焼せしめ
る燃焼方法に関する。
[Detailed Description of the Invention] The present invention provides a method for burning fossil fuels such as kerosene and natural gas.
This invention relates to a combustion method that generates hydrogen using waste heat and co-combusts it with fuel.

一般に、天燃ガス、液化石油ガス、灯油1重油。Generally, natural gas, liquefied petroleum gas, and kerosene 1 heavy oil.

粉炭尋の化石燃料の燃焼器においては、加熱目的以外に
熱が逃げる廃熱が避けられない。現在普及している大型
、中型、小型のいずれの燃焼器でも、有効に利用すべき
燃料のもつカロリーの2割〜3割程の廃熱があり、その
分だけ燃料が無駄に消費されている。そのため、この廃
熱の利用が考えられているが、未だ有効々手段がない。
In fossil fuel combustors using pulverized coal, waste heat is unavoidable for purposes other than heating. In all of the large, medium, and small combustors that are currently in widespread use, waste heat is equivalent to 20% to 30% of the calories in the fuel that should be used effectively, and that amount of fuel is wasted. . Therefore, although the use of this waste heat has been considered, there is no effective method yet.

特に1燃焼器の側面から放出される熱は利用するのが難
しいといわれている。
In particular, it is said that it is difficult to utilize the heat released from the side of one combustor.

一方、石油等の流体化石燃料の価格は、基調としては上
昇の一途をたどっており、その燃焼を完全に行なって効
率よ〈熱を利用する燃焼方法を採用する必要がある。し
かるに、従来のこの種の燃料の燃焼においては、完全燃
焼がなされておらず、廃ガス中に炭粒、−酸化炭素、炭
化水素等の可燃物を排出して、それだけ燃料が無駄にな
ると共に、大気汚染の一因となっている。
On the other hand, the price of fluid fossil fuels such as petroleum is on the rise, and it is necessary to completely burn them and adopt combustion methods that utilize heat to increase efficiency. However, in the conventional combustion of this type of fuel, complete combustion is not achieved, and combustible substances such as coal particles, carbon oxide, and hydrocarbons are emitted into the waste gas, which wastes fuel and , contributing to air pollution.

本発明は、斯かる実情に鑑みてなされたもので、その目
的は、熱電素子系にて廃熱の一部を電力に変換すると共
に、該熱電素子系の冷却水を上記電力にて電気分解して
水素を生成し、これを燃料と混焼させることにより、廃
熱を水素燃料の形で回収して燃料の節約を図ることがで
きる化石燃料の燃焼方法を提供することにある。
The present invention was made in view of the above circumstances, and its purpose is to convert a part of waste heat into electric power using a thermoelectric element system, and to electrolyze the cooling water of the thermoelectric element system using the electric power. An object of the present invention is to provide a fossil fuel combustion method that can save fuel by recovering waste heat in the form of hydrogen fuel by generating hydrogen and co-combusting it with fuel.

父、本発明の他の目的は、水素を混焼することによシ、
燃焼温度を上げると共に燃料を完全燃焼させて燃料を効
率良く利用する燃焼方法を提供することにある。
Another object of the present invention is to co-fire hydrogen by co-firing hydrogen;
To provide a combustion method that efficiently utilizes fuel by increasing the combustion temperature and completely burning the fuel.

本発明け、斯かる目的を達成するため、(al  化石
燃料の燃焼器の器壁適所に装着された熱電素子系により
、核器壁からの廃熱にて直流電力を発生せしめると共に
、 (b)  上記熱電素子系の放熱部に装着されて、上記
直流電力の一部を用いて駆動される冷却水系により、高
温の水又は水蒸気を生成せしめ、(C)  且つ、上記
(b)において得られた茜湛の水又は水蒸気を、上記(
a) icおいて得られた電力の一部により電気分解し
て水素と酸素を生成せしめると共に、 (d)  上記水素を上記燃焼器に導いて、上記化石燃
料と混焼せしめるよう構成したものである。
In order to achieve such an object, the present invention uses a thermoelectric element system installed at an appropriate location on the vessel wall of a fossil fuel combustor to generate DC power from the waste heat from the nuclear vessel wall, and (b ) A cooling water system attached to the heat dissipation part of the thermoelectric element system and driven using a part of the DC power generates high-temperature water or water vapor, and (C) Add the water or steam from Akanetan to the above (
a) A part of the electric power obtained in the IC is used for electrolysis to generate hydrogen and oxygen, and (d) the hydrogen is guided to the combustor and co-combusted with the fossil fuel. .

