JP2014170791A - Exhaust heat recovery type thermoelectric power generation device - Google Patents

Exhaust heat recovery type thermoelectric power generation device Download PDF

Info

Publication number
JP2014170791A
JP2014170791A JP2013040674A JP2013040674A JP2014170791A JP 2014170791 A JP2014170791 A JP 2014170791A JP 2013040674 A JP2013040674 A JP 2013040674A JP 2013040674 A JP2013040674 A JP 2013040674A JP 2014170791 A JP2014170791 A JP 2014170791A
Authority
JP
Japan
Prior art keywords
temperature
fuel
pipe
low temperature
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013040674A
Other languages
Japanese (ja)
Inventor
Toshihisa Shirakawa
白川利久
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2013040674A priority Critical patent/JP2014170791A/en
Publication of JP2014170791A publication Critical patent/JP2014170791A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

PROBLEM TO BE SOLVED: To resolve problems that, in a volcanic gas atmosphere, a fossil fuel thermal power generator driven with a gas turbine has to be stopped, and a power generation capacity of photovoltaic power generation is considerably reduced, and accordingly, storage of a power by an accumulator battery becomes meaningless.SOLUTION: There is installed a thermoelectric power generator that can generate power even in a volcanic gas atmosphere, and that almost has no drive device, and that consists of a p-type semiconductor (11) and an n-type semiconductor (12) that are converter elements. Heat recovery is performed while associating a low-temperature heat source and a high-temperature heat source with each other.

Description

本発明は、大規模な火山噴火により地球規模で長期間に亘って、地球大気が火山ガス雰囲気となっても発電可能な発電装置である。 The present invention is a power generation device capable of generating power even when the earth's atmosphere becomes a volcanic gas atmosphere over a long period of time on a global scale due to a large-scale volcanic eruption.

火力発電機の1つにタービン式がある。駆動部分を持つ故、空気が微粒子を含有すると故障する恐れがある。ボイラを利用しての蒸気発電機でも、重要な駆動部分として送風機を持つ。一方、駆動部のない発電機の一つに熱電気発電器がある。
図1は熱電気発電器の1例である。変換器要素であるp型半導体(11)とn型半導体(12)を電気的には直列に、熱的には並列に接続して作動する熱電堆を組み立てる。各要素の端は交互に高温接点である高温側接点(4)及び低温接点である低温側接点(3)に接続されている。
高温側接点(4)及び低温側接点(3)は電気的にも熱的にも伝導性の良いものである。
各高温側接点(4)は高温板(1)に接している。各低温側接点(3)は低温板(2)に接している。高温板(1)及び低温板(2)は電気的には絶縁体で熱的には伝導性の良いものである。
高温板(1)を高温にし低温板(2)を低温にして温度差を作り、低温側接点(3)の両端を電線で接続すると電流が流れる。図中矢印は電流が流れる方向を示す。
高温板(1)は変換器要素へ熱を供給する。当該高温板(1)の熱源は多種多様で、通常は化石燃料の燃焼熱である。
低温板(2)は変換器要素から漏洩してくる熱を吸収する。吸収された熱は、通常は大気中に放散される。
One type of thermal power generator is the turbine type. Since it has a drive part, it may break down if air contains fine particles. Even a steam generator using a boiler has a blower as an important driving part. On the other hand, there is a thermoelectric generator as one of the generators having no drive unit.
FIG. 1 shows an example of a thermoelectric generator. A thermopile that operates by connecting the p-type semiconductor (11) and the n-type semiconductor (12), which are transducer elements, electrically in series and thermally in parallel is assembled. The ends of each element are alternately connected to a high temperature side contact (4) which is a high temperature contact and a low temperature side contact (3) which is a low temperature contact.
The high temperature side contact (4) and the low temperature side contact (3) are both electrically and thermally conductive.
Each high temperature side contact (4) is in contact with the high temperature plate (1). Each low temperature side contact (3) is in contact with the low temperature plate (2). The hot plate (1) and the cold plate (2) are electrically insulating and thermally conductive.
When the high temperature plate (1) is set to a high temperature and the low temperature plate (2) is set to a low temperature to create a temperature difference and both ends of the low temperature side contact (3) are connected by electric wires, a current flows. The arrows in the figure indicate the direction in which current flows.
The hot plate (1) supplies heat to the transducer element. The heat source of the hot plate (1) is various and is usually the combustion heat of fossil fuel.
The cold plate (2) absorbs heat leaking from the transducer element. The absorbed heat is usually dissipated into the atmosphere.

