JPS5864303A - Production of magnetic particle powder of needle crystal alloy consisting essentially of fe-mg-ni - Google Patents
Production of magnetic particle powder of needle crystal alloy consisting essentially of fe-mg-niInfo
- Publication number
- JPS5864303A JPS5864303A JP56163917A JP16391781A JPS5864303A JP S5864303 A JPS5864303 A JP S5864303A JP 56163917 A JP56163917 A JP 56163917A JP 16391781 A JP16391781 A JP 16391781A JP S5864303 A JPS5864303 A JP S5864303A
- Authority
- JP
- Japan
- Prior art keywords
- particles
- acicular
- nickel
- magnesium
- suspension
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/032—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
- H01F1/04—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
- H01F1/06—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder
- H01F1/065—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder obtained by a reduction
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Manufacture Of Metal Powder And Suspensions Thereof (AREA)
- Hard Magnetic Materials (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は、磁気記録用磁性材料として特に適したより高
い保磁力Haと大きな飽和磁化σ8を有する針状晶IF
e −Mg−Ni合金磁性粒子粉末の製造法に関するも
のである。DETAILED DESCRIPTION OF THE INVENTION The present invention provides an acicular crystal IF having a higher coercive force Ha and a large saturation magnetization σ8, which is particularly suitable as a magnetic material for magnetic recording.
The present invention relates to a method for producing e-Mg-Ni alloy magnetic particles.
詳しくは、平均値で長軸α2〜2.0μm1軸比20:
1以上という優れた針状晶を有するマグネシウム及びニ
ッケルを含有する針状晶α−IFs00H粒子粉末を得
、該マグネシウム及びニッケルを含有スる針状晶α−F
eOOH粒子粉末をP化合物と81化合物で被覆処理し
、次いで非還元性雰囲気中500℃〜900℃の温度範
囲で加熱処理して高密度化されたP化合物と81化合物
で被覆されたマグネシウム及びニッケルを含有する針状
晶α−?80gとした後、該粒子を還元性ガス中で加熱
還元することにより優れた針状晶を保持継承しており、
また粒子のからみ合い等がなく粒子表面並びに粒子内部
の結晶性の度合が高められた実質的に高密度なIFe
−Mg−Niを主成分とする針状晶合金磁性粒子粉末を
得ることを目的とする。In detail, the average value is long axis α2 ~ 2.0 μm, uniaxial ratio 20:
Acicular crystal α-IFs00H particles containing magnesium and nickel having excellent needle crystals of 1 or more are obtained, and the acicular crystal α-F containing magnesium and nickel is obtained.
Magnesium and nickel coated with P compound and 81 compound are obtained by coating eOOH particles with P compound and 81 compound, and then heat-treating in a non-reducing atmosphere at a temperature range of 500°C to 900°C to make the powder densified. Acicular crystals containing α-? After reducing the size to 80g, the particles are heated and reduced in a reducing gas to maintain excellent needle-like crystals.
In addition, substantially high-density IFe has no entanglement of particles and has an increased degree of crystallinity on the particle surface and inside the particle.
An object of the present invention is to obtain an acicular alloy magnetic particle powder containing Mg-Ni as a main component.
近年、磁気記録再生用機器の小型軽量化が進むにつれて
、記録媒体に対する高性能化の必要性が益々生じてきて
いる。すなわち、高密度記録、高出力特性、殊に、周波
数特性の向上が要求される。In recent years, as magnetic recording and reproducing equipment has become smaller and lighter, there has been an increasing need for higher performance recording media. That is, high-density recording, high output characteristics, and especially improvement in frequency characteristics are required.
磁気記録媒体に対する上記のような要求を満足さ4る為
に適した磁性材料の特性は、高い保磁力と大きな飽和磁
化を有することである。The characteristics of a magnetic material suitable for satisfying the above requirements for magnetic recording media are that it has a high coercive force and a large saturation magnetization.
ところで、従来から磁気記録媒体に用いられている磁性
材料は、マグネシウム、マグヘマイト、二酸化りpム等
の磁性粉末であり、これらの磁性粉末は飽和磁化σa7
0〜85@m鱒、保磁力HQ250〜5000eを有す
るものである。By the way, the magnetic materials conventionally used in magnetic recording media are magnetic powders such as magnesium, maghemite, and sulfur PM dioxide, and these magnetic powders have a saturation magnetization σa7
0 to 85@m trout, and has a coercive force HQ of 250 to 5000e.
殊に、上記酸化物磁性粒子粉末のσBは最大850mガ
程度であり、一般にはσ870〜8Q emu、/eで
あることが再生出力並びに記録密度に限度を与えている
主因となっている。更に00を含有しているCO−Σグ
ネタイトや00−マグヘマイト磁性粉末も使用されてい
るが、これらの磁性粒子粉末は保磁力Heが400〜8
000eと高いという特徴を有するが、これに反して飽
和磁化σBが60〜800mVgと低いものである。In particular, the maximum σB of the oxide magnetic particles is about 850 mga, and generally σ870 to 8Q emu,/e, which is the main reason for limiting the reproduction output and recording density. Furthermore, CO-Σgnetite and 00-maghemite magnetic powders containing 00 are also used, but these magnetic particle powders have a coercive force He of 400 to 8.
000e, but on the other hand, the saturation magnetization σB is as low as 60 to 800 mVg.
最近、高出力並びに高密度記録に適する特性を備えた磁
性粒子粉末すなわち、高い保磁力と大きな飽和磁化を有
する磁性粒子粉末の開発が盛んであり、そのような特性
を有する磁性粒子粉末は、一般に、針状晶含水酸化鉄粒
子、針状晶酸化鉄粒子若しくは、これらに鉄以外の異種
金属を含むものを還元性ガス中350°C程度で加熱還
元する・ことにより得られる針状晶鉄磁性粒子粉末若し
くは針状晶合金磁性粒子粉末である。Recently, there has been active development of magnetic particles with characteristics suitable for high-output and high-density recording, that is, magnetic particles with high coercive force and large saturation magnetization. Acicular crystal iron magnetism obtained by heating and reducing acicular crystal hydrated iron oxide particles, acicular crystal iron oxide particles, or those containing different metals other than iron in a reducing gas at about 350°C. It is a particulate powder or an acicular alloy magnetic particulate powder.
現在、磁気記録用として使用されている針状晶鉄磁性粒
子粉末、並びに針状晶合金磁性粒子粉末の保磁力は、形
状異方性に大きく依存するものであり、針状晶鉄磁性粒
子粉末並びに針状晶合金磁性粒子粉末の針状晶は、最も
重要な特性の一つである。The coercive force of the acicular ferromagnetic particles and acicular alloy magnetic particles currently used for magnetic recording is largely dependent on the shape anisotropy. The acicular crystal structure of the acicular crystal alloy magnetic particle powder is one of the most important properties.
また磁気テープ、磁気ディスク等磁気記録媒体の出力特
性、感度特性は、残留磁束密度Brに依存し、残留磁束
密度Brは、磁性粒子粉末のビークル中での分散性、塗
膜中での配向性及び充填性に依存している。In addition, the output characteristics and sensitivity characteristics of magnetic recording media such as magnetic tapes and magnetic disks depend on the residual magnetic flux density Br, which is determined by the dispersibility of magnetic particles in the vehicle and the orientation in the coating film. and filling properties.