以下、本発明の構成を詳細に説明する。Hereinafter, the configuration of the present invention will be explained in detail.

まず、廃熱により直流電力を発生せしめると共和、高温
水を得る。
First, by generating DC power from waste heat, high-temperature water is obtained.

上記直流電力の発生は、p−n接合を有する半導体熱雷
素子を燃焼器の器壁適所、例えば側壁に装着して行なう
。熱電素子用半導体は数多く知られており、例えばGe
−8i合金系(p型にはInなどの3価金属、n型にF
isbなどの5価金属を電力rl)、 B1−Te系合
金系(p型にはSb+”型にはSeを添加)等がある。
The above-described DC power is generated by attaching a semiconductor thermal lightning element having a pn junction to an appropriate location on the wall of the combustor, for example, on the side wall. Many semiconductors for thermoelectric elements are known, such as Ge.
-8i alloy system (trivalent metal such as In for p-type, F for n-type)
There are pentavalent metals such as isb (power rl), B1-Te alloys (Sb for p-type + Se added for "type"), etc.

熱電素子の1対は、温度差60℃で約1 mV程の直流
電力を発生するので、例えば一つの単位装置として32
対を直列につなぐことにより、約2vの電圧を発生でき
る。
One pair of thermoelectric elements generates about 1 mV of DC power at a temperature difference of 60°C, so for example, one unit of 32
By connecting the pairs in series, a voltage of approximately 2V can be generated.

斯かる電圧とし九のは、水を常温、常圧で電気分解する
Kは理論的に1.23 V必要であり、実際には過電圧
によって1.8■程必要だからである。
The reason why such a voltage is required is that K to electrolyze water at normal temperature and pressure is theoretically required to be 1.23 V, but in reality, about 1.8 V is required due to overvoltage.

この熱電素子ユニットを、燃焼器の大きさに応じて複数
個側壁に装着し、例えばその中の1個を冷却水ポンプを
駆動する小型モータ専用とし、他のユニットからの電力
を電気分解の電源とする。
A plurality of these thermoelectric element units are installed on the side wall depending on the size of the combustor. For example, one of them is dedicated to a small motor that drives a cooling water pump, and the power from the other units is used as a power source for electrolysis. shall be.

熱電素子ユニットの個数、ユニットを構成する熱電軍子
の個数等は、モータの所蚤亀圧、電流、電気分解の所要
電力等に応じて適宜設定し得る。
The number of thermoelectric element units, the number of thermoelectric elements constituting the unit, etc. can be appropriately set depending on the force of the motor, the current, the required power for electrolysis, etc.

なお、熱電素子け、多結晶を焼結法などで大量に且つ安
価に製造できるので、シリコン太陽電池のように単結晶
製作に費用ががかり過ぎる欠点がなく、Lか4アモルフ
ァスシリコンのp−rls合。
Furthermore, since thermoelectric elements and polycrystals can be manufactured in large quantities and at low cost using sintering methods, they do not have the disadvantage of being too expensive to manufacture single crystals like silicon solar cells, and can be manufactured using L or 4 amorphous silicon p-rls. If.

ような不安定性もないので、廃熱利用の使用に好適であ
る。
Since there is no such instability, it is suitable for use in waste heat utilization.

熱電素子系の高温側(p−n接合部)の温度は最低20
0℃、低温側の温度は最低100 Cに想定されるが、
実際はこれより、はるかに高い温度になる。
The temperature on the high temperature side (p-n junction) of the thermoelectric element system is at least 20
0℃, the temperature on the low temperature side is assumed to be at least 100℃,
In reality, the temperature will be much higher than this.