近年、想定外の規模の地震発生に伴って発生した想定外の規模の津波により、甚大な被害が生じた。津波ばかりに注目するのは危険である。例えば、大規模な火山噴火(米国イエローストーン国立公園、富士山)が突然発生すると、地球規模で長期間に亘って、地球大気が火山ガス雰囲気となってしまう。
火山ガス雰囲気の中ではガスタービン駆動の液体化石燃料火力発電機も停止せざるをえない。
太陽光発電の発電能力は相当低下するであろう。蓄電池で蓄電する意味もなくなる。
火山噴火は発生時期が不明で、影響期間も十年程度であろう。火山噴火に合わせた火力発電機を、清浄空気が得られる時にも使うのは経済性に問題がある。急に火山ガス雰囲気に耐えられる化石燃料火力発電機を建設しようとしてもすぐにはできない。
大気が火山ガス雰囲気になると、安全で無尽蔵のエネルギーとしての太陽光発電の効率が極端に低下してしまうから、太陽光発電規模相当は、火山ガス雰囲気に耐えられる液体化石燃料火力発電機を予備に持っておく必要があろう。火山噴火があることを考慮するなら、太陽光発電を蓄電池利用により、ミドルまたはベースロードとするのは問題である。太陽光発電規模は電力ピーク対応程度に抑えておくほうが無難といえる。
化石燃料火力発電機のうち、清浄大気である時期でも敢えて、火山ガス雰囲気に耐えられる化石燃料火力発電機としておかないと、夜間や梅雨時に電力需要を満たすことができなくなる。急に火山ガス雰囲気に耐えられる化石燃料火力発電機を作ろうにも1年は掛かるであろう。高齢者や幼児や病人のために必要な電力は一時も欠かすことができない。
自然環境が変わるのだから、風力発電の設置場所は最適な風環境ではなくなる。動的機器が多い風力発電は腐食や空中のゴミに弱いであろう。
一方、駆動部を持たない熱電気発電器は発電効率が低い。熱電気発電器を利用する発電ことにおいて、低温熱源及び高温熱源をどうするかが問題である。
In recent years, tsunamis of an unexpected scale caused by an earthquake of an unexpected magnitude caused tremendous damage. It is dangerous to focus only on the tsunami. For example, when a large-scale volcanic eruption (Yellowstone National Park, Mt. Fuji, USA) suddenly occurs, the earth's atmosphere becomes a volcanic gas atmosphere over a long period of time on a global scale.
In a volcanic gas atmosphere, gas turbine-driven liquid fossil fuel-fired power generators must be stopped.
The power generation capacity of solar power generation will be considerably reduced. There is no point in storing electricity with a storage battery.
The volcanic eruption is unknown at the time of occurrence, and the impact period will be about 10 years. It is economically problematic to use a thermal power generator for volcanic eruptions when clean air is available. A fossil fuel-fired power generator that can withstand a volcanic gas atmosphere cannot be built immediately.
If the atmosphere becomes a volcanic gas atmosphere, the efficiency of solar power generation as a safe and inexhaustible energy will be extremely reduced, so a liquid fossil fuel thermal power generator that can withstand the volcanic gas atmosphere is reserved You will need to bring it to. Considering that there is a volcanic eruption, it is a problem to make solar power generation middle or base load by using storage batteries. It can be said that it is safer to keep the scale of solar power generation to the level corresponding to the power peak.
Of the fossil fuel thermal power generators, even if it is a clean atmosphere, if it is not a fossil fuel thermal power generator that can withstand the volcanic gas atmosphere, it will not be possible to meet the power demand at night or during the rainy season. It will take a year to make a fossil fuel thermal generator that can withstand the volcanic gas atmosphere. Electricity necessary for the elderly, infants and sick people is indispensable.
Because the natural environment changes, the location of wind power generation will not be the optimal wind environment. Wind power generation with many dynamic devices will be vulnerable to corrosion and airborne debris.
On the other hand, a thermoelectric generator without a drive unit has low power generation efficiency. In power generation using a thermoelectric generator, the problem is how to use a low-temperature heat source and a high-temperature heat source.

