JP2014138522A - Power generation system - Google Patents

Power generation system Download PDF

Info

Publication number
JP2014138522A
JP2014138522A JP2013006932A JP2013006932A JP2014138522A JP 2014138522 A JP2014138522 A JP 2014138522A JP 2013006932 A JP2013006932 A JP 2013006932A JP 2013006932 A JP2013006932 A JP 2013006932A JP 2014138522 A JP2014138522 A JP 2014138522A
Authority
JP
Japan
Prior art keywords
heat
power generation
temperature side
heat medium
side loop
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013006932A
Other languages
Japanese (ja)
Other versions
JP6138495B2 (en
Inventor
Masayuki Shinno
正之 新野
Toshikazu Yano
歳和 矢野
Toshihiko Nakada
俊彦 中田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JAPAN AEROSPACE TECHNOLOGY FOUNDATION
Original Assignee
JAPAN AEROSPACE TECHNOLOGY FOUNDATION
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JAPAN AEROSPACE TECHNOLOGY FOUNDATION filed Critical JAPAN AEROSPACE TECHNOLOGY FOUNDATION
Priority to JP2013006932A priority Critical patent/JP6138495B2/en
Publication of JP2014138522A publication Critical patent/JP2014138522A/en
Application granted granted Critical
Publication of JP6138495B2 publication Critical patent/JP6138495B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers

Abstract

PROBLEM TO BE SOLVED: To provide a power generation system using solar heat which stably and highly efficiently generates power.SOLUTION: A power generation system includes: a thermoelectric generation unit which exchanges heat between a heat medium flowing in a high temperature side loop and a fluid having temperature lower than that of the heat medium and flowing in a low temperature side loop to perform thermoelectric generation on the basis of the temperature difference between the heat medium and the fluid; a heat collecting device which is provided in the high temperature side loop and collects solar heat to heat the heat medium; a biomass boiler which is provided in the high temperature side loop and burns a biomass fuel to heat the heat medium; a heat storage tank which is provided in the high temperature side loop and stores heat of the heat medium heated by at least one of the heat collecting device and the biomass boiler into the ground; and a binary power generation unit which is provided in the low temperature side loop and uses the heat of the fluid whose heat is exchanged with the heat medium by the thermoelectric generation unit to perform binary power generation.

Description

本発明は、太陽熱を利用した発電システムに関し、特に、太陽熱を熱電変換素子により電気エネルギーに変換する発電とバイナリ発電とを組み合わせた複合発電システムに関する。   The present invention relates to a power generation system that uses solar heat, and more particularly, to a combined power generation system that combines power generation that converts solar heat into electrical energy using a thermoelectric conversion element and binary power generation.

省エネルギーと地球保護の観点から、近年、太陽エネルギーを利用した発電システムが注目されている。太陽エネルギーは資源として無尽蔵である上、そのエネルギー変換に際して、有害な大気汚染物質や地球温暖化の原因となる二酸化炭素を排出しないという大きな利点を有している。太陽エネルギーを利用した発電システムには、大別して太陽光発電と太陽熱発電の2つがある。このうち、太陽光発電は、半導体のpn接合のように内部電場を有する素子に太陽光を照射し、得られた光起電力を利用して電気エネルギーを得るもので、一般に、太陽電池と呼ばれている。   In recent years, power generation systems using solar energy have attracted attention from the viewpoint of energy saving and earth protection. Solar energy is inexhaustible as a resource, and has the great advantage that it does not emit harmful air pollutants and carbon dioxide that causes global warming when converting its energy. There are two types of power generation systems using solar energy: solar power generation and solar thermal power generation. Among them, solar power generation is a method of irradiating sunlight on an element having an internal electric field such as a semiconductor pn junction and obtaining electric energy by using the obtained photovoltaic power, and is generally called a solar cell. It is.

これに対して、太陽熱発電は、太陽光のエネルギーを熱として蓄え、これを利用して発電を行うもので、いくつかの方式が知られている。その一つは、太陽熱を反射鏡で集熱し、熱媒体を循環してタービンを回して発電を行うものである。   On the other hand, solar thermal power generation stores solar energy as heat and uses this to generate power, and several methods are known. One of them is to collect solar heat with a reflecting mirror, circulate the heat medium and rotate the turbine to generate electricity.

太陽熱発電のもう一つの方式は、太陽熱を熱源として、ゼーベック効果を有する熱電変換素子を用いて熱電変換により発電を行うものである。熱電変換素子を通して、太陽熱を反射鏡で集熱し、太陽熱により加熱された熱媒体と冷媒との間で熱交換を行い、この際、熱媒体の熱がゼーベック効果によって電気エネルギーに変換され、発電を行うものである(特許文献1乃至4参照)。この熱電変換素子を用いた発電は、温度差が大きいほど発電量が大きくなるという特徴がある。   Another method of solar thermal power generation is to generate power by thermoelectric conversion using a thermoelectric conversion element having Seebeck effect using solar heat as a heat source. Solar heat is collected by the reflector through the thermoelectric conversion element, and heat exchange is performed between the heat medium heated by the solar heat and the refrigerant. At this time, the heat of the heat medium is converted into electric energy by the Seebeck effect, and electric power is generated. (See Patent Documents 1 to 4). The power generation using this thermoelectric conversion element is characterized in that the amount of power generation increases as the temperature difference increases.