この時、低温側を冷却水で冷却し、熱電素子系の温度差
を70℃以上に保つようにする。即ち、上記熱電素子系
の放熱部(低温@)に冷却水を供給し、これを冷却する
と共に、該冷却水を該放熱部にて高温の水とする。冷却
水の温度は、xorfc前後となる゛。この冷却水の供
給は、上述した熱電素子系の電力の一部で駆動される小
型モータ及び冷却水ポンプを備えた冷却水系によって行
なう。
At this time, the low temperature side is cooled with cooling water to maintain the temperature difference in the thermoelectric element system at 70° C. or higher. That is, cooling water is supplied to the heat radiating section (low temperature @) of the thermoelectric element system to cool it, and the cooling water is made into high temperature water in the heat radiating section. The temperature of the cooling water will be around xorfc. This cooling water is supplied by a cooling water system equipped with a small motor and a cooling water pump that are driven by part of the electric power of the thermoelectric element system described above.

次に、上“記高温水を、上記熱電素子系によって得られ
た電力により電気分解して水素と酸素とを生成せしめる
。高嵩水を電気分解するとと(した点が本発明の特徴の
一つである。これは、水の電気分解に要するエネルギW
dが、次式で表わされるように、水の熱エネルギQdが
大きいと小さくて済むためである。
Next, the above-mentioned high-temperature water is electrolyzed using the electric power obtained by the above-mentioned thermoelectric element system to generate hydrogen and oxygen. This is the energy W required for water electrolysis
This is because d can be small if the thermal energy Qd of water is large, as expressed by the following equation.

Wd=Hd−Qd  ・・・・・・・・・・・・・・・
・・・・・・(1)即ち、Hd#i、水を分解するに要
する全エネルギで、はは68.3 Kd/molと一定
であるため、温度が上昇すれば、水の熱エネルギQdが
増大し、分解に要する電気エネルギWdが小さくなるか
らである。
Wd=Hd-Qd ・・・・・・・・・・・・・・・
・・・・・・(1) That is, Hd#i is the total energy required to decompose water, and it is constant at 68.3 Kd/mol, so if the temperature rises, the thermal energy of water Qd This is because the electric energy Wd required for decomposition becomes smaller.

上記電気分解により生成された水素を、化石燃料の燃焼
器内に導いて、該燃料と混焼せしめる。
The hydrogen produced by the electrolysis is introduced into a fossil fuel combustor and co-combusted with the fossil fuel.

これによって水素を燃料として利用するととくなる。な
お、同時生成された一嵩を、水素とは別に燃焼器内に導
いて、燃料の燃焼に寄与せしめることができる。水素と
酸素とを別々に導くのは、安全性の配慮からである。
This makes it possible to use hydrogen as fuel. Note that the simultaneously generated bulk can be introduced into the combustor separately from the hydrogen to contribute to the combustion of the fuel. The reason for introducing hydrogen and oxygen separately is from safety considerations.

次に、本発明にかける廃熱の利用の程度について説明す
る。
Next, the extent to which waste heat is utilized in the present invention will be explained.

全廃熱量をQOとし、その温度をTh とする。Let the total amount of waste heat be QO, and let its temperature be Th.

熱電素子系によってQOのうちηte Q6  だけが
電力に変換され、残りの(I−ηte )Qoの大部分
が冷却水を加熱するために一使われる。こ、の加熱の効
率をηWとすると、この時には水を加熱し、温度Tcの
高温水にするために利用した熱は、ηW(1−ηte)
Qoである。
Only ηte Q6 of the QO is converted into electric power by the thermoelectric element system, and most of the remaining (I-ηte)Qo is used to heat the cooling water. If the heating efficiency is ηW, then the heat used to heat the water and make it high-temperature water at temperature Tc is ηW(1-ηte)
It is Qo.

一方、水の電気分解の効率をηetとすれば、これは、 ηet =晋・・・・・・・・・・・・・・・・・・・
・・・・・・・・(2)によって定義される。ここでQ
Oは、1mO4の水素と1/2 matの#累が燃焼反
応によって結合する時発生する熱量、n゛は電気分解に
よって生成した水素のモル数である。
On the other hand, if the efficiency of water electrolysis is ηet, then ηet = Jin...
・・・・・・・・・Defined by (2). Here Q
O is the amount of heat generated when hydrogen of 1 mO4 and # of 1/2 mat combine through a combustion reaction, and n is the number of moles of hydrogen produced by electrolysis.