変換器要素であるp型半導体(11)とn型半導体(12)を電気的には直列に、熱的には並列に接続してなる熱電気発電器を利用する。
低温熱源は、低温で清浄な燃料を内蔵する清浄燃料タンク(51)及びポンプ(52)及び低温冷熱管(42)からなる。
ポンプ(52)によって清浄燃料タンク(51)から低温で清浄な燃料を低温燃料管(42)に送る。低温燃料管(42)は低温板(2)に接触させる。
そうすると、低温で清浄な燃料は低温燃料管(42)側面を介して、低温板(2)から漏洩する熱を吸熱する。低温で清浄な燃料は熱を吸熱することにより高温で清浄な燃料蒸気となる。高温になると体積が膨張するから、流速が速くなる。
高温熱源は、高温燃料蒸気管(41)及び混合筒(31)からなる。
高温燃料蒸気管(41)は、低温燃料管(42)に接続されていて低温燃料管(42)から高温高速な清浄な燃料蒸気が供給される。
混合筒(31)は、上端は開いており下端は上記高温蒸気管(41)に接続されている円筒管である。当該混合筒(31)の下側側面には吸気口(32)が開いている。
高温燃料蒸気管(41)から混合筒(31)下端に流入した当該高温高速な清浄な燃料蒸気が吸気口(32)から火山性ガス含有空気を吸入する。当該混合筒(31)の中で清浄な燃料蒸気と火山性ガス含有空気を混合し混合気となす。続いて、当該混合筒(31)の上端から当該混合気を上方に噴出し燃焼させ高温を発生させる。ただし、燃焼開始には点火の火種を擁する。燃焼開始の時だけマッチやガスライタで点火すればよい。信頼性を増すためには上端近傍に点火器を敷設する。
熱電気発電器の高温板(1)が当該熱を受熱することにより、低温板(2)から漏洩する熱を回収しながら発電することを特徴とする排熱回収型熱電気発電装置とする。
A thermoelectric generator is used in which a p-type semiconductor (11) and an n-type semiconductor (12), which are transducer elements, are electrically connected in series and thermally in parallel.
The low-temperature heat source is composed of a clean fuel tank (51) and a pump (52) containing a clean fuel at a low temperature and a low-temperature cold heat pipe (42).
The pump (52) sends clean fuel at a low temperature from the clean fuel tank (51) to the low temperature fuel pipe (42). The low temperature fuel pipe (42) is brought into contact with the low temperature plate (2).
Then, the clean fuel at a low temperature absorbs the heat leaking from the low temperature plate (2) through the side surface of the low temperature fuel pipe (42). Low temperature and clean fuel absorbs heat and becomes high temperature and clean fuel vapor. Since the volume expands at high temperatures, the flow rate increases.
A high temperature heat source consists of a high temperature fuel vapor pipe (41) and a mixing cylinder (31).
The high temperature fuel vapor pipe (41) is connected to the low temperature fuel pipe (42), and high temperature and high speed clean fuel vapor is supplied from the low temperature fuel pipe (42).
The mixing cylinder (31) is a cylindrical pipe whose upper end is open and whose lower end is connected to the high-temperature steam pipe (41). An intake port (32) is open on the lower side surface of the mixing cylinder (31).
The high-temperature, high-speed clean fuel vapor flowing from the high-temperature fuel vapor pipe (41) into the lower end of the mixing cylinder (31) sucks volcanic gas-containing air from the intake port (32). In the mixing cylinder (31), clean fuel vapor and volcanic gas-containing air are mixed to form an air-fuel mixture. Subsequently, the air-fuel mixture is ejected upward from the upper end of the mixing cylinder (31) and burned to generate a high temperature. However, at the start of combustion, there are ignition types. It is only necessary to ignite with a match or gas writer at the start of combustion. In order to increase reliability, an igniter is laid near the upper end.
When the hot plate (1) of the thermoelectric generator receives the heat, the exhaust heat recovery type thermoelectric generator is configured to generate power while collecting heat leaking from the cold plate (2).