そして、塗膜中での配向性及び充填性を向上させるため
には、ビークル中←分散させる磁性粒子粉末ができるだ
け優れた針状晶を有する事が要求される。In order to improve the orientation and filling properties in the coating film, it is required that the magnetic particles dispersed in the vehicle have needle crystals as excellent as possible.
上述したように、優れた針状晶を有する針状晶鉄磁性粒
子粉末並びに針状晶合金磁性粒子粉末は、現在、最も要
求されているところであり、このような特性を備えた針
状晶鉄磁性粒子粉末並びに針状晶合金磁性粒子粉末を得
るためには、先ず出発原料である針状晶α−FeOOH
粒子が優れた針状晶を有することが必要であり、次に、
いかにしてこの優れた針状晶を保持継承させながら加熱
還元して針状晶鉄磁性粒子粉末又は針状晶合金磁性粒′
子粉末とするかが大きな課題となってくる。As mentioned above, acicular iron magnetic particles and acicular alloy magnetic particles having excellent acicular crystals are currently in greatest demand, and acicular iron magnetic particles with such characteristics are currently in high demand. In order to obtain magnetic particle powder and acicular crystal alloy magnetic particle powder, first, the starting material acicular crystal α-FeOOH
It is necessary that the particles have good acicular crystals, and then
How can we preserve and inherit these excellent needle-like crystals while heating and reducing them to produce needle-like iron magnetic particles or needle-like alloy magnetic particles?
The big issue is how to make it into a child powder.
従来、pH11以上のアルカリ領域で針状晶α−FeO
OH粒子を製造する方法として最も代表的な公知方法は
、第一鉄塩溶液に当量以上のアルカリ溶液を加えて得ら
れる水酸化第一鉄粒子を含む溶液をp)111以上にて
80℃以下の温度で酸化反応を行うことにより、該反応
溶液中に針状晶α−FeOOH粒子を生成させるもので
ある。Conventionally, acicular crystal α-FeO was produced in the alkaline region with pH 11 or higher.
The most typical known method for producing OH particles is to add a solution containing ferrous hydroxide particles obtained by adding an equivalent amount or more of an alkaline solution to a ferrous salt solution at p) 111 or higher and 80°C or lower. By carrying out the oxidation reaction at a temperature of , acicular α-FeOOH particles are produced in the reaction solution.
この方法により得られた針状晶α−11′eoon 粉
子粉末は、長さ0.5〜15μ程度の針状形態を呈した
粒子であるが、軸比(長軸:短軸)は高々10:1程度
であり、優れた針状晶を有する粒子であるとは言い難い
。The acicular α-11'eoon powder obtained by this method has a needle-like shape with a length of about 0.5 to 15μ, but the axial ratio (long axis: short axis) is at most The ratio is about 10:1, and it is difficult to say that the particles have excellent acicular crystals.
このように軸比が10:1程度の針状晶a−yeooH
粒子を還元工程を経て針状晶鉄磁性粒子とする場合には
、還元工程に於て粒子が収縮するので得られた針状晶鉄
磁性粒子の軸比は、高々2:1程度のものとなってしま
う。In this way, needle-like crystals a-yeooH with an axial ratio of about 10:1
When the particles are made into acicular ferromagnetic particles through a reduction process, the axial ratio of the obtained acicular ferromagnetic particles is approximately 2:1 at most because the particles shrink during the reduction process. turn into.
一方、本発明者は、長年にわたり針状晶a−’Fe0O
H粒子粉末の製造及び開発にたずされってしλるもので
あるが、その過程において、針状晶α−FeOOH粒子
の製造に際して原料鉄塩である第一鉄塩水溶液に、Fe
以外のある種の異種金属イオンを添加した場合には、一
般に、粒子の長軸方向に成長しやすくなり、軸比の大き
なσ−IFeOOH粒子が得られるという現象を見い出
している。On the other hand, the present inventor has been developing needle-like crystals a-'Fe0O for many years.
This is involved in the production and development of H particle powder, and in the process, Fe is added to the ferrous salt aqueous solution, which is the raw material iron salt, during the production of acicular α-FeOOH particles.
It has been discovered that when certain types of dissimilar metal ions are added, the particles generally grow more easily in the longitudinal direction of the particles, and σ-IFeOOH particles with a large axial ratio can be obtained.
Pe以外のある種の異種金属イオンとしてIま、例えば
、00.Ni、Or、Mn、Cd、等である0しかし、
これらIFe以外の異種金属イオンの添加は、一般的に
、針状晶α−FeOOH粒子の極微細化を招来し、添加
蓋の増加に伴って、その傾向Gま益々、顕著になること
が知られている。As a certain type of foreign metal ion other than Pe, for example, 00. Ni, Or, Mn, Cd, etc. 0 However,
It is known that the addition of different metal ions other than IFe generally causes the acicular α-FeOOH particles to become extremely fine, and this tendency becomes more pronounced as the number of additions increases. It is being
本発明者は、上述した従来技術に鑑み、pH11以上の
アルカリ領域で得られる針状晶a−FθOOH粒子粉末
の極微細化を招来することなく軸比の向上をはかるべく
、種々検討を重ねた結果、第一鉄塩水溶液とアルカリ水
溶液とを反応させて得られたFe(OH)、、を含むp
H11以上の懸濁液に酸素含有ガスを通気して酸化反応
を行わせることにより該反応溶液中に針状晶a−IFe
OOH粒子を生成させるにあたり、酸素含有ガスを通気
して酸イしするnfJにあらかじめ上記懸濁液に水可溶
性マグネシウム塩をFeに対しMg換算で0.5〜20
.0原子%添10L、ておいた場合には、針状晶a−1
FeOOH粒子の極微細化を招来させることなく軸比を
向上させること力5でき、平均値で長軸0.3〜2.0
μm、軸比(長軸:短軸)、20;1以上のマグネシウ
ムを含有する金1状晶α−Wooに)H粒子を得ること
ができるとし丸う技術を既に完成している(特願昭55
−75512号)。In view of the above-mentioned prior art, the present inventor has conducted various studies in order to improve the axial ratio of the acicular a-FθOOH particles obtained in the alkaline region of pH 11 or higher without causing ultra-fineness. As a result, p containing Fe(OH) obtained by reacting a ferrous salt aqueous solution and an alkaline aqueous solution.
Acicular crystals a-IFe are formed in the reaction solution by passing an oxygen-containing gas through the H11 or higher suspension to carry out an oxidation reaction.
In order to generate OOH particles, a water-soluble magnesium salt was added to the above suspension in advance in nfJ, which is acidified by passing oxygen-containing gas, to Fe in terms of Mg equivalent to 0.5 to 20.
.. If 10L of 0 atomic % is added, needle crystal a-1
It is possible to improve the axial ratio without causing ultra-fineness of FeOOH particles, and the average value of the long axis is 0.3 to 2.0.
μm, axial ratio (major axis: minor axis), 20: We have already completed a rounding technology that can obtain H particles in gold monomorphic α-Woo containing magnesium of 1 or more (patent application). 1972
-75512).