特開2011−87416号公報JP 2011-87416 A 特開2010―11718号公報JP 2010-11718 A 特開2007−81097号公報JP 2007-81097 A 特開2001―7412号公報Japanese Patent Laid-Open No. 2001-7412

太陽熱発電は、太陽光発電と同様に、天候により日射量が変動し、また、夜間は発電できないなど、安定的な発電を行うことが困難である。また、タービン回転による太陽熱発電は、大がかりな設備が必要となり、大規模な発電には適しているが、比較的小規模な用途では実施が難しい。   Like solar power generation, solar thermal power generation is difficult to perform stable power generation because the amount of solar radiation varies depending on the weather and power generation cannot be performed at night. Solar thermal power generation using turbine rotation requires large-scale facilities and is suitable for large-scale power generation, but is difficult to implement in relatively small-scale applications.

一方、熱電変換素子を用いた太陽熱発電は、タービンのような機械的駆動部を有さず、低コストで信頼性の高い発電を行うことができるが、熱電変換素子の熱電変換効率が比較的低く(約3%程度)、十分な発電量を得られない。   On the other hand, solar thermal power generation using a thermoelectric conversion element does not have a mechanical drive unit such as a turbine and can perform power generation at low cost and high reliability. However, the thermoelectric conversion efficiency of the thermoelectric conversion element is relatively low. It is low (about 3%), and sufficient power generation cannot be obtained.

そこで、本発明の目的は、太陽熱を利用した発電システムにおいて、安定的且つ高効率に発電を行う発電システムを提供することにある。   Therefore, an object of the present invention is to provide a power generation system that stably and efficiently generates power in a power generation system using solar heat.

上記目的を達成するための本発明の発電システムの構成は、高温側ループを流れる熱媒体と該熱媒体より温度が低い低温側ループを流れる流体とを熱交換させ、熱媒体と流体の温度差により熱電発電する第1の発電部(熱電発電部)と、高温側ループに設けられ、太陽熱を集熱して熱媒体を加熱する第1の加熱装置(太陽熱集熱装置)と、高温側ループに設けられ、バイオマス燃料を燃焼して熱媒体を加熱する第2の加熱装置(バイオマスボイラ)と、高温側ループに設けられ、第1の加熱装置及び第2の加熱装置の少なくとも一方により加熱された熱媒体の熱を地中に蓄熱する蓄熱槽と、低温側ループに設けられ、第1の発電部で熱媒体と熱交換した流体の熱を利用してバイナリ発電を行う第2の発電部(バイナリ発電部)とを備えることを特徴とする。   In order to achieve the above object, the configuration of the power generation system of the present invention is configured to cause heat exchange between a heat medium flowing through a high temperature side loop and a fluid flowing through a low temperature side loop having a temperature lower than that of the heat medium, so that a temperature difference between the heat medium and the fluid is achieved. A first power generation unit (thermoelectric power generation unit) for thermoelectric power generation, a first heating device (solar heat collection device) that collects solar heat and heats the heat medium, and a high temperature side loop. A second heating device (biomass boiler) that is provided and burns biomass fuel to heat the heat medium and a high temperature side loop that is heated by at least one of the first heating device and the second heating device. A heat storage tank that stores the heat of the heat medium in the ground, and a second power generation unit that is provided in the low temperature side loop and performs binary power generation using the heat of the fluid that exchanges heat with the heat medium in the first power generation unit ( A binary power generation unit) And features.

本発明の発電システムによれば、太陽熱を利用した発電システムにおいて、バイオマスボイラによる燃焼熱を併用し、さらに、バイナリ発電による発電を組み合わせることで、安定的且つ高効率に発電を行う発電システムを提供することができる。   According to the power generation system of the present invention, in a power generation system using solar heat, a power generation system that stably and highly efficiently generates power by combining combustion heat from a biomass boiler and further power generation by binary power generation is provided. can do.

本発明の実施の形態における複合発電システムの構成を示す図である。It is a figure which shows the structure of the combined power generation system in embodiment of this invention. 熱交換・発電部100の概略構成例を示す図である。2 is a diagram illustrating a schematic configuration example of a heat exchange / power generation unit 100. FIG.

以下、図面を参照して本発明の実施の形態について説明する。しかしながら、かかる実施の形態例が、本発明の技術的範囲を限定するものではない。   Embodiments of the present invention will be described below with reference to the drawings. However, such an embodiment does not limit the technical scope of the present invention.