以上の過程をエネルギー保存則の上から整理すれは全廃
熱のうち”o Qoが有効に利用されたとして、 ηoQo=ηet”teQo+ηw(1−ηte ) 
Qo −−−−= +31となる。これから、この装置
の全効率は、り0−ηel−1te+ηw(1−ηte
)・1拳・・・・・白・・(4)であり、Wd=ηte
 QOと(2)式を(3)式に代入すれば、On ηo −=−、、−十’7w(1−’7te )・・・
・・・・・・・・・・・・・・・+51と曹〈こともで
きる。
Organizing the above process from the perspective of the law of conservation of energy, assuming that ``oQo'' out of the total waste heat is effectively used, ηoQo=ηet''teQo+ηw (1-ηte)
Qo -----= +31. From this, the total efficiency of this device is ri0−ηel−1te+ηw(1−ηte
)・1 fist...White...(4), Wd=ηte
Substituting QO and equation (2) into equation (3), On ηo -=-,, -ten'7w (1-'7te)...
・・・・・・・・・・・・・・・+51 and Cao〈It is also possible.

なお、熱電素子1対の発電効率は、 という式で近似される。2Fiこの熱電素子対の熱電性
能水数である。本発明者の実験ではZ中2×1O−3’
c−1r Th中593に、Tcキ387にで、ηte
=6.7Nとなる。実際には5%t1どになっているも
のとみられる。
Note that the power generation efficiency of one pair of thermoelectric elements is approximated by the following formula. 2Fi is the thermoelectric performance water number of this thermoelectric element pair. In the inventor's experiment, 2×1O-3' in Z
c-1r Th 593, Tc Ki 387, ηte
=6.7N. In reality, it appears to be 5%t1.

電解効率は?et−80X、水蒸気生成効率ηW=7O
Nと見積ると、(4)式によって、最高でη0=70.
67 Nとなる。実際は6ON台になると予想されるが
、廃熱が燃料のもつ熱量の3ONとしても、18にの燃
料が節約できることになる。
What is the electrolysis efficiency? et-80X, water vapor generation efficiency ηW=7O
If we estimate N, then η0 = 70 at most according to equation (4).
67N. In reality, it is expected to be in the 6ON range, but even if the waste heat is 3ON, which is the calorific value of the fuel, 18% of fuel can be saved.

このように、本発明によれば、燃料の熱量の2割乃至3
割程度生ずる廃熱のうち、6割〜7割程度水累として回
収、でき、燃料の節約を図ることができるが、この水素
を添加して混焼させることによって、更に燃料の節約を
図ることができる。
Thus, according to the present invention, 20% to 30% of the calorific value of the fuel
Approximately 60% to 70% of the waste heat generated can be recovered as water, which can save fuel, but it is possible to further save fuel by adding this hydrogen and co-combusting it. can.

即ち、水素を添加して混焼せしめることにより、炎の温
度が平均17Nはど上昇し、燃焼器に接続された熱交換
器の効率が向上する。熱の伝達率は温度勾配に比例する
ので、温度の上昇率だけ伝達熱の増加率が得られる。こ
れ本燃料の節約に還元して考えることができるので、上
述の効果と合算すれば、はぼ、3割はどの燃料節約にな
る。又、゛水素を添加することにより、燃料の完全燃焼
が可能になり、燃料のもつカロリーを余すところなく発
揮するのに役立つと共に、炉材の完全燃焼のために煤煙
が減り、燃焼器の掃除などの保守の手間がかからなくな
り、また、燃焼器の寿命が長くなる。しかも大気汚染を
少なくすることができる。
That is, by adding hydrogen and co-firing, the temperature of the flame increases by an average of 17 N, improving the efficiency of the heat exchanger connected to the combustor. Since the heat transfer rate is proportional to the temperature gradient, the rate of increase in transferred heat is equal to the rate of increase in temperature. This can be considered as a reduction in fuel savings, so if you add it up with the effects mentioned above, the fuel savings will be as much as 30%. In addition, by adding hydrogen, complete combustion of the fuel becomes possible, which helps to fully utilize the calories of the fuel, and also reduces soot and smoke due to the complete combustion of the furnace material, making it easier to clean the combustor. This eliminates the need for maintenance, and also extends the life of the combustor. Moreover, air pollution can be reduced.