この技術について説明すると次のようである。−マグネ
シウムを含有する針状晶α−FeOOH粒子の生成反応
は、マグネシウムを含むFe(oH)2懸濁液からのマ
グネシウムを含有する針状晶α−F’eOOH核粒子の
発生という段階と、該マグネシウムを含有する針状晶a
−PeOOH核粒子の成長という段階の二段階からなる
ものであるが、酸素含有ガスを通気して酸。する前にあ
らかじめ、II′5(OH)2を含む懸濁液中に水可溶
性マグネシウム塩を添加しておく場合には、マグネシウ
ムイオンがマグネシウムを含有する針状晶α−IFeO
OH核粒子の発生の段階で軸比の優れたマグネシウムを
含有する針状晶α−IFeOOH核粒子を生成させ、更
に、該マグネシウムを含有する針状晶α−]J’eOO
H核粒子の成長段階では粒子の短軸方向への成長を抑制
し、粒子の長軸方向への成長を促進させるので、軸比の
優れたマグネシウムを含有する針状晶(1−?eOOH
粒子を得ることができるのである。この現象に於ける水
可溶性マグネシウム塩の作用についての理論的な解明′
は束だ十分には行ってい゛ないが、本発明者は、マグネ
シウムイオンがマグネシウムを含有する針状晶α−IF
eOO1(核粒子の成長段階で粒子の短軸方向への成長
を抑制し、且つ、粒子の長軸方向への成長を促進させる
という作用・初呆を有するのは、マグネシウムイオンが
粒子の長軸に垂直な面に比べ、長軸に平行な面に吸着し
やすいこと力(−要因と考えている。This technology is explained as follows. - The production reaction of acicular α-FeOOH particles containing magnesium includes the steps of generation of acicular α-F'eOOH core particles containing magnesium from a Fe(oH)2 suspension containing magnesium; Needle crystals a containing the magnesium
- It consists of two steps: the growth of PeOOH core particles, and the acid is grown by aeration of an oxygen-containing gas. If a water-soluble magnesium salt is added in advance to the suspension containing II'5(OH)2, the magnesium ions will form acicular crystals containing magnesium α-IFeO.
At the stage of generation of OH core particles, acicular crystal α-IFeOOH core particles containing magnesium with an excellent axial ratio are generated, and further, acicular crystals α-]J'eOO containing the magnesium are generated.
At the growth stage of H core particles, growth in the short axis direction of the particles is suppressed and growth in the long axis direction of the particles is promoted.
particles can be obtained. Theoretical elucidation of the action of water-soluble magnesium salts in this phenomenon'
Although the research has not been conducted sufficiently, the present inventor has found that the magnesium ion is a magnesium-containing needle crystal α-IF.
eOO1 (at the growth stage of the core particle, magnesium ions have the effect of suppressing the growth of the particle in the direction of the short axis and promoting growth in the direction of the long axis of the particle). The force (-) is considered to be due to the fact that it is easier to adsorb on a surface parallel to the long axis than on a surface perpendicular to the surface.
上述した現象について、本発明者が行なった数多く゛の
実験例から、その一部を抽出して説明すれば、次の通り
である。The above-mentioned phenomenon will be explained as follows by extracting some of the numerous experimental examples conducted by the present inventor.
図1は、水可溶性マグネシウム塩の添加量とマグネシウ
ムを含有する針状晶α−P’eOOH粒子の軸比との関
係図である。FIG. 1 is a diagram showing the relationship between the amount of water-soluble magnesium salt added and the axial ratio of acicular α-P'eOOH particles containing magnesium.
即ち、Feに対しMg換算で01〜200原千襲を含む
ように硫酸マグネシウムを添加して得られた硫酸第一鉄
10+noJ、4水溶液と苛性ソーダ水溶液とを用いて
pH13のFe(OH)2を含む懸濁液を得、該懸濁液
に、温度45°Cにおいて毎分1ooo4の空気を通気
して酸化反応を行わせることにより得られたマグネシウ
ムを含有□する針状晶α−peoOH粒子の軸比と硫酸
マグネシウムの添加量の関係を示したものである。That is, Fe(OH)2 with a pH of 13 was prepared using a ferrous sulfate 10+noJ,4 aqueous solution obtained by adding magnesium sulfate to Fe so as to contain 0.1 to 200 atoms in terms of Mg, and a caustic soda aqueous solution. of acicular α-peoOH particles containing magnesium, obtained by passing 1004 air per minute into the suspension at a temperature of 45°C to carry out an oxidation reaction. This figure shows the relationship between the axial ratio and the amount of magnesium sulfate added.
図1に示されるように水可溶性マグネシウム塩の添加量
の増加に伴ってマグネシウムを含有する針状晶a−Fe
OOH粒子の軸比は向上する傾向を示す0
図2は、水可溶性マグネシウム塩の添加量と図1の場合
と同一の反応条件のもとで生成されたマグネシウムを含
有する針状晶α−FeOOH粒子の長軸との関係を示し
たものである。As shown in Figure 1, as the amount of water-soluble magnesium salt added increases, the magnesium-containing needle crystal a-Fe
The axial ratio of OOH particles shows a tendency to improve. Figure 2 shows the amount of water-soluble magnesium salt added and the acicular crystals of α-FeOOH containing magnesium produced under the same reaction conditions as in Figure 1. This shows the relationship with the long axis of the particle.
図2に示されるように、水可溶性マグネシウム塩の添加
量がFeに対しMg換算で2原千メまでは水可溶性マグ
ネシウム塩の増加に伴ってマグネシウムを含有する針状
晶α−Peso)(粒子の長軸は、増加する傾向を示す
。As shown in Figure 2, when the amount of water-soluble magnesium salt added is up to 2,000 meters in terms of Mg compared to Fe, as the amount of water-soluble magnesium salt increases, acicular crystals containing magnesium (α-Peso) (particles The long axis of indicates an increasing trend.
水可溶性マグネシウム塩の添加量がpeに対しMg換算
で2原子%を越えて増加すると次第に長軸が減少する。When the amount of water-soluble magnesium salt added exceeds 2 atomic % in terms of Mg based on pe, the long axis gradually decreases.
この現象は、水可溶性マグネシウム塩の添加量が増加し
た為にマグネシウムイオンが粒子の長軸に垂直な面にも
吸着し、粒子の長軸方向への成長も抑制されたものと考
えられる。This phenomenon is thought to be due to the increase in the amount of water-soluble magnesium salt added, which caused magnesium ions to be adsorbed also on the plane perpendicular to the long axis of the particles, thereby suppressing growth in the long axis direction of the particles.
しかし、同時に粒子の長軸に平行な面に対してもマグネ
シウムイオンの吸着が増加する為に短軸方向への成長ヤ
益々抑制されることになり、従って、粒子自体の軸比は
図1に示されるように、水可溶性マグネシウム塩の添加
量がFeに対しMg換算で2原子%以上になっても低下
することはなu%図6は、図1においてIt’sに対し
Mg換算で2.0原子%を含むように硫酸マグネシウム
を添加存在させた場合に得られたマグネシウムを含有す
る針状晶α−IPeOOH粒子粉末の電子顕@鏡写真(
X20000 )を示したものである。However, at the same time, adsorption of magnesium ions also increases on the plane parallel to the long axis of the particle, so growth in the short axis direction is further suppressed. Therefore, the axial ratio of the particle itself is As shown, even if the amount of water-soluble magnesium salt added exceeds 2 atomic % in terms of Mg with respect to Fe, u% does not decrease. Electron micrograph of acicular α-IPeOOH particle powder containing magnesium obtained when magnesium sulfate was added to contain .0 at% (
X20000).