図1は、本発明の実施の形態における発電システムの構成を示す図である。本実施形態の発電システムは、熱電変換による発電において、熱電変換素子を介して低温側の流体と熱交換する高温側の熱媒体を加熱する熱源として、太陽熱エネルギーに加えて、バイオマスボイラによる燃焼熱エネルギーを併用し、さらに、熱電変換素子を介して高温側と熱交換する低温側の流体の熱を利用するバイナリ発電を組み合わせたものである。   FIG. 1 is a diagram showing a configuration of a power generation system according to an embodiment of the present invention. In the power generation system of the present embodiment, in heat generation by thermoelectric conversion, in addition to solar thermal energy, combustion heat from a biomass boiler is used as a heat source for heating a high-temperature side heat medium that exchanges heat with a low-temperature side fluid via a thermoelectric conversion element. This is a combination of energy generation and binary power generation that uses the heat of the low-temperature fluid that exchanges heat with the high-temperature side via a thermoelectric conversion element.

本実施形態の発電システムは、高温側の熱媒体と低温側の流体との温度差に基づいて熱電発電を行う熱電発電部100と、熱電発電部100の高温側で熱媒体(例えば鉱質オイル)を循環させる高温側ユニットと、熱電発電部100の低温側で流体(温水)を循環させ、さらにバイナリ発電を行う低温側ユニットとを備えて構成される。   The power generation system of this embodiment includes a thermoelectric power generation unit 100 that performs thermoelectric power generation based on a temperature difference between a high temperature side heat medium and a low temperature side fluid, and a heat medium (for example, mineral oil) on the high temperature side of the thermoelectric power generation unit 100. ) And a low-temperature side unit that circulates fluid (hot water) on the low-temperature side of the thermoelectric power generation unit 100 and performs binary power generation.

高温側ユニットは、太陽熱を集熱する集熱装置210と、バイオマス燃料を燃焼させるバイオマスボイラ240と、集熱された熱を貯蔵する蓄熱槽220と、吐出ポンプ230とを備え、熱媒体が循環する管路によるループ(高温側ループ)を構成している。集熱装置210とバイオマスボイラ240は高温側ループに並列に配置され、集熱装置210又はバイオマスボイラ240により加熱された熱媒体は、蓄熱槽220に送られ、蓄熱槽220を加熱し、蓄熱される。また、蓄熱槽220を経由した熱媒体は、熱電発電部100に送られ、熱電発電部100の高温側を流れ、低温側と熱交換を行った後、集熱装置210又はバイオマスボイラ240に戻る。循環用の吐出ポンプ230が、この高温側ループ内の熱媒体を循環させ、熱電発電部100に熱媒体を供給する。熱媒体の圧力変動を吸収するための膨張タンクが設けられていてもよい。   The high temperature side unit includes a heat collecting device 210 that collects solar heat, a biomass boiler 240 that burns biomass fuel, a heat storage tank 220 that stores the collected heat, and a discharge pump 230, and a heat medium circulates. Loop (high temperature side loop) is formed. The heat collector 210 and the biomass boiler 240 are arranged in parallel in the high temperature side loop, and the heat medium heated by the heat collector 210 or the biomass boiler 240 is sent to the heat storage tank 220 to heat and store the heat storage tank 220. The Further, the heat medium passing through the heat storage tank 220 is sent to the thermoelectric power generation unit 100, flows through the high temperature side of the thermoelectric power generation unit 100, exchanges heat with the low temperature side, and then returns to the heat collector 210 or the biomass boiler 240. . A circulation discharge pump 230 circulates the heat medium in the high temperature side loop and supplies the heat medium to the thermoelectric generator 100. An expansion tank for absorbing pressure fluctuations in the heat medium may be provided.

低温側ユニットは、バイナリ発電部310と、吐出ポンプ370とを備え、流体(温水)が循環する管路によるループ(低温側ループ)を構成している。低温側ループを流れる流体は、熱電発電部100の低温側で、高温側の熱媒体と熱交換を行った後、バイナリ発電部310に送られ、バイナリ発電部310から排出される流体は熱電発電部100に送られる。循環用の吐出ポンプ370が、この低温側ループ内の流体を循環させる。   The low temperature side unit includes a binary power generation unit 310 and a discharge pump 370, and constitutes a loop (low temperature side loop) by a pipe line through which fluid (hot water) circulates. The fluid flowing through the low temperature side loop is exchanged with the high temperature side heat medium on the low temperature side of the thermoelectric power generation unit 100, and then sent to the binary power generation unit 310. The fluid discharged from the binary power generation unit 310 is the thermoelectric power generation. Part 100. A circulation discharge pump 370 circulates the fluid in the low temperature side loop.