次に、本発明燃焼方法の実施に使用する燃焼器の一例を
図面を参照して説明する。
Next, an example of a combustor used to carry out the combustion method of the present invention will be explained with reference to the drawings.

第1図は本発明燃焼方法に使用する燃焼器の一例を示す
構成図である。同図に示す燃焼器は、通常の灯油燃焼器
に適用したもので、燃焼筒1と、熱電素子系5と、冷却
水氷7と、電気分解系10とを備えて構成される。なお
、同図では簡便のため燃料の流入経路を省略している。
FIG. 1 is a configuration diagram showing an example of a combustor used in the combustion method of the present invention. The combustor shown in the figure is applied to a normal kerosene combustor, and includes a combustion tube 1, a thermoelectric element system 5, a cooling water ice 7, and an electrolysis system 10. Note that the fuel inflow route is omitted in the figure for the sake of simplicity.

熱電素子系5は、直径5諺、長さ7■の円筒形状のp−
n接合熱電素子(Bi−Te系合金)対を32対直列に
接続して構成され、燃焼筒1の側面の器壁2に複数組装
着しである。この熱電素子系5の放熱部6に冷却パイプ
8が取付けられ、冷却水ポンプ9にて冷却水Wが送られ
る。この冷却パイプ8、ポンプ9及び図示しない小型モ
ータにて冷却水系7が構成され、冷却水を高温水に変え
る。この小型モータは、上記熱電素子系5の直流電力に
て駆動される。
The thermoelectric element system 5 has a cylindrical shape with a diameter of 5 cm and a length of 7 cm.
It is constructed by connecting 32 pairs of n-junction thermoelectric elements (Bi-Te alloy) in series, and a plurality of sets are mounted on the chamber wall 2 on the side surface of the combustion tube 1. A cooling pipe 8 is attached to the heat radiation section 6 of this thermoelectric element system 5, and cooling water W is sent by a cooling water pump 9. The cooling pipe 8, the pump 9, and a small motor (not shown) constitute a cooling water system 7, which converts cooling water into high-temperature water. This small motor is driven by DC power from the thermoelectric element system 5.

燃焼筒1の下部には電気分解系10が設けてあり、熱電
素子系5の直流電力を電源として上記高温水を電気分解
する。この電気分解系10には、水素と酸素とを各々導
く導管11 、12が接続しである。導管11は、逆流
防止装置13を介して燃焼筒lに水素を導く。導管12
は、接続部を図示していないが燃料供給管3に接続され
、酸素を燃料と共に燃焼筒1内に送る。なお、図におい
て4Fi点火装置である。
An electrolysis system 10 is provided in the lower part of the combustion tube 1, and uses the DC power of the thermoelectric element system 5 as a power source to electrolyze the high-temperature water. Connected to this electrolysis system 10 are conduits 11 and 12 that conduct hydrogen and oxygen, respectively. The conduit 11 leads hydrogen to the combustion tube l via the backflow prevention device 13. conduit 12
is connected to the fuel supply pipe 3, although the connection part is not shown, and sends oxygen into the combustion cylinder 1 together with fuel. Note that the figure shows a 4Fi ignition device.

この燃焼器の動作状態の一例を示すと、通常の最良燃焼
の状態において、炎の平均温度は1033℃であり、燃
焼器の側面の器壁の温度は688℃であった。父、冷却
水が加熱されて生ずる高温水の温度は、約100℃であ
った。そして、電解電圧は、1.51Vか61.38V
tで変化したが、最良状態の定常値としては1.47 
Vであった。これは、水の常温の電気分解より本釣3O
Nの省電力に当る。
To give an example of the operating conditions of this combustor, under normal best combustion conditions, the average temperature of the flame was 1033°C, and the temperature of the side wall of the combustor was 688°C. The temperature of the high-temperature water produced when the cooling water was heated was approximately 100°C. And the electrolytic voltage is 1.51V or 61.38V
It changed with time, but the best steady state value was 1.47.
It was V. This is done by electrolysis of water at room temperature.
This corresponds to power saving of N.