変換器要素であるp型半導体(11)とn型半導体(12)に対して、熱から電気への変換効率を高めるためには、その1つに熱伝導性能の悪いものが良いとされている。本発明では漏洩熱が回収できるため、半導体選定に当たり、熱伝導特性に留意することはない。電気伝導が良くて、ゼーベック係数が大きくて、作動温度が高い(融点が高いもの)p型半導体(11)とn型半導体(12)を選定すればよい。例えば硫化セレン(CeS)にバリウム(Ba)をドープした n型半導体(12)、ゲルマニウムテルル(GeTe)にビスマス(Bi)をドープしたp型半導体(11)がある。その他、シリコン(Si)とGeの含有量が20%〜30%の合金は機械的にも高温特性もよいとされている。
ボイラーでは、燃料の燃焼効率を高めるために空気を温めている。火山性ガス含有空気を排煙で温めようとするには、耐食性を高めた送風機や配管にそれなりの対策が必要である。一方、本発明では清浄な燃料を温めて燃料の燃焼効率を高める。しかも、温めるためには、熱電気発電器からの排熱を利用している。更に、元のタンク内の清浄な燃料は冷たいから、熱電気発電器のための効率的な冷温源となる。
In order to improve the conversion efficiency from heat to electricity for the p-type semiconductor (11) and n-type semiconductor (12), which are the converter elements, one of them is considered to have a poor thermal conductivity. Yes. Since leakage heat can be recovered in the present invention, heat conduction characteristics are not considered when selecting a semiconductor. A p-type semiconductor (11) and an n-type semiconductor (12) having good electrical conductivity, a large Seebeck coefficient, and a high operating temperature (high melting point) may be selected. For example, there is an n-type semiconductor (12) doped with barium (Ba) in selenium sulfide (CeS), and a p-type semiconductor (11) doped with germanium tellurium (GeTe) in bismuth (Bi). In addition, alloys with silicon (Si) and Ge contents of 20% to 30% are said to have good mechanical and high temperature characteristics.
In the boiler, air is heated in order to increase the combustion efficiency of the fuel. In order to warm the volcanic gas-containing air with flue gas, appropriate measures are required for blowers and pipes with improved corrosion resistance. On the other hand, in the present invention, clean fuel is warmed to increase the combustion efficiency of the fuel. And in order to warm up, the exhaust heat from a thermoelectric generator is utilized. Furthermore, the clean fuel in the original tank is cold, providing an efficient cold source for the thermoelectric generator.

本発明により、雰囲気が火山性ガス含有空気であっても発電できる発電装置が提供できた。   According to the present invention, it is possible to provide a power generation apparatus that can generate power even when the atmosphere is volcanic gas-containing air.