低温側ユニットの低温側ループには、バイナリ発電部310から排出される流体の熱を熱源として利用する熱供給装置500が接続されていてもよい。熱供給装置500は、例えば給湯装置や冷暖房装置であり、本実施の形態における発電システムと熱供給装置500とにより、コジェネレーションシステムが構成される。   A heat supply device 500 that uses the heat of the fluid discharged from the binary power generation unit 310 as a heat source may be connected to the low temperature side loop of the low temperature side unit. The heat supply apparatus 500 is, for example, a hot water supply apparatus or an air conditioning apparatus, and the power generation system and the heat supply apparatus 500 in the present embodiment constitute a cogeneration system.

図2は、熱電発電部100の概略構成例を示す図である。熱電発電部100は、熱電発電モジュール101、高温側伝熱板102、低温側伝熱板103を有して構成される。熱電発電モジュール101は、ゼーベック効果を利用して高温側と低温側の温度差により発電を行う素子であり、既存の製品を採用することができる。高温側伝熱板102は、高温側ユニットで加熱された熱媒体が流れる流路が配管され、低温側伝熱板103は、低温側ユニットの流体が流れる流路が配管されている。   FIG. 2 is a diagram illustrating a schematic configuration example of the thermoelectric power generation unit 100. The thermoelectric power generation unit 100 includes a thermoelectric power generation module 101, a high temperature side heat transfer plate 102, and a low temperature side heat transfer plate 103. The thermoelectric power generation module 101 is an element that generates power by using a temperature difference between a high temperature side and a low temperature side using the Seebeck effect, and an existing product can be adopted. The high temperature side heat transfer plate 102 is provided with a flow path through which the heat medium heated by the high temperature side unit flows, and the low temperature side heat transfer plate 103 is provided with a flow path through which the fluid of the low temperature side unit flows.

以下に、発電される電力の試算例を示す。   Below is an example of a trial calculation of generated power.

(1)集熱装置210及びバイオマスボイラ270の少なくとも一方を稼働して、50kWの熱エネルギーを生成し、高温側ループの流れる鉱質オイルを加熱する。   (1) Operate at least one of the heat collector 210 and the biomass boiler 270 to generate 50 kW of thermal energy and heat the mineral oil flowing through the high temperature side loop.

太陽熱を集熱できる時間を24時間のうち日昼の8時間とすると、夜間(朝方、夕方など十分な太陽熱を得られない時間帯を含む)16時間分の熱量を蓄熱槽220に蓄熱する必要があり、その必要な熱量を貯蔵できるキャパシティの蓄熱槽220を設計する。   If the solar heat can be collected for 8 hours of daytime and daytime out of 24 hours, it is necessary to store heat in the heat storage tank 220 for 16 hours at night (including time zones where sufficient solar heat cannot be obtained, such as morning and evening). The capacity heat storage tank 220 capable of storing the necessary amount of heat is designed.

集熱装置210のみで、鉱質オイルを設計温度に加熱できない場合に、バイオマスボイラ270を稼働させる。   When the mineral oil cannot be heated to the design temperature with only the heat collector 210, the biomass boiler 270 is operated.

(2)高温側ループの鉱質オイルの温度を160℃〜260℃(平均値210℃)、低温側ループの温水の温度が20℃〜80℃(平均値50℃)とすると、高温側と低温側の温度差は160℃(=210℃−50℃)となるが、熱抵抗の損失を考慮して、温度差100℃とする。   (2) When the temperature of the mineral oil in the high temperature side loop is 160 ° C. to 260 ° C. (average value 210 ° C.) and the temperature of the hot water in the low temperature side loop is 20 ° C. to 80 ° C. (average value 50 ° C.), Although the temperature difference on the low temperature side is 160 ° C. (= 210 ° C.-50 ° C.), the temperature difference is set to 100 ° C. in consideration of the loss of thermal resistance.

(3)温度差100℃における熱電発電モジュールの変換効率3〜4%であり、集熱器210或いはバイオマスボイラ270により生成された50kWの熱エネルギーに対して、1.5〜2kWの電力を得られる。   (3) The conversion efficiency of the thermoelectric generator module at a temperature difference of 100 ° C. is 3 to 4%, and 1.5 to 2 kW of electric power is obtained for 50 kW of thermal energy generated by the heat collector 210 or the biomass boiler 270. It is done.

(4)熱電変換モジュールで熱交換した低温側ループの温水温度を70〜100℃とし、バイナリ発電部310による発電により、3.5kW程度の電力を得られるとすると、この場合の変換効率は7%である。従って、熱電発電部100及びバイナリ発電部310による発電により、熱エネルギー50kWに対して合計5kW以上の電力を得られ、変換効率10%以上が達成される。   (4) If the hot water temperature of the low-temperature side loop subjected to heat exchange with the thermoelectric conversion module is 70 to 100 ° C. and the power generation by the binary power generation unit 310 can obtain about 3.5 kW, the conversion efficiency in this case is 7 %. Therefore, by the power generation by the thermoelectric power generation unit 100 and the binary power generation unit 310, a total power of 5 kW or more can be obtained for the thermal energy of 50 kW, and a conversion efficiency of 10% or more is achieved.