次に、本発明の代表的実施例を示す。Next, typical examples of the present invention will be shown.

実施例〔1〕 灯油量を制御し毎秒120Cの割で燃焼する状態にする
。これは放熱量にして毎秒1100 jK相当する。こ
の時、出力2vの熱電素子系5対を用べ5対を並列に利
用してIA強の電流を得九。素子の電流密度は1.2A
/dの大きさであった。1.47 V。
Example [1] The amount of kerosene is controlled so that it burns at a rate of 120 C per second. This corresponds to a heat radiation amount of 1100 jK per second. At this time, we used 5 pairs of thermoelectric element systems with an output of 2 V, and used the 5 pairs in parallel to obtain a current of strong IA. The current density of the element is 1.2A
/d. 1.47V.

IAの出力で100℃の水を電解し続け、2時間の間に
捕集した水素量を計測したところ、5.61であった。
Water at 100° C. was continuously electrolyzed with the output of the IA, and the amount of hydrogen collected during 2 hours was measured and found to be 5.61.

実施例〔2〕 灯油の燃焼量を12 cc/秒に保ちつつ燃焼し、上記
実施例〔1〕と同様に電気分解により水素と酸素を生成
した。これらを灯油と混焼する実験を繰返えしたところ
、つぎの結果を得た。
Example [2] Kerosene was burned while maintaining the combustion amount at 12 cc/sec, and hydrogen and oxygen were generated by electrolysis in the same manner as in Example [1] above. When we repeated the experiment of co-firing these with kerosene, we obtained the following results.

混焼により、第1K炎の色から明るさが減じ、第2に炎
の温度が、混焼前の1033℃から平均温度1208℃
に上昇した。第3に硝子板により炎上で捕集した煤煙の
量が、着火後の5分間においては、未混焼時1.6に対
し1となり、定常燃焼時には0であった。
Due to co-firing, the color and brightness of the first K flame decreased, and secondly, the flame temperature increased from 1033℃ before co-firing to an average temperature of 1208℃.
rose to Thirdly, the amount of soot and smoke collected by the glass plate during the flame was 1.6 in the non-co-fired state for 5 minutes after ignition, and 0 during the steady combustion.

なお、実施例(1) 、 (2)で、水素を燃焼筒へ導
く導管の途中に逆流防止装置を設置した。これは、送ら
れる水素の流速が81V′S以下になると弁が閉じるよ
うに設計されたものである。実施例の実験途中でこの安
全装置が働いたことはなかった。
In Examples (1) and (2), a backflow prevention device was installed in the middle of the conduit that led hydrogen to the combustion cylinder. This valve is designed so that the valve closes when the flow rate of the hydrogen being sent becomes less than 81 V'S. This safety device never worked during the experiment in this example.

実験を経て、燃焼器と燃料に特有な条件で燃料と水素と
の最適混合比が存在するらしいことが予想されたが、実
施例(]) 、 [:2)はその条件に近い。
Through experiments, it was predicted that there would be an optimal mixing ratio of fuel and hydrogen under conditions specific to the combustor and fuel, and Examples (]) and [:2) are close to that condition.

しかし、理論的忙その比率を明確にすることはでき表か
った。
However, it was not possible to clarify the theoretical busyness ratio.

上記説明では、高温水を電気分解する場合について説明
したが、水蒸気を生成し、これを電気分解する構成とし
てもよい。水蒸気の電気分解は電極間の距離のせまい、
同心円筒状電極をもつ特別1c設計された電解槽を用い
る。
In the above description, a case has been described in which high-temperature water is electrolyzed, but a configuration may also be adopted in which water vapor is generated and this is electrolyzed. In water vapor electrolysis, the distance between the electrodes is small,
A specially designed electrolytic cell with concentric cylindrical electrodes is used.