図2は本発明の排熱回収型熱電気発電装置の概観図である。
変換器要素であるp型半導体(11)とn型半導体(12)は電気的に直列に、熱的には並列に接続している。
低温熱源は低温で清浄な燃料を内蔵する清浄燃料タンク(51)及びポンプ(52)及び低温冷熱管(42)からなる。
ポンプ(52)によって清浄燃料タンク(51)から低温で清浄な燃料を低温燃料管(42)に送る。低温燃料管(42)は低温板(2)に接触させる。
そうすると、低温で清浄な燃料は低温燃料管(42)側面を介して低温板(2)から漏洩する熱を吸熱する。低温で清浄な燃料は熱を吸熱することにより高温で清浄な燃料蒸気となる。高温になると体積が膨張するから、流速が速くなる。熱除去が高くなり、低温板(2)は良好な低温熱源になる。
高温熱源は高温燃料蒸気管(41)及び混合筒(31)からなる。
高温燃料蒸気管(41)は低温燃料管(42)に接続されていて、低温燃料管(42)から高温高速な清浄な燃料蒸気が供給される。
混合筒(31)は、上端は開いており下端は上記高温蒸気管(41)に接続されている円筒管である。当該混合筒(31)の下側側面には吸気口(32)が開いている。ブンゼンバーナはそんな混合筒(31)を持った燃焼器である。
高温燃料蒸気管(41)から混合筒(31)下端に流入した当該高温高速な清浄な燃料蒸気が吸気口(32)から火山性ガス含有空気を吸入する。高速な蒸気部分は、周辺大気である火山性ガス含有空気よりも圧力が低いから、火山性ガス含有空気は混合筒(31)の中に吸引される。
当該混合筒(31)の中で清浄な燃料蒸気と吸引した火山性ガス含有空気を混合し混合気となす。続いて、当該混合筒(31)の上端から当該混合気を上方に噴出し燃焼させ高温を発生させる。
燃焼開始には点火の火種を擁する。燃焼開始の時だけマッチやガスライタで点火すればよい。火山性ガス含有空気は細粒子を含むからこれが保炎材となって、燃焼を安定的に持続させる。
信頼性を増すためには上端近傍に点火器を敷設する。
熱電気発電器の高温板(1)が当該熱を受熱することにより、低温板(2)から漏洩する熱を回収しながら発電することを特徴とする排熱回収型熱電気発電装置とする。
駆動部は燃料をタンクから管に送り込むポンプ(52)のみである。燃料は従来通り清浄な燃料を使うから問題はない。
燃料としてLNG(液化天然ガス)を使えば、タンクの中で大気中からの熱を吸収して気体燃料になるが低温であるから周囲の空気よりも有効な低熱源となる。気体燃料は低温板(2)から漏洩する熱を吸熱回収して高温気体燃料となる。
上方に噴出した当該混合気を燃焼させる際、混合気が高温であるほど燃焼温度は高くなるから、吸熱回収した高温気体燃料は燃焼効果が高い。
熱は回収されるから、変換器要素であるp型半導体(11)とn型半導体(12)には熱伝導性能の低いものを要求する必要はない。
FIG. 2 is a schematic view of the exhaust heat recovery type thermoelectric generator of the present invention.
The p-type semiconductor (11) and the n-type semiconductor (12), which are transducer elements, are electrically connected in series and thermally connected in parallel.
The low-temperature heat source includes a clean fuel tank (51) containing a clean fuel at a low temperature, a pump (52), and a low-temperature cold heat pipe (42).
The pump (52) sends clean fuel at a low temperature from the clean fuel tank (51) to the low temperature fuel pipe (42). The low temperature fuel pipe (42) is brought into contact with the low temperature plate (2).
Then, the clean fuel at low temperature absorbs heat leaking from the low temperature plate (2) through the side surface of the low temperature fuel pipe (42). Low temperature and clean fuel absorbs heat and becomes high temperature and clean fuel vapor. Since the volume expands at high temperatures, the flow rate increases. Heat removal is increased and the cold plate (2) is a good low temperature heat source.
The high-temperature heat source includes a high-temperature fuel vapor pipe (41) and a mixing cylinder (31).
The high temperature fuel vapor pipe (41) is connected to the low temperature fuel pipe (42), and high temperature and high speed clean fuel vapor is supplied from the low temperature fuel pipe (42).
The mixing cylinder (31) is a cylindrical pipe whose upper end is open and whose lower end is connected to the high-temperature steam pipe (41). An intake port (32) is open on the lower side surface of the mixing cylinder (31). The Bunsen burner is a combustor having such a mixing cylinder (31).
The high-temperature, high-speed clean fuel vapor flowing from the high-temperature fuel vapor pipe (41) into the lower end of the mixing cylinder (31) sucks volcanic gas-containing air from the intake port (32). Since the high-speed steam portion has a lower pressure than the surrounding volcanic gas-containing air, the volcanic gas-containing air is sucked into the mixing cylinder (31).
In the mixing cylinder (31), clean fuel vapor and sucked volcanic gas-containing air are mixed to form an air-fuel mixture. Subsequently, the air-fuel mixture is ejected upward from the upper end of the mixing cylinder (31) and burned to generate a high temperature.
At the start of combustion, it has an ignition fire. It is only necessary to ignite with a match or gas writer at the start of combustion. Since the volcanic gas-containing air contains fine particles, it becomes a flame-holding material and stably maintains combustion.
In order to increase reliability, an igniter is laid near the upper end.
When the hot plate (1) of the thermoelectric generator receives the heat, the exhaust heat recovery type thermoelectric generator is configured to generate power while collecting heat leaking from the cold plate (2).
The drive unit is only the pump (52) that feeds fuel from the tank to the pipe. There is no problem because clean fuel is used as usual.
If LNG (liquefied natural gas) is used as a fuel, it absorbs heat from the atmosphere in the tank to become a gaseous fuel, but it is a low-temperature heat source that is more effective than the surrounding air because of its low temperature. The gaseous fuel absorbs and recovers heat leaking from the low temperature plate (2) to become a high temperature gaseous fuel.
When the air-fuel mixture jetted upward is combusted, the higher the air-fuel mixture is, the higher the combustion temperature becomes. Therefore, the high-temperature gas fuel recovered by endotherm has a high combustion effect.
Since heat is recovered, the p-type semiconductor (11) and the n-type semiconductor (12), which are the transducer elements, do not need to have low thermal conductivity.