循環用の吐出ポンプの消費電力は10W程度であり、この発電量にて、ポンプ駆動の全電力をまかなうことができる。   The power consumption of the circulation discharge pump is about 10 W, and with this power generation amount, it is possible to cover the entire power for driving the pump.

熱電発電部100により生成された電力は、蓄電装置(バッテリ)400に蓄積される。蓄電装置400として、用途に応じた適切な二次電池が選択される。電力制御部410は、蓄電装置400に蓄積された電力を用いて、必要な電力を各ポンプに供給する。電力制御部410は、一般的なコンピュータ制御により実現可能である。発電電力は、電力制御部410など、ポンプ以外の電力駆動要素の稼働に用いられてもよい。   The electric power generated by the thermoelectric power generation unit 100 is stored in the power storage device (battery) 400. As the power storage device 400, an appropriate secondary battery corresponding to the application is selected. The power control unit 410 uses the power stored in the power storage device 400 to supply necessary power to each pump. The power control unit 410 can be realized by general computer control. The generated power may be used for operation of power driving elements other than the pump, such as the power control unit 410.

蓄熱槽220は、好ましくは、地中に設置され、必要な蓄熱量に相当する容積を有する。地下の槽内は、例えば、岩石、コンクリートや煉瓦など蓄熱密度の高い蓄熱材で充填され、好ましくは断熱材で覆われる。蓄熱槽220内に配管された管路内を流れる熱媒体は、蓄熱材と吸熱・放熱を行う。地中は、地上と比較して温度変化が少なく、蓄熱温度を一定に保つことができるとともに、大規模な容積を確保することができることから、大規模な地下設備として、蓄熱槽220を設けることで、大容量の熱量を安定的に蓄積できる。これにより、日昼に十分な日射量を確保できる場合は、太陽熱を集熱できない夜間の時間帯を含めて24時間を通して、装置の稼働に必要な全電力を安定的に生成することが可能となり、外部からの電力供給を受けることなく、主に太陽熱発電により自律的に稼働するシステムが構築される。太陽熱の集熱のみで十分な熱量を確保できない場合は、バイオマスボイラ270を稼働させ、設計された発電量に必要な熱量を確保する。   The heat storage tank 220 is preferably installed in the ground and has a volume corresponding to a necessary heat storage amount. The underground tank is filled with a heat storage material having a high heat storage density such as rock, concrete or brick, and preferably covered with a heat insulating material. The heat medium flowing in the pipe line piped in the heat storage tank 220 performs heat absorption / radiation with the heat storage material. In the underground, there is little temperature change compared to the ground, the heat storage temperature can be kept constant and a large volume can be secured, so a heat storage tank 220 is provided as a large underground facility Thus, a large amount of heat can be stably accumulated. As a result, if sufficient solar radiation can be secured during the day and noon, it will be possible to stably generate all the electric power necessary for the operation of the device throughout the 24 hours including the night time when solar heat cannot be collected. A system that operates autonomously by solar thermal power generation is constructed without receiving external power supply. When a sufficient amount of heat cannot be ensured only by solar heat collection, the biomass boiler 270 is operated, and the amount of heat necessary for the designed power generation amount is secured.

集熱装置210は、いわゆるヘリオスタット型(平面鏡を用いて中央部に設置されたタワーにある集熱器に太陽光を集中させ、その熱を集熱する方式)、又はトラフ型(曲面鏡を用いて、その曲面鏡の前に設置されたパイプに太陽光を集中させ、パイプ内を流れる熱媒体を加熱する方式)を含むさまざまな集熱方式が採用されうる。   The heat collector 210 is a so-called heliostat type (a method of concentrating sunlight on a heat collector in a tower installed in the center using a plane mirror and collecting the heat) or a trough type (a curved mirror). And various heat collecting methods including a method of concentrating sunlight on a pipe installed in front of the curved mirror and heating a heat medium flowing in the pipe).

バイオマスボイラ270は、間伐材や建築廃材、木材加工時の端材のチップや廃プラスチック固形燃料(RPF)などのバイオマス燃料を燃焼させ熱エネルギーを得て、熱媒体を加熱する燃焼装置である。集熱装置210により、熱媒体の加熱に必要な安定的な熱量を得られる場合は、バイオマスボイラ270を稼働させなくともよい。例えば、日照の弱い時間が続く場合や、夜間の発電に必要な熱量が蓄熱層220に蓄熱された熱量では不足するような場合などに稼働させ、必要な熱量を補う。高温側ループは、その管路に設置されるバルブを切り換えて、熱媒体が流れるループを調整可能であり、集熱装置210及びバイオマスボイラ270の両方を流れるループ、集熱装置210又はバイオマスボイラ270の一方のみを流れるループに適宜切り換える可能に構成される。   Biomass boiler 270 is a combustion device that heats a heat medium by burning biomass fuel such as thinned wood, building waste, chip of chips at the time of wood processing, and waste plastic solid fuel (RPF) to obtain thermal energy. When the heat collecting device 210 can obtain a stable amount of heat necessary for heating the heat medium, the biomass boiler 270 need not be operated. For example, when the amount of heat necessary for nighttime power generation continues or when the amount of heat necessary for power generation at night is insufficient with the amount of heat stored in the heat storage layer 220, the necessary amount of heat is compensated. The high temperature side loop can adjust the loop through which the heat medium flows by switching a valve installed in the pipe line, and the loop, the heat collection device 210 or the biomass boiler 270 that flows through both the heat collection device 210 and the biomass boiler 270. It is possible to appropriately switch to a loop that flows through only one of the two.