以上説明したように、本発明は、廃熱を利用して直流電
力を得ると共に、これを電源とする電気分解により水素
を生成して、廃熱を水素燃料の形で回収できるため、燃
料を節約でき、父、この水素の混焼による燃焼温度の上
昇及び完全燃焼によって、熱の効率的利用と燃料のカロ
リーの完全利用を図ることができ、しかも、廃ガスを浄
化できる効果がある。
As explained above, the present invention uses waste heat to obtain DC power, generates hydrogen through electrolysis using this as a power source, and recovers the waste heat in the form of hydrogen fuel. By co-firing hydrogen, the combustion temperature increases and complete combustion results in efficient use of heat and complete use of fuel calories, and also has the effect of purifying waste gas.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明燃焼方法の実施に使用する燃焼器の一例
を示す構成図である。 1・・・燃焼筒 2・・・器壁  5・・・熱電素子系
7・・・冷却水系  10・・・電気分解系出願人  
三 浦 −志 第1図 手続補正書(鯖) 昭和 56年12月 4日 特許庁長官殿 1、事件の表示 特願昭56 − 163946  号 2、発明の名称 廃熱を利用した化石燃料の燃焼方法 3、補正をする者 事件との関係  特許       出願人任−所  
神奈川県横浜市港北区大磯根町762名 称(氏名) 
三浦−志 4、 代  理  人   〒107   電話586
−9287番6、補正の対象 (1) 明細′書簡13ページ実施例〔1〕の1行目に
「毎秒12ccJとあるを「毎秒 1,2CeJと訂正
する◇ (2)  同2行目に「毎秒11000&l Jとある
を「毎秒110000al Jと訂正する〇(3)同ペ
ージ実施例〔2〕の1行目に「12ce/秒」とあるを
「1.2Cc/秒」と訂正する◎以  上
FIG. 1 is a block diagram showing an example of a combustor used to carry out the combustion method of the present invention. 1... Combustion tube 2... Vessel wall 5... Thermoelectric element system 7... Cooling water system 10... Electrolysis system applicant
Miura-shi Diagram 1 Procedural Amendment (Saba) December 4, 1980 Dear Commissioner of the Japan Patent Office 1, Indication of Case Patent Application No. 163946 1982, Title of Invention Combustion of fossil fuels using waste heat Method 3: Relationship with the case of the person making the amendment Patent applicant office
762 Oisone-cho, Kohoku-ku, Yokohama-shi, Kanagawa Prefecture Name (full name)
Miura-shi4, agent 〒107 telephone 586
-9287 No. 6, subject of amendment (1) In the first line of Example [1] on page 13 of the letter, ``12 ccJ per second is corrected to 1.2 CeJ per second◇ (2) In the second line of the same, `` Correct 11000&l J per second to ``110000al J per second〇 (3) Correct ``12ce/sec'' to ``1.2Cc/sec'' in the first line of Example [2] on the same page ◎ That's all.

Claims (1)

【特許請求の範囲】 m(a)  化石燃料の燃焼器の器壁適所に装着された
熱電素子系により、該器壁からの廃熱にて直流電力を発
生せしめると共に、 Φ)上記熱電素子系の放熱部に装着されて、上記直流電
力の一部を用込て駆動される冷却水系により、高温の水
又は水蒸気を生成せしめ、(C)  且つ、上記(ロ)
において得られた高温の水又は水蒸気を、上記(a)に
おいて得られた電力の一部により電気分解して水素と酸
素を生成せしめると共に、 (d)  上記水素を上記燃焼器に導いて、上記化石燃
料と混焼せしめることを特徴とする廃熱を利用した化石
燃料の燃焼方法。 (2)  上記(C)において得られた水素と酸素とを
別々に上記燃焼5に導いて、上dピ化石燃料と混焼せし
める第1項記載の廃熱を利用した化石燃料の燃焼方法。
[Scope of Claims] m(a) A thermoelectric element system installed in an appropriate position on the vessel wall of a fossil fuel combustor to generate DC power from waste heat from the vessel wall, and Φ) The above thermoelectric element system A cooling water system that is attached to the heat dissipation part of and driven using a part of the DC power generates high-temperature water or steam, (C) and (B) above.
The high temperature water or steam obtained in (a) is electrolyzed using a portion of the electric power obtained in (a) above to generate hydrogen and oxygen, and (d) the hydrogen is guided to the combustor and the A method of burning fossil fuels using waste heat, which is characterized by co-combustion with fossil fuels. (2) The method for combustion of fossil fuel using waste heat according to item 1, wherein the hydrogen and oxygen obtained in the above (C) are separately guided to the combustion 5 and co-fired with the fossil fuel.
JP16394681A 1981-10-14 1981-10-14 Combustion method of fossil fuel utilizing waste heat Pending JPS5864408A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16394681A JPS5864408A (en) 1981-10-14 1981-10-14 Combustion method of fossil fuel utilizing waste heat