日本では、清浄環境を絶対視する多くの人々がいるから、地球大気が火山性ガスに満ちていても、排気ガスには配慮をせざるを得ないであろう。したがって、本発明の利用は海外であろう。
人、穀物畑、養鶏場が巨大ドームの中に入り、原子力発電をエネルギー源とするのが望ましいが、無駄な投資・原子力であるとの理由で日本では保険的設置は不可能であろう。
火山噴火が将来必ず起きることには無関心で、太陽光発電に固執し続けるのであろう人々の心は変えられないから、そんな日本人を納得させようとせずに淡々と海外に売っていかざるをえないであろう。
日本であれば太陽光発電へのバックアップ、保険として、予備の電気設備にはなりうる。駆動部が少ないからメンテナンス費用が安くなろう。
日本の発電大会社は太陽光発電会社が新規参入してこようとしていて、電気料金上昇は国指導で認めているのだから太陽光発電は買電で済ませようとするだろう。日本の発電大会社は自前で太陽光発電設備を大量に持つのは控えるであろう。その代わり、本発明の装置を準備することになろう。
大気が汚れているのだから、排気ガスを清浄にしても意味が無い。汚染燃料、汚染排気ガス発電でよいことになる。石炭燃焼蒸気発電は残るであろう。しかし、通常時には石炭燃焼蒸気発電は多く建設することは許してくれないであろう。
通常時に、太陽光発電には蓄電池が敷設されているが、太陽光が長期遮蔽されるなら効果がない。それに対して、通常時に蓄電池の代わりに本発明の装置を敷設しておけば、通常時の短期太陽光遮蔽から火山時の太陽光が長期遮蔽される場合までカバーできる。
微生物由来発電でも太陽光エネルギーが遮蔽されれば効率はわるくなろう。温室ガス作用も再生可能エネルギーにプラスに働くのかマイナスに働くのか不明であるから、再生可能エネルギーに偏るのは危険である。
結局、通常時にも使える本発明の装置を予備、待機電力として用意しておいたほうがよい。
In Japan, there are many people who absolutely look at the clean environment, so even if the earth's atmosphere is full of volcanic gases, exhaust gas will have to be considered. Therefore, the use of the present invention will be overseas.
It is desirable that people, cereal fields, and poultry farms enter a huge dome and use nuclear power as an energy source, but it would not be possible to install insurance in Japan because of wasteful investment and nuclear power.
I don't care about the future of volcanic eruptions, and I can't change the minds of people who will continue to stick to solar power generation. There will be no.
In Japan, it can be used as backup electrical equipment for solar power generation and as a backup electrical facility. Maintenance costs will be lower because there are fewer drive units.
Japanese power generation companies are trying to enter new solar power companies, and the government has allowed the increase in electricity prices. A large Japanese power generation company will refrain from owning a large number of solar power generation facilities on its own. Instead, the device of the present invention will be prepared.
Because the atmosphere is dirty, it doesn't make sense to clean the exhaust. Polluted fuel and polluted exhaust gas power generation will suffice. Coal fired steam power generation will remain. However, normally, coal-fired steam power generation will not allow the construction of many.
Normally, a storage battery is laid for solar power generation, but if solar light is shielded for a long time, it is ineffective. On the other hand, if the apparatus of the present invention is laid instead of the storage battery at normal times, it is possible to cover from short-term sunlight shielding at normal times to long-term shielding of sunlight at volcanoes.
Even if power generation from microorganisms is used, efficiency will be reduced if solar energy is shielded. Since it is unclear whether the greenhouse gas action works positively or negatively on renewable energy, biasing towards renewable energy is dangerous.
After all, it is better to prepare the device of the present invention that can be used during normal times as standby and standby power.