バイナリ発電部310は、沸点の比較的低い作動媒体(例えば、ペンタン、フロン、アンモニア、プロパンガスなど)を加熱・気化させてその蒸気でタービンを回して発電する発電装置である。沸点が水よりも低い作動媒体を蒸発させるので、比較的低温の温水を発電に利用でき、本実施の形態においては、熱電発電部100の低温側ループを流れる流体の熱を利用して、さらに発電を行うものである。   The binary power generation unit 310 is a power generation device that heats and vaporizes a working medium having a relatively low boiling point (for example, pentane, chlorofluorocarbon, ammonia, propane gas, etc.) and rotates the turbine with the steam to generate power. Since the working medium having a boiling point lower than that of water is evaporated, the relatively low temperature hot water can be used for power generation. In the present embodiment, the heat of the fluid flowing through the low temperature side loop of the thermoelectric power generation unit 100 is used. It generates electricity.

近年、最大出力3kW〜10kW程度の小型のバイナリ発電装置が開発され、熱電発電部100の低温側ループを流れる流体の比較的低温の熱(約70〜100℃)を利用したバイナリ発電が可能となっている。   In recent years, a small binary power generation device with a maximum output of about 3 kW to 10 kW has been developed, and binary power generation using a relatively low temperature heat (about 70 to 100 ° C.) of a fluid flowing through a low temperature side loop of the thermoelectric power generation unit 100 is possible. It has become.

各ポンプの設置位置は、図1に示されるものに限らず、高温側ユニットを流れる熱媒体及び低温側ユニットを流れる流体の適切な流れを確保できる位置に設置され、また、設置台数も、ポンプの能力に応じて適宜決定される。   The installation position of each pump is not limited to that shown in FIG. 1, but is installed at a position where an appropriate flow of the heat medium flowing through the high temperature side unit and the fluid flowing through the low temperature side unit can be secured. It is determined appropriately according to the ability.

本発明は、前記実施の形態に限定されるものではなく、本発明の分野における通常の知識を有する者であれば想到し得る各種変形、修正を含む要旨を逸脱しない範囲の設計変更があっても、本発明に含まれることは勿論である。   The present invention is not limited to the above-described embodiment, and there are design changes within a range that does not depart from the gist including various modifications and corrections that can be conceived by those having ordinary knowledge in the field of the present invention. Of course, it is included in the present invention.

以上説明した実施の形態の主な技術的特徴は、以下の付記の通りである。   The main technical features of the embodiment described above are as follows.

(付記1)
高温側ループを流れる熱媒体と該熱媒体より温度が低い低温側ループを流れる流体とを熱交換させ、熱媒体と流体の温度差により熱電発電する第1の発電部と、
高温側ループに設けられ、太陽熱を集熱して熱媒体を加熱する第1の加熱装置と、
高温側ループに設けられ、バイオマス燃料を燃焼して熱媒体を加熱する第2の加熱装置と、
高温側ループに設けられ、前記第1の加熱装置及び第2の加熱装置の少なくとも一方により加熱された熱媒体の熱を地中に蓄熱する蓄熱槽と、
低温側ループに設けられ、前記第1の発電部で熱媒体と熱交換した流体の熱を利用してバイナリ発電を行う第2の発電部とを備えることを特徴とする発電システム。
(Appendix 1)
A first power generation unit for exchanging heat between a heat medium flowing through the high temperature side loop and a fluid flowing through the low temperature side loop having a temperature lower than that of the heat medium, and performing thermoelectric generation by a temperature difference between the heat medium and the fluid;
A first heating device that is provided in the high-temperature side loop and collects solar heat to heat the heat medium;
A second heating device provided in the high temperature side loop for heating the heat medium by burning biomass fuel;
A heat storage tank that is provided in a high temperature side loop and stores heat of the heat medium heated by at least one of the first heating device and the second heating device in the ground;
A power generation system comprising: a second power generation unit that is provided in a low temperature side loop and that performs binary power generation using heat of a fluid that has exchanged heat with a heat medium in the first power generation unit.