図3から明らかなように、マグネシウムを含有する針状
晶α−FeOOH粒子粉末は優れた針状晶を有するもの
である。As is clear from FIG. 3, the acicular α-FeOOH particles containing magnesium have excellent acicular crystals.
従来、α−FeOOH粒子粉末の生成においてマグネシ
ウムを添加させるものとして粉体粉末冶金協会昭和49
年度春季大会講演概要集108ページに記載の方法があ
る。Conventionally, the Powder and Powder Metallurgy Association (Showa 49) added magnesium in the production of α-FeOOH particles.
There is a method described on page 108 of the 2018 Spring Conference Lecture Summary Collection.
この方法の反応系は、アルカリとして炭酸アルカリを用
い、pH7〜11の領域でa−IFeOOH粒子を生成
させるものであり、得られる粒子の形状は紡錘形を呈し
たものである。The reaction system of this method uses alkali carbonate as the alkali to produce a-IFeOOH particles in the pH range of 7 to 11, and the resulting particles have a spindle shape.
この反応系において、「炭酸アルカリ中にヘキサメタリ
ン酸、ヒロリン酸、酒石酸等のナトリウム塩を、あるい
は、第一鉄塩中にZnX0u、Mg。In this reaction system, "a sodium salt such as hexametaphosphoric acid, hyrophosphoric acid, tartaric acid, etc. is added to an alkali carbonate, or ZnX0u, Mg is added to a ferrous salt.
Mn10rXA1等の硫酸塩を第一鉄に対し02〜2重
量%添加した場合、反応生成物は微細な粒径を有する」
ものとなる旨記載されている。When a sulfate such as Mn10rXA1 is added in an amount of 02 to 2% by weight based on ferrous iron, the reaction product has a fine particle size.
It is stated that it will be.
例えば、この反応系において、温度50″cで得られた
α−FeOOH粒子の長軸は平均値で1oμm程度であ
るが、ヘキサメタリン醗ナトリウムを2%添加した場合
は平均値で0.15μ解程度となる。For example, in this reaction system, the long axis of α-FeOOH particles obtained at a temperature of 50″c is about 1 μm on average, but when 2% sodium hexamethalin is added, the average value is about 0.15 μm. becomes.
従って、この反応系においては、上記添加剤を添加した
場合には粒子の微細化を招来し、これは本発明における
水可溶性マグネシウム塩の作用効果とはまったく相異す
るものである。Therefore, in this reaction system, when the above-mentioned additive is added, particles become finer, which is completely different from the effect of the water-soluble magnesium salt in the present invention.
上述した優れた針状晶を有するマグネシウムを含有する
針状晶α−PeOOH粒子粉末を用いて得られた優れた
針状晶を有する針状晶Fa−Mg合金磁性粒子粉末の保
磁力は、高いものであるが、近年における記録媒体に対
する高性能化への要求は止まるところがなく、更に、よ
り高い保磁力を有する針状晶鉄磁性粒子粉末若しくは針
状晶合金磁性粒子粉末が要望されている。The coercive force of the acicular Fa-Mg alloy magnetic particle powder having excellent acicular crystals obtained using the magnesium-containing acicular α-PeOOH particle powder having excellent acicular crystals described above is high. However, in recent years there has been no end to the demand for higher performance in recording media, and there is also a demand for acicular iron magnetic particles or acicular alloy magnetic particles having higher coercive force.
本発明者は、上述した優れた針状晶を有する針状晶Fe
−rig合金磁性粒子粉末の保磁力を更に向上すべく検
討を重ねた結果、本発明に到達したのである。The present inventor has discovered that acicular crystal Fe having the above-mentioned excellent acicular crystals
The present invention was achieved as a result of repeated studies to further improve the coercive force of -rig alloy magnetic particles.
即ち、本発明は、第一鉄塩水溶液とアルカリ水溶液とを
反応させて得られたFe(OH)、を含むpH11以上
の懸濁液に酸素含有ガスを通気して酸化反応を行わせる
ことにより該反応溶液中に針状晶α−FeOOH粒子を
生成させるにあたり、前記第一鉄塩水溶液、前記アルカ
リ水溶液及び酸素含有ガスを通気して酸化反応を行わせ
る前の前記懸濁液のいずれかの液中に水可溶性マグネシ
ウム塩をreに対しMg換算でl15〜20.0原子%
添加しておき、且つ、前記第一鉄塩水溶液、前記アルカ
リ水溶液、酸素含有ガスを通気して酸化反応を行わせる
前の前記懸濁液及び酸素含有ガスを通気して酸化反応を
行わせている前記反応溶液のいずれかの液中に水可溶性
゛ニッケル塩をl?eに対しN1換算で0.5〜&0原
子%添加しておくことにより、平均値で長軸03〜2.
0μm1軸比(長軸:短軸)20:1以上であるマグネ
シウム及びニッケルを薔有する針状晶α−FθOOH粒
子を生成させ、該マグネシウム及びニッケルを含有する
針状晶α−?eOOH粒子を母液から分離した後水中に
懸濁させ、該懸濁液のpH値8以上の状態でマグネシウ
ム及びニッケルを含有する針状晶α−?eOOH粒子に
対し01〜2 、wt%(POaに換算)のリン酸塩を
添加し、次いで0.1〜7.0vrt%(S102に換
算)の水可溶性ケイ酸塩を添加した後、懸濁液のpH値
を3〜7に調整することによりP化合物と81化合物で
被覆されたマグネシウム及びニッケルを含有する針状晶
α−■?θOOH粒子を得、該粒子をf別、乾燥し、次
いで、非還元性雰囲気中500℃〜900℃の温度範囲
で加熱処理してP化合物と81化合物で被覆されたマグ
ネシウム及びニッケルを含有する針状晶α−Fe、03
粒子とした後、還元性ガス中350°C〜600°Cの
温度範囲で加熱還元してWe−Mg−Niを主成分とす
る針状晶合金磁性粒子とすることよりなるFe−Mg−
Niを主成分とする針状晶合金磁性粒子粉末の製造法で
ある。That is, the present invention provides an oxidation reaction by passing an oxygen-containing gas through a suspension containing Fe(OH) obtained by reacting an aqueous ferrous salt solution with an aqueous alkaline solution and having a pH of 11 or more. In producing acicular α-FeOOH particles in the reaction solution, the ferrous salt aqueous solution, the alkaline aqueous solution, and any of the suspensions before an oxygen-containing gas is passed through the suspension to perform an oxidation reaction. Water-soluble magnesium salt in the liquid is 15 to 20.0 at% in terms of Mg based on re.
Adding the ferrous salt aqueous solution, the alkali aqueous solution, and the oxygen-containing gas to perform the oxidation reaction, the suspension and the oxygen-containing gas are aerated to perform the oxidation reaction. A water-soluble nickel salt is added to any of the above reaction solutions. By adding 0.5 to &0 atomic % in terms of N1 to e, the average value of the major axis is 03 to 2.