熱電気発電器の概観図。Overview of thermoelectric generator. 本発明の排熱回収型熱電気発電装置の概観図。1 is a schematic view of an exhaust heat recovery type thermoelectric generator according to the present invention.

1は高温板。
2は低温板。
3は低温側接点。
4は高温側接点。
11はp型半導体。
12はn型半導体。
31は混合筒。
32は吸気口。
41は高温燃料蒸気管。
42は低温燃料管。
51は清浄燃料タンク。
52はポンプ。
1 is a hot plate.
2 is a low-temperature board.
3 is a low temperature side contact.
4 is a high temperature side contact.
11 is a p-type semiconductor.
12 is an n-type semiconductor.
31 is a mixing cylinder.
32 is an intake port.
41 is a high temperature fuel vapor pipe.
42 is a low temperature fuel pipe.
51 is a clean fuel tank.
52 is a pump.

Claims (1)

変換器要素であるp型半導体(11)とn型半導体(12)を電気的には直列に、熱的には並列に接続してなる熱電気発電器において、
低温熱源は低温で清浄な燃料を内蔵する清浄燃料タンク(51)及びポンプ(52)及び低温冷熱管(42)からなり、
ポンプ(52)によって清浄燃料タンク(51)から低温で清浄な燃料を低温燃料管(42)に送り、低温燃料管(42)を低温板(2)に接触せしめ、
低温で清浄な燃料は低温燃料管(42)側面を介して低温板(2)から漏洩する熱を吸熱し高温で清浄な燃料蒸気となし、
高温熱源は高温燃料蒸気管(41)及び混合筒(31)からなり、
高温燃料蒸気管(41)は低温燃料管(42)に接続されていて低温燃料管(42)から供給される高温高速な清浄な燃料蒸気が流れ、
混合筒(31)は上端が開いており下端は上記高温蒸気管(41)に接続されている円筒管であって、当該混合筒(31)の下側側面には吸気口(32)があり、
高温燃料蒸気管(41)から混合筒(31)下端に流入した当該高温高速な清浄な燃料蒸気が吸気口(32)から火山性ガス含有空気を吸入し、当該混合筒(31)の中で清浄な燃料蒸気と火山性ガス含有空気を混合し混合気となし、当該混合筒(31)の上端から当該混合気を上方に噴出し燃焼させ高温を発生させ、
熱電気発電器の高温板(1)が当該熱を受熱することにより、
低温板(2)から漏洩する熱を回収しながら発電することを特徴とする排熱回収型熱電気発電装置。
In a thermoelectric generator formed by connecting a p-type semiconductor (11) and an n-type semiconductor (12), which are converter elements, electrically in series and thermally in parallel,
The low-temperature heat source is composed of a clean fuel tank (51) and a pump (52) containing a clean fuel at a low temperature, and a low-temperature cold heat pipe (42).
The pump (52) sends clean fuel at a low temperature from the clean fuel tank (51) to the low temperature fuel pipe (42), the low temperature fuel pipe (42) is brought into contact with the low temperature plate (2),
The clean fuel at low temperature absorbs the heat leaking from the low temperature plate (2) through the side of the low temperature fuel pipe (42) and becomes clean fuel vapor at high temperature.
The high temperature heat source consists of a high temperature fuel vapor pipe (41) and a mixing cylinder (31),
The high-temperature fuel vapor pipe (41) is connected to the low-temperature fuel pipe (42), and the high-temperature and high-speed clean fuel vapor supplied from the low-temperature fuel pipe (42) flows.
The mixing cylinder (31) has an open upper end and a lower end that is a cylindrical pipe connected to the high-temperature steam pipe (41), and has an intake port (32) on the lower side surface of the mixing cylinder (31). ,
The high-temperature, high-speed clean fuel vapor that has flowed from the high-temperature fuel vapor pipe (41) into the lower end of the mixing cylinder (31) sucks the volcanic gas-containing air from the intake port (32), and enters the mixing cylinder (31). Clean fuel vapor and volcanic gas-containing air are mixed to form an air-fuel mixture, the air-fuel mixture is jetted upward from the upper end of the mixing cylinder (31) and burned to generate a high temperature,
When the hot plate (1) of the thermoelectric generator receives the heat,
An exhaust heat recovery type thermoelectric generator characterized by generating electricity while recovering heat leaking from the low temperature plate (2).
JP2013040674A 2013-03-01 2013-03-01 Exhaust heat recovery type thermoelectric power generation device Pending JP2014170791A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013040674A JP2014170791A (en) 2013-03-01 2013-03-01 Exhaust heat recovery type thermoelectric power generation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013040674A JP2014170791A (en) 2013-03-01 2013-03-01 Exhaust heat recovery type thermoelectric power generation device