(付記2)
付記1において、
高温側ループで熱媒体を循環させる第1のポンプと、
低温側ループで流体を循環させる第2のポンプとを備え、
前記第1の発電部又は前記第2の発電部により生成された電力により、前記第1のポンプ及び第2のポンプを駆動することを特徴とする発電システム。
(Appendix 2)
In Appendix 1,
A first pump for circulating the heat medium in the high temperature side loop;
A second pump for circulating the fluid in the low temperature side loop,
The power generation system, wherein the first pump and the second pump are driven by electric power generated by the first power generation unit or the second power generation unit.

(付記3)
付記1又は2において、
前記第1の加熱装置と前記第2の加熱装置は、高温側ループに並列に設けられることを特徴とする発電システム。
(Appendix 3)
In Appendix 1 or 2,
The power generation system, wherein the first heating device and the second heating device are provided in parallel to a high temperature side loop.

(付記4)
付記2において、
前記第1の発電部及び前記第2の発電部により発電された電力を蓄積する蓄電装置と、
前記蓄電装置に蓄積された電力を前記第1のポンプ及び前記第2のポンプに供給する電力制御部とを備えることを特徴とする発電システム。
(Appendix 4)
In Appendix 2,
A power storage device that stores the power generated by the first power generation unit and the second power generation unit;
A power generation system comprising: a power control unit that supplies power stored in the power storage device to the first pump and the second pump.

(付記5)
付記1乃至4に記載の発電システムと、
前記第2の発電部から排出される流体の熱を熱源とする熱供給装置とを備えるコジェネレーションシステム。
(Appendix 5)
The power generation system according to appendices 1 to 4,
A cogeneration system comprising: a heat supply device that uses heat of a fluid discharged from the second power generation unit as a heat source.

(付記6)
付記5において、
前記熱供給装置は、冷暖房装置又は給湯装置であることを特徴とするコジェネレーションシステム。
(Appendix 6)
In Appendix 5,
The cogeneration system, wherein the heat supply device is a cooling / heating device or a hot water supply device.

100:熱電発電部、210:集熱装置、220:蓄熱槽、230:吐出ポンプ、270:バイオマスボイラ、310:バイナリ発電部、370:吐出ポンプ、400:蓄電装置、410:電力制御部   100: thermoelectric power generation unit, 210: heat collecting device, 220: heat storage tank, 230: discharge pump, 270: biomass boiler, 310: binary power generation unit, 370: discharge pump, 400: power storage device, 410: power control unit

Claims (1)

高温側ループを流れる熱媒体と該熱媒体より温度が低い低温側ループを流れる流体とを熱交換させ、熱媒体と流体の温度差により熱電発電する第1の発電部と、
高温側ループに設けられ、太陽熱を集熱して熱媒体を加熱する第1の加熱装置と、
高温側ループに設けられ、バイオマス燃料を燃焼して熱媒体を加熱する第2の加熱装置と、
高温側ループに設けられ、前記第1の加熱装置及び第2の加熱装置の少なくとも一方により加熱された熱媒体の熱を地中に蓄熱する蓄熱槽と、
低温側ループに設けられ、前記第1の発電部で熱媒体と熱交換した流体の熱を利用してバイナリ発電を行う第2の発電部とを備えることを特徴とする発電システム。
A first power generation unit for exchanging heat between a heat medium flowing through the high temperature side loop and a fluid flowing through the low temperature side loop having a temperature lower than that of the heat medium, and performing thermoelectric generation by a temperature difference between the heat medium and the fluid;
A first heating device that is provided in the high-temperature side loop and collects solar heat to heat the heat medium;
A second heating device provided in the high temperature side loop for heating the heat medium by burning biomass fuel;
A heat storage tank that is provided in a high temperature side loop and stores heat of the heat medium heated by at least one of the first heating device and the second heating device in the ground;
A power generation system comprising: a second power generation unit that is provided in a low temperature side loop and that performs binary power generation using heat of a fluid that has exchanged heat with a heat medium in the first power generation unit.
JP2013006932A 2013-01-18 2013-01-18 Power generation system Active JP6138495B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013006932A JP6138495B2 (en) 2013-01-18 2013-01-18 Power generation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013006932A JP6138495B2 (en) 2013-01-18 2013-01-18 Power generation system

Publications (2)

Publication Number Publication Date
JP2014138522A true JP2014138522A (en) 2014-07-28
JP6138495B2 JP6138495B2 (en) 2017-05-31

Family

ID=51415738

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013006932A Active JP6138495B2 (en) 2013-01-18 2013-01-18 Power generation system

Country Status (1)

Country Link
JP (1) JP6138495B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017027682A (en) * 2015-07-16 2017-02-02 株式会社東芝 Fuel battery system
WO2020166526A1 (en) * 2019-02-14 2020-08-20 株式会社Ihi Vapor supply device and drying system
CN113217311A (en) * 2021-04-25 2021-08-06 华北电力大学 Photo-thermal power generation system and method based on day and night temperature difference