Acicular α-FθOOH particles containing magnesium and nickel with an axial ratio (long axis: short axis) of 0 μm or more of 20:1 are produced, and the acicular α-FθOOH particles containing magnesium and nickel are produced. After the eOOH particles are separated from the mother liquor, they are suspended in water, and when the pH value of the suspension is 8 or more, acicular crystals containing magnesium and nickel α-? After adding 01 to 2 wt% (in terms of POa) of phosphate to the eOOH particles, and then adding 0.1 to 7.0 vrt% (in terms of S102) of water-soluble silicate, suspension By adjusting the pH value of the liquid to 3 to 7, acicular crystals containing magnesium and nickel coated with P compound and 81 compound α-■? θOOH particles are obtained, the particles are separated by f, dried, and then heat treated in a non-reducing atmosphere at a temperature range of 500°C to 900°C to obtain needles containing magnesium and nickel coated with P compound and 81 compound. α-Fe, 03
Fe-Mg- obtained by forming particles into acicular crystal alloy magnetic particles having We-Mg-Ni as a main component by heating and reducing the particles in a reducing gas in a temperature range of 350°C to 600°C.
This is a method for producing acicular alloy magnetic particles containing Ni as a main component.
先ず、本発明の完成するに至った技術的背景及び本発明
の構成について述べる。First, the technical background that led to the completion of the present invention and the structure of the present invention will be described.
本発明者は、針状晶α−FθOOH粒子の極微細化を招
来することなく優れた針状晶を有するマグネシウムを含
有する針状晶α−FeOOH粒子を生成させ、且つ、該
マグネシウムを含有する針状晶α−1・eQOH粒子粉
末を加熱還元すφことにより得られた優れた針状晶を有
する針状晶Fe−Mg合金磁性粒子粉末の保磁力を更に
向上させるようなFθ以外の異種金属イオンの種類、添
加閂、及び反応系における添加時期について検討を重ね
た結果、第一鉄塩水溶液とアルカリ水溶液とを反応させ
て得ら−れたhe(oH\を含むpH11以上の懸濁液
に酸素含有ガスを通気して酸化反応を行わせることによ
り該反応溶液中に針状晶(1−FeOOHを生成tti
6にあたり、酸素含有ガスを通気して酸化する前にあら
かじめ上記Fe(oH)2を含む懸濁液中に水可溶性マ
グネシウム塩をFeに対しMg換算で0.5〜20.0
原子%添加し、且つ、あらかじめ上記反応溶液中に水可
溶性ニッケル塩をFeに対しN1換算で05〜60原子
%添加しておいた場合には、針状晶α−FeOOH粒子
の極微細化を招来させることなく平均値で長軸0.5〜
2.0μm1軸比(長軸:短軸)20:、1以上である
マグネシウム及びニッケルを含有する針状晶a−IFe
OOHを生成させることができ、該マグネシウム及びニ
ッケルを含有する針状晶α−FeOOH粒子粉末を用い
て得られた針状晶Fθ−Mg−N1合金磁性粒子粉末は
より高い保磁力を有するという新しい知見を得た。The present inventor has produced magnesium-containing acicular α-FeOOH particles having excellent acicular crystals without causing ultra-fine acicular α-FθOOH particles, and A different species other than Fθ that further improves the coercive force of the acicular Fe-Mg alloy magnetic particle powder having excellent acicular crystals obtained by heating and reducing acicular α-1 eQOH particle powder φ As a result of repeated studies on the type of metal ion, the amount of addition, and the timing of addition in the reaction system, we found that a suspension with a pH of 11 or higher containing he (oH\) obtained by reacting a ferrous salt aqueous solution with an aqueous alkali solution was Acicular crystals (1-FeOOH) are produced in the reaction solution by passing an oxygen-containing gas through the solution to carry out an oxidation reaction.
6, before oxidizing by passing in an oxygen-containing gas, a water-soluble magnesium salt was added to the Fe(oH)2-containing suspension in advance in an amount of 0.5 to 20.0 in terms of Mg relative to Fe.
If 05 to 60 atomic % of water-soluble nickel salt is added in advance to the above reaction solution in terms of N1, ultra-fine acicular α-FeOOH particles can be obtained. The average value of the long axis is 0.5 to 0.5 without causing
2.0 μm uniaxial ratio (long axis: short axis) 20:, acicular crystal a-IFe containing magnesium and nickel having a ratio of 1 or more
A novel finding that the acicular Fθ-Mg-N1 alloy magnetic particle powder obtained by using the acicular α-FeOOH particle powder containing magnesium and nickel, which can generate OOH, has a higher coercive force. I gained knowledge.
前述したように、針状晶a−FeOOH粒子の製造にあ
たり、ニッケルが単独で存在する場合には、針状晶α−
FeOOH粒子の極微細化を招来し、ニッケル量の増加
に伴って、その傾向は益々、顕著になることが知られて
いるが、本発明の場合にはニッケルは極微細化を招来す
ることなく、優れた針状晶を有するマグネシウム及びニ
ッケルを含有スる針状晶α−FeOOH粒子粉末を得る
ことができる。As mentioned above, when nickel is present alone in the production of acicular a-FeOOH particles, acicular a-FeOOH particles are produced.
It is known that FeOOH particles become extremely fine, and this tendency becomes more and more pronounced as the amount of nickel increases, but in the case of the present invention, nickel does not cause ultra-fineness. , it is possible to obtain acicular α-FeOOH particles containing magnesium and nickel having excellent acicular crystals.
また、針状晶鉄磁性粒子粉末に比較して、これにニッケ
ルを加えた針状晶Fe−Ni合金磁性粒子粉末は、保磁
力が低下する傾向にあることは従来から知られている。Furthermore, it has been conventionally known that acicular Fe--Ni alloy magnetic particles to which nickel is added tend to have a lower coercive force than acicular iron magnetic particles.
この現象は、例えば特開昭55−62105号公報の[
・・・・・・たとえば金属鉄粉末単独の場合の保磁力を
より大きくする場合はその含有量によっても相違するが
通常コバルト塩などを、・・・・・・保磁力および飽和
磁化証をある程度低くしたいと望むならニッケル塩、ク
ロム塩および亜鉛塩などを・・・・・・]という記載か
ら明らかである。This phenomenon can be seen, for example, in Japanese Unexamined Patent Publication No. 55-62105 [
...For example, if you want to increase the coercive force of metallic iron powder alone, it depends on the content, but usually cobalt salt etc. is used to increase the coercive force and saturation magnetization proof to a certain degree. It is clear from the description that if you want to lower the amount, use nickel salts, chromium salts, zinc salts, etc.].
しかしながら、本発明者は、マグネシウムを含有する針
状晶a−PeOOH粒子の製造にあたり水可溶性ニッケ
ル塩を添加した場合には、針状晶Fe−Mg合金磁性粒
子粉末の保磁力を更に向上させることができるという従
来の認識がらすれば全く思いがけない新規な知見を得た
。However, the present inventor has found that when a water-soluble nickel salt is added in the production of magnesium-containing acicular a-PeOOH particles, the coercive force of the acicular Fe-Mg alloy magnetic particles can be further improved. We obtained new knowledge that was completely unexpected given the conventional understanding that it is possible to do this.
ニッケルの存在により何故針状晶Fe−Mg合金磁性粒
子粉末の保磁力を向上させることができるかは未だ明ら
かではないが、本発明者はマグネシウム及びニッケルの
相乗効果によるものと考えている。Although it is not yet clear why the presence of nickel can improve the coercive force of the acicular Fe--Mg alloy magnetic particles, the inventor believes that it is due to the synergistic effect of magnesium and nickel.