Publications (1)

Publication Number Publication Date
JP2014170791A true JP2014170791A (en) 2014-09-18

Family

ID=51692985

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013040674A Pending JP2014170791A (en) 2013-03-01 2013-03-01 Exhaust heat recovery type thermoelectric power generation device

Country Status (1)

Country Link
JP (1) JP2014170791A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105391347A (en) * 2015-12-18 2016-03-09 李俊娇 Automobile waste heat power generation device
CN105790638A (en) * 2016-03-23 2016-07-20 武汉喜玛拉雅光电科技股份有限公司 Multi-stage efficient coupling high temperature sensible heat-latent heat phase change energy storage thermoelectric power generation device
CN106712579A (en) * 2017-01-16 2017-05-24 浙江聚珖科技股份有限公司 Air energy thermoelectric generation device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105391347A (en) * 2015-12-18 2016-03-09 李俊娇 Automobile waste heat power generation device
CN105790638A (en) * 2016-03-23 2016-07-20 武汉喜玛拉雅光电科技股份有限公司 Multi-stage efficient coupling high temperature sensible heat-latent heat phase change energy storage thermoelectric power generation device
CN106712579A (en) * 2017-01-16 2017-05-24 浙江聚珖科技股份有限公司 Air energy thermoelectric generation device

Similar Documents

Publication Publication Date Title
Sodano et al. Recharging batteries using energy harvested from thermal gradients
JP4929004B2 (en) Gas turbine power generation system
KR100735617B1 (en) Thermoelectric generator using for waste heat
CN103618479B (en) Based on generating and the energy-storage system of South Pole astronomic station diesel generating set waste heat
Khan et al. A study on solar thermal conversion
KR20110136489A (en) Vessel with thermoelectirc generating system
BR112021011536A2 (en) PLANT AND METHOD FOR THERMAL ENERGY ACCUMULATION
CN203476624U (en) Low-temperature organic Rankine cycle solar heat power generation system
Dadak et al. Design and development of an innovative integrated structure for the production and storage of energy and hydrogen utilizing renewable energy
JP2014170791A (en) Exhaust heat recovery type thermoelectric power generation device
KR100965715B1 (en) Hybrid Power Plant System using Fuel Cell Generation and Thermoelectric Generation
Han et al. Design of the first chinese 1 MW solar-power tower demonstration plant
Bianchini et al. Techno-economic analysis of different plant configuration for thermoelectric cogeneration from biomass boiler
CN203827289U (en) Photo-thermal power station photovoltaic auxiliary power generation system
CN101924505A (en) Solar energy temperature difference generating set
KR100891491B1 (en) Generating System using Catalytic heater
CN205070847U (en) Utilize cold thermal temperature difference power generation devices of pulp water of boiler and power supply system
JP2014138522A (en) Power generation system
US11365720B1 (en) Device to enhance radiant transfer of heat from the earth to outer space
WO2024105954A1 (en) Thermoelectric power generation device
JP2001178163A (en) Method and apparatus for power generation using solar heat
CN1603695A (en) Independent heating and heat supply device utilizing solar energy and wind energy
CN201255085Y (en) Solar double-cycle generating set
CN201878061U (en) Solar temperature difference power generation device
ES2873099T3 (en) Renewable energy storage method and system in a temperature and pressure energy tank and conversion to electrical energy