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02275255A (en) * 1989-04-14 1990-11-09 Tsuneo Hojo Accumulated heat utilizing device of solar light converted thermal energy
JP2006341165A (en) * 2005-06-08 2006-12-21 Mitsubishi Heavy Ind Ltd Desalination apparatus using solar heat and biomass, and greening method using the desalination apparatus
JP2011515830A (en) * 2008-02-29 2011-05-19 オー−フレックス・テクノロジーズ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング Thermoelectric generator
JP2011169188A (en) * 2010-02-17 2011-09-01 Jfe Engineering Corp Geothermal power generator utilizing solar heat
WO2011121852A1 (en) * 2010-03-31 2011-10-06 国立大学法人東京工業大学 Steam generation apparatus and energy supplying system using same
JP2012210041A (en) * 2011-03-29 2012-10-25 Tadahiko Yoshida Power generation system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02275255A (en) * 1989-04-14 1990-11-09 Tsuneo Hojo Accumulated heat utilizing device of solar light converted thermal energy
JP2006341165A (en) * 2005-06-08 2006-12-21 Mitsubishi Heavy Ind Ltd Desalination apparatus using solar heat and biomass, and greening method using the desalination apparatus
JP2011515830A (en) * 2008-02-29 2011-05-19 オー−フレックス・テクノロジーズ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング Thermoelectric generator
JP2011169188A (en) * 2010-02-17 2011-09-01 Jfe Engineering Corp Geothermal power generator utilizing solar heat
WO2011121852A1 (en) * 2010-03-31 2011-10-06 国立大学法人東京工業大学 Steam generation apparatus and energy supplying system using same
JP2012210041A (en) * 2011-03-29 2012-10-25 Tadahiko Yoshida Power generation system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017027682A (en) * 2015-07-16 2017-02-02 株式会社東芝 Fuel battery system
WO2020166526A1 (en) * 2019-02-14 2020-08-20 株式会社Ihi Vapor supply device and drying system
CN113217311A (en) * 2021-04-25 2021-08-06 华北电力大学 Photo-thermal power generation system and method based on day and night temperature difference
CN113217311B (en) * 2021-04-25 2022-08-05 华北电力大学 Photo-thermal power generation system and method based on day and night temperature difference

Also Published As

Publication number Publication date
JP6138495B2 (en) 2017-05-31

Similar Documents

Publication Publication Date Title
Kasaeian et al. Solar collectors and photovoltaics as combined heat and power systems: A critical review
Müller-Steinhagen et al. Concentrating solar power
DeLovato et al. A review of heat recovery applications for solar and geothermal power plants
US9541070B2 (en) Plant for energy production
Sen et al. Thermodynamic modeling and analysis of a solar and geothermal assisted multi-generation energy system
US9705449B2 (en) Effective and scalable solar energy collection and storage
Raja et al. Novel parabolic trough solar collector and solar photovoltaic/thermal hybrid system for multi-generational systems
Khan et al. A study on solar thermal conversion
CN102242698A (en) Distributed-type heat and power cogeneration set capable of accumulating energy and heat
Eterafi et al. Thermodynamic design and parametric performance assessment of a novel cogeneration solar organic Rankine cycle system with stable output
WO2009116073A2 (en) Co-generation of power and cooling from solar heat and bio-waste (biogas)/industrial waste
Okonkwo et al. Thermodynamic analysis of energy storage supported multigeneration system
CN203476624U (en) Low-temperature organic Rankine cycle solar heat power generation system
Mouaky et al. Energetic, exergetic and exergeoeconomic assessment of a hybrid solar/biomass poylgeneration system: A case study of a rural community in a semi-arid climate
Feng et al. Numerical evaluation of energy system based on Fresnel concentrating solar collector, Stirling engine, and thermoelectric generator with electrical energy storage
Abid et al. Thermo‐environmental investigation of solar parabolic dish‐assisted multi‐generation plant using different working fluids
CN106014889B (en) A kind of tower type solar photo-thermal and photovoltaic combined generating system
JP6138495B2 (en) Power generation system
Liu et al. Performance evaluation and optimization of a novel system combining a photovoltaic/thermal subsystem & an organic rankine cycle driven by solar parabolic trough collector
Zhang et al. Parametric development and multi-aspect assessment of a novel solar energy driven plant for synchronic generation of green hydrogen and electricity
Kavadias et al. Sizing of a solar–geothermal hybrid power plant in remote island electrical network
CN104296397A (en) Device capable of utilizing heat of disk-type solar thermal collector in offline and concentrated mode
Vergura et al. Matlab based model of 40-MW concentrating solar power plant
JP2012098003A (en) Thermoelectric-generation cogeneration system
Desai et al. Concentrated solar energy driven multi-generation systems based on the organic Rankine cycle technology

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160118

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160831

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160906

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170411

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170426

R150 Certificate of patent or registration of utility model

Ref document number: 6138495

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250