次に、いか゛にして上記に詳述した方法により得られた
優れた針状晶を有するマグネシウム及びニッケルを含有
する針状晶α−PeOOH粒子の針状晶を保持継承させ
ながら加熱還元して針状晶Fe−Mg−Ni合金磁性粒
子とするかが問題となる。Next, the acicular α-PeOOH particles containing magnesium and nickel having excellent acicular crystals obtained by the method detailed above are thermally reduced while retaining the acicular crystals. The question is whether to use acicular Fe--Mg--Ni alloy magnetic particles.
優れた針状晶を有するマグネシウム及びニッケ350−
C〜600−Cの湿度l@囲で加熱還元して針状晶F’
e −Mg−Ni合金磁性粒子粉末を得る場合、加熱温
度が高くなると、このlPe−Mg−Ni合金磁性粒子
粉末の針状晶粒子の変形と粒子iよび粒子相互間の焼結
が著しくなり、得られたFe−Mg−Ni合金磁性粒子
粉末の保磁力が極度に低下することになる。Magnesium and nickel 350- with excellent needle crystals
Acicular crystals F' are produced by heating reduction at a humidity of 1@C to 600-C.
When obtaining an e-Mg-Ni alloy magnetic particle powder, when the heating temperature becomes high, the deformation of the acicular crystal grains of this lPe-Mg-Ni alloy magnetic particle powder and the sintering of the particles i and each other become significant. The coercive force of the obtained Fe-Mg-Ni alloy magnetic particles will be extremely reduced.
殊に、粒子の形状は加熱温度の影春を受けやすく、特に
雰囲気が還元性である場合には、粒子成長が著しく、単
一粒子が形骸粒子の大きさを越えて成長し、形骸粒子の
外形は漸次消え、粒子形状の変形と粒子および粒子相互
間の焼結を引き起こす。その結果、保磁力が低下するの
である。In particular, the shape of the particles is easily affected by the heating temperature, and especially when the atmosphere is reducing, the particle growth is significant, and a single particle grows to a size exceeding the size of the shell particle. The outer shape gradually disappears, causing deformation of the particle shape and sintering of the particles and each other. As a result, the coercive force decreases.
このように還元性ガス中において粒子形状の変形と粒子
および粒子相互間の焼結が生起するのは、マグネシウム
およびニツ’rルを含有する針状晶α−Fe00H粒子
を加熱脱水して得られたマグネシウム及びニッケルを含
有する針状晶(1−Fe、O,粒子が、粒子成長が十分
ではなく、従って、粒子の結晶度合が小さいために加熱
還元過程において単一粒子の粒子成長、即ち、物理的変
化が急激であるため、単一粒子の均一な粒子成長が生起
し難く、従って単一粒子の粒子成長が急激に生起した部
分では粒子および粒子相互間の焼結が生起し、粒子形状
が崩れやすくなると考えられる。The deformation of the particle shape and the sintering of the particles and their mutual particles in a reducing gas occur when acicular α-Fe00H particles containing magnesium and nitrogen are heated and dehydrated. The acicular crystals (1-Fe, O, particles) containing magnesium and nickel are not sufficiently grown, and therefore, due to the small crystallinity of the particles, single grain growth occurs in the thermal reduction process, i.e. Because the physical changes are rapid, uniform grain growth of single grains is difficult to occur. Therefore, in areas where grain growth of single grains occurs rapidly, sintering of grains and grains occurs, resulting in changes in grain shape. It is thought that it becomes easier to collapse.
また、加熱還元過程においては酸化物から金属への急激
な体積収縮が生起することにより粒子形状は一層崩れや
すいものとなる。Furthermore, during the thermal reduction process, rapid volumetric contraction from the oxide to the metal occurs, making the particle shape more likely to collapse.
従って、加熱還元゛過程において粒子形状の変形と粒子
および粒子相互間の焼結を防止するためには、加熱還元
過程に先立って、予めマグネシウム及びニッケルを含有
する針状晶α−P%Qa粒子の単一粒子の十分、且つ、
均一な粒子成長を図ることにより結晶性の度合が軛めら
れた実質的に高密度であり、且つ、マグネシウム及びニ
ッケルを含有する針状晶α−PeOOH粒子の針状晶を
保持継承しているマグネシウム及びニッケルを含有する
針状晶α−F〜へ粒子としておく必要がある。Therefore, in order to prevent particle shape deformation and sintering between particles and particles in the thermal reduction process, it is necessary to prepare acicular α-P%Qa particles containing magnesium and nickel before the thermal reduction process. of a single particle, and
It has a substantially high density with a reduced degree of crystallinity by achieving uniform particle growth, and retains and inherits the acicular crystals of the acicular α-PeOOH particles containing magnesium and nickel. It is necessary to form particles into acicular crystals α-F~ containing magnesium and nickel.
このような結晶性の度合が高められた、実質的に高密度
な針状晶α−F−01粒子を得る方法として、針状晶α
−PeOOH粒子を非還元性雰囲気中500〜900℃
の温度範囲で加熱処理する方法が知られている。As a method for obtaining substantially high-density acicular α-F-01 particles with an increased degree of crystallinity, the acicular α-F-01 particles are
-PeOOH particles at 500-900°C in a non-reducing atmosphere
A method is known in which heat treatment is performed in a temperature range of .
一般に、針状晶α−F、OOH粒子を加熱脱水してで加
熱処理する温度が高ければ高い程、効果的に単一粒子の
粒子成長をはかることができ、従って、結晶性の度合も
高めることができるが1.一方、加熱処理温度が650
℃を越えて高くなると焼結が進んで針状晶粒子がくずれ
ることが知られている。In general, the higher the temperature at which acicular α-F, OOH particles are heated and dehydrated, the more effectively single particles can be grown, and therefore the degree of crystallinity can be increased. 1. On the other hand, the heat treatment temperature was 650
It is known that when the temperature exceeds .degree. C., sintering progresses and the acicular crystal grains break down.
従って、結晶性の度合が高められた実質的に高密度であ
り、且つ、針状晶a−★eooa粒子の針状晶を保持継
承している針状晶α−h^粒子を得る為には、非還元性
雰囲気中500〜900℃の温度範囲で加熱処理するに
先立って、あらかじめ、焼結防止効果を有する有機化合
物、無機化合物で針状晶α−FeOOH粒子の粒子表面
を被覆する方法が知られている。Therefore, in order to obtain acicular α-h^ particles that have an increased degree of crystallinity, are substantially dense, and retain and inherit the acicular crystals of the acicular a-★eooa particles. is a method in which the particle surface of acicular α-FeOOH particles is coated in advance with an organic compound or inorganic compound that has a sintering prevention effect prior to heat treatment at a temperature range of 500 to 900°C in a non-reducing atmosphere. It has been known.
本発明者は、長年に亘り、針状晶磁性粒子粉末の製造及
び開発にたずされっているものであるが、その研究過程
において、焼結防止効果を有するS1化合物で被覆され
た針状晶α−FeOOH粒子を製造する方法を慨に開発
している。The present inventor has been involved in the production and development of acicular magnetic particles for many years, and in the course of his research, he developed an acicular magnetic particle coated with an S1 compound that has an anti-sintering effect. A method for producing crystalline α-FeOOH particles has been extensively developed.
例えば、次に述べるようである。For example, as described below.