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16394681A JPS5864408A (en) 1981-10-14 1981-10-14 Combustion method of fossil fuel utilizing waste heat

Publications (1)

Publication Number Publication Date
JPS5864408A true JPS5864408A (en) 1983-04-16

Family

ID=15783817

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16394681A Pending JPS5864408A (en) 1981-10-14 1981-10-14 Combustion method of fossil fuel utilizing waste heat

Country Status (1)

Country Link
JP (1) JPS5864408A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010109224A (en) * 2001-08-25 2001-12-08 임홍수 The trash burnmer available water fuel
KR100810025B1 (en) 2007-03-14 2008-03-07 이성국 Low-temperature carbonization equipment for use of food waste

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4884329A (en) * 1972-02-09 1973-11-09
JPS52121830A (en) * 1976-04-05 1977-10-13 Osaka Gas Co Ltd Gas utencil

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4884329A (en) * 1972-02-09 1973-11-09
JPS52121830A (en) * 1976-04-05 1977-10-13 Osaka Gas Co Ltd Gas utencil

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010109224A (en) * 2001-08-25 2001-12-08 임홍수 The trash burnmer available water fuel
KR100810025B1 (en) 2007-03-14 2008-03-07 이성국 Low-temperature carbonization equipment for use of food waste

Similar Documents

Publication Publication Date Title
US5444972A (en) Solar-gas combined cycle electrical generating system
JP6173312B2 (en) Fuel generator
US20220090827A1 (en) Plant and method for accumulation of energy in thermal form
CN207304410U (en) Ship incinerator high-temp waste gas generation device through temperature difference of waste heat based on fin heat exchange
EP2706232A1 (en) Apparatus for heating working fluid of gas turbine-solar power generation system
Dadak et al. Design and development of an innovative integrated structure for the production and storage of energy and hydrogen utilizing renewable energy
TW202100240A (en) Plant and method for the accumulation of energy based upon a fluidized bed
TW201721057A (en) Integrated combustion device power saving system
CN103426962A (en) Novel distributed cogeneration system utilizing solar energy and chemical energy of fuel
CN101294288A (en) Oxyhydrogen, heat, electricity co-production, circulation method
US20100018202A1 (en) Thermoelectric device for use with stirling engine
JPS5864408A (en) Combustion method of fossil fuel utilizing waste heat
CN1151574C (en) Combined electric generator system integrating fuel battery of carbonate with turbine
Moser et al. Small-scale pellet boiler with thermoelectric generator
CN208579332U (en) Gas source automatic identification control device
CN209415569U (en) A kind of power plant heat accumulation power generation heating system
JP2014170791A (en) Exhaust heat recovery type thermoelectric power generation device
CN208579331U (en) A kind of combustion system of automatic control
Kushch et al. Development of a cogenerating thermophotovoltaic powered combination hot water heater/hydronic boiler
CN203434177U (en) Novel distributed thermoelectricity combined production system utilizing solar energy and fuel chemical energy
CN109114647A (en) A kind of power plant heat accumulation power generation heating system
CN208605314U (en) A kind of dish-style photo-thermal coupling combustion gas Stirling electricity generation system
CN218386949U (en) Container type renewable energy electric heat hydrogen co-production energy storage system
CN209763112U (en) Novel heat supply boiler based on PLC control
CN218324982U (en) Thermal power plant stability control system