即ち、P4化合物と81化合物で被覆されたマグネシウ
ム及びニッケルを含有する針状晶α−FeOOH・粒子
粉末は、第一鉄塩水溶液とアルカリ水溶液との湿式反応
により生成したマグネシウム及びニッケルを含有する針
状晶(1−FeOOH粒子を母液から分屋した後、水中
に懸濁させ、該懸濁液のpH値8以上の状態でマグネシ
ウム及びニッケルを含有する針状晶a−FeOOH粒子
に対し0.1〜2 vt%(po。That is, the acicular α-FeOOH particle powder containing magnesium and nickel coated with the P4 compound and the 81 compound is the acicular α-FeOOH particle powder containing magnesium and nickel produced by a wet reaction between a ferrous salt aqueous solution and an alkaline aqueous solution. After the 1-FeOOH particles are separated from the mother liquor, they are suspended in water, and when the pH value of the suspension is 8 or higher, the acicular crystal a-FeOOH particles containing magnesium and nickel are mixed with 0. 1-2 vt% (po.
に換算)のリン酸塩を添加し、次いで0.1〜ZOwt
%(5xclに換算)の水可溶性ケイ酸塩を添加した後
、懸濁液のpH値を3〜7に調整することにより、得る
ことができる。of phosphate (converted to 0.1 - ZOwt)
% (calculated in 5xcl) of water-soluble silicate by adjusting the pH value of the suspension to 3-7.
上記の方法について説明すれば次のようである。The above method will be explained as follows.
一般に、マグネシウム及びニッケルを含有する針状晶α
−PeOOH粒子は、湿式反応時における反応母液中の
結晶成長の過程でかなり強固にからみ合い、結合し合っ
た粒子群を形成しており、該からみ合い、結合し合って
いるマグネシウム及びニッケルを含有する針状晶(1−
FeOOH粒子の粒子群をそのまま焼結防止剤で被覆し
た場合には、それ以上の焼結を防止するだけで、反応母
液中の結晶成長の過程で発生したからみ合い、結合はそ
のままの状態である為、上記からみ合い、結合し合って
いるマグネシウム及びニッケルを含有する針状晶α−F
eOOH粒子を非還元性雰囲気中で加熱処理した後、加
熱還元して得られたPa−Mg−Niを主成分とする針
状晶合金磁性粒子粉末も粒子がからみ合い、結合し合っ
たものとなる。Generally acicular α containing magnesium and nickel
-PeOOH particles are quite strongly entangled during the crystal growth process in the reaction mother liquor during wet reaction, forming a group of particles that are bonded together, and contain magnesium and nickel that are entangled and bonded to each other. Needle crystals (1-
If a group of FeOOH particles is coated with an anti-sintering agent as it is, it only prevents further sintering, and the entanglements and bonds that occur during the crystal growth process in the reaction mother liquor remain as they are. Therefore, the acicular crystal α-F containing magnesium and nickel intertwined and bonded with each other.
The acicular crystal alloy magnetic particle powder mainly composed of Pa-Mg-Ni obtained by heat-treating eOOH particles in a non-reducing atmosphere and then thermal reduction also has particles entangled and bonded together. Become.
このような粒子は、ビークル中での分散性、塗膜中での
配向性及び充填性が十分であるとは言い難い。It cannot be said that such particles have sufficient dispersibility in a vehicle, orientation in a coating film, and filling properties.
従って、マグネシウム及びニッケルを含有する針状晶α
−FeOOH粒子を81化合物で被覆するに先立って、
あらかじめ、反応母液中の結晶成長の過程で発生したか
らみ合い、結合を解きほぐしておく必要がある。Therefore, acicular crystals α containing magnesium and nickel
-Prior to coating the FeOOH particles with the 81 compound,
It is necessary to disentangle the entanglements and bonds generated during the crystal growth process in the reaction mother liquor in advance.
マグネシウム及びニッケルを含有する針状晶a−Ire
OOH粒子を母液から分離した後、水中に懸濁させ、該
懸濁液のpH値8以上の状態でマグネジ1
ラム及びニッケルを含有する針状晶a−IPeOOH粒
子に対し0.1〜2 vt%(Pe8に換算)のリン酸
塩を添加することにより、マグネシウム及びニッケルを
含有する針状晶a−FeOOH粒子のからみ合い、結合
を解きほぐすことが可能である。Acicular crystals a-Ire containing magnesium and nickel
After the OOH particles are separated from the mother liquor, they are suspended in water, and when the pH value of the suspension is 8 or higher, 0.1 to 2 vt is added to the acicular crystal a-IPeOOH particles containing 1 ram and nickel. % (in terms of Pe8), it is possible to disentangle and untie the acicular a-FeOOH particles containing magnesium and nickel.
マグネシウム及びニッケルを含有する針状晶α−?eO
O)1粒子は、マグネシウム及びニッケルを含有する針
状晶α−IFeOOH粒子の生成後、常法により反応母
液よりp別、水洗したものを用いれば良い。Acicular crystals α-? containing magnesium and nickel? eO
O)1 particles may be obtained by removing p from the reaction mother liquor and washing with water in a conventional manner after the formation of acicular α-IFeOOH particles containing magnesium and nickel.
懸濁液の濃度は、水に対して20wt%以下であるのが
望ましい。20wt%以上の場合には懸濁液の粘度が高
すぎて、リン酸塩の添加によるからみ合い等を解きほぐ
す効果が不十分となる。The concentration of the suspension is preferably 20 wt% or less based on water. When the amount is 20 wt% or more, the viscosity of the suspension becomes too high, and the effect of disentangling entanglements caused by the addition of the phosphate becomes insufficient.
リン酸塩の添加−は、懸濁液中のマグネシウム及びニッ
ケルを含有する針状晶α−FeOOH粒子に対しpo3
に換算して0.1〜2wt%であ(ば、該粒子のからみ
合い等を解きはぐし、粒子を均一に分散させることがで
きる。添加kが0.1 wt%以下の場合には添加効果
が十分でない。一方、添加蓋が2°wt%以上の場合に
は粒子を分散させることはできるが、粒子が液中に均一
に強分散している為、液中からのp別分離が目録となり
適当でない。Addition of phosphate increases po3 to acicular α-FeOOH particles containing magnesium and nickel in suspension.
If the amount of k added is 0.1 to 2 wt% (converted to 0.1 to 2 wt%), it is possible to disentangle the particles and uniformly disperse the particles. The effect is not sufficient. On the other hand, when the addition lid is 2°wt% or more, particles can be dispersed, but since the particles are uniformly and strongly dispersed in the liquid, separation by p from the liquid is difficult. It is not suitable as a catalogue.
添加するリン酸塩としては、例えば、メタリン酸ナトリ
ウム、ピロリン酸ナトリウム等が挙げられる。Examples of the phosphate to be added include sodium metaphosphate and sodium pyrophosphate.
リン酸塩を添加する懸濁液のpH値は8以上でなければ
ならない。The pH value of the suspension to which the phosphate is added must be greater than or equal to 8.
pLI値が8以下である場合には、粒子を分散させよう
とするリン酸塩を、、2wt%以上添加しなければなら
ず、リン酸塩を2wt%以上添加すると前述した通り、
p別分離において整置が生ずる為、好ましくない。If the pLI value is 8 or less, 2 wt% or more of phosphate must be added to disperse the particles, and as mentioned above, if 2 wt% or more of phosphate is added,
This is not preferable because alignment occurs during separation by p.
次に、マグネシウム及びニッケルを含有する針状晶α−
FeOOH粒子の粒子表面に形成させるS1化合物被膜
について述べると、該S1化合物被膜の形成は、必ず、
リン酸塩によりマグネシウム及びニッケルを含有する針
状晶α−FeOOH粒子のからみ合い等を解きほぐした
後でなければならない。Next, acicular crystals containing magnesium and nickel α-
Regarding the S1 compound coating formed on the particle surface of FeOOH particles, the formation of the S1 compound coating always involves the following steps:
This must be done after disentangling the acicular α-FeOOH particles containing magnesium and nickel using a phosphate.
水可溶性ケイ酸塩を添加する際の懸濁液のpH値は8以
上の状態であることが望ましいOpH値が8以下の状態
で水可溶性ケイ酸塩を添加すると、添加と同時に固体で
あるSin、として単独に析出してしまい、粒子表面に
効率よく薄膜として形成させることができない。When adding water-soluble silicate, it is preferable that the pH value of the suspension is 8 or higher.If water-soluble silicate is added when the OpH value is 8 or lower, solid Sin , and cannot be efficiently formed as a thin film on the particle surface.
従って、懸濁液のpH値が8以上の状態で水可溶性ケイ
酸塩を添加し、該懸濁液中に均一に混合した後にpH値
を810.の析出する範囲、即ち、pH値を3〜7に調
整すれば、5102は粒子の表面上に析出して被膜を形
成する。Therefore, the water-soluble silicate is added when the pH value of the suspension is 8 or higher, and after being uniformly mixed into the suspension, the pH value is adjusted to 810. If the range in which 5102 precipitates, that is, the pH value, is adjusted to a range of 3 to 7, 5102 precipitates on the surface of the particles to form a film.
添加する水可溶性ケイ酸塩の量は、StO,に換算して
マグネシウム及びニッケルを含有する針状晶α−FθO
OH粒子に対し0.1〜7.0wt%である。The amount of water-soluble silicate to be added is acicular crystal α-FθO containing magnesium and nickel in terms of StO.
It is 0.1 to 7.0 wt% based on the OH particles.
0.1 wt%以下の場合には、添加の効果が顕著に現
われず、7.0wt%以上である場合には、優れた針状
晶を有するFθ−Mg−IJiを主成分とする針状晶合
金磁性粒子粉末を得ることができるが純度の低下により
、飽和磁化が減少し好ましくない。If the amount is less than 0.1 wt%, the effect of addition is not noticeable, and if it is more than 7.0 wt%, the acicular crystals mainly composed of Fθ-Mg-IJi, which have excellent acicular crystals. Although it is possible to obtain crystalline alloy magnetic particles, the saturation magnetization decreases due to a decrease in purity, which is not preferable.
尚、添加する水可溶性ケイ酸塩としては、ケイ酸ナトリ
ウム、ケイ酸カリウム等が挙げられる。Note that examples of the water-soluble silicate to be added include sodium silicate and potassium silicate.
次に、マグネシウム及びニッケルを含有する針状晶α−
PeOOH粒子にP化合物と81化合物で被膜を形成さ
せた後、懸濁液中から該粒子をr別分離する条件につい
て述べる。Next, acicular crystals containing magnesium and nickel α-
The conditions for forming a film on PeOOH particles with the P compound and the 81 compound and then separating the particles from the suspension will be described.
通常の沖別手段を用いる場合には、粒子が均一に液中に
強分散していると、飼えばp布漏れ、あるいはp布の目
づまり、その他種々の一過効率も態化させる要因となる
。When using the usual Okibetsu method, if the particles are uniformly and strongly dispersed in the liquid, it may cause leakage of the P cloth, clogging of the P cloth, and other various transient efficiency problems. Become.
一過効率を高める為には、前記したリン酸塩の添加によ
り分散させた粒子が適度に凝集している必要がある。In order to increase the transient efficiency, it is necessary that the particles dispersed by the addition of the phosphate described above should be appropriately aggregated.
リン酸塩の添加量を0.1〜2 wt%の範囲内とした
場合、懸濁液のpH値を7以下とすれば懸濁液の粘度は
上昇し、粒子の凝−集が起き、p別を容易に行なうこと
ができ、また、分散させる為に添加したリン酸塩はほと
んど全1マグ″ネシウム及びニッケルを含有する針状晶
α−:jPeO’OH粒子に吸着し、排水公害等の@題
が発生する恐れがなくなる。When the amount of phosphate added is within the range of 0.1 to 2 wt%, if the pH value of the suspension is set to 7 or less, the viscosity of the suspension increases and particles agglomerate. In addition, almost all of the phosphate added for dispersion is adsorbed to the acicular crystal α-:jPeO'OH particles containing magnesium and nickel, causing wastewater pollution, etc. There is no need to worry about the @ problem occurring.
また、1viii濁液の声値を3以下とした場合にもマ
グネシウム及びニッケルを含有する針状晶α−p、oO
H粒子の凝集及びリン酸塩の吸着、更には前述した81
0.被膜の形成は可能となるが、設備上の問題及び品質
上の同順(溶解等)が発生する為、好ましくない。In addition, even when the voice value of the 1viii suspension is 3 or less, acicular crystals containing magnesium and nickel α-p, oO
H particle aggregation and phosphate adsorption, as well as the aforementioned 81
0. Although it is possible to form a film, it is not preferable because it causes equipment problems and quality issues (dissolution, etc.).
、尚、pH5〜7に調整する為には、酢酸、硫酸、リン
酸等を使用することができる。Incidentally, in order to adjust the pH to 5 to 7, acetic acid, sulfuric acid, phosphoric acid, etc. can be used.
以上、説明したところによって得られるP化合物と81
化合物で被覆されたごグネシウム及びニッケルを含有す
る針状晶a−1F600H粒子を非還元性雰囲気中50
0°C〜900℃の温度範囲で加熱処理して得られたマ
グネシウム及びニッケルを含有する針状晶α−Fe20
3粒子は、結晶性の度合が高められた実質的に高密度な
ものであり、且つ、粒子のからみ合いや結合のない優れ
た針状晶を保持継承したものである。The P compound obtained as explained above and 81
Acicular crystal a-1F600H particles containing magnesium and nickel coated with a compound were heated at 50°C in a non-reducing atmosphere.
Acicular α-Fe20 containing magnesium and nickel obtained by heat treatment in a temperature range of 0°C to 900°C
The 3 particles have a substantially high density with an increased degree of crystallinity, and retain and inherit excellent acicular crystals without particle entanglement or bonding.
非還元性雰囲気中の加熱処理温度が504)’c以下で
ある場合は、P化合物と81化合物で被覆されたマグネ
シウム及びニッケルを含有する針状晶α−F〜へ粒子の
結晶性の度合が高められた実質的に高密度な粒子とは言
い難く、900’C以上である場合は、針状晶粒子の変
形と粒子および粒子相互間の焼結をひき起してしまう。When the heat treatment temperature in a non-reducing atmosphere is below 504)'c, the degree of crystallinity of the particles changes to acicular crystals α-F~ containing magnesium and nickel coated with P compound and 81 compound. It cannot be said that the grains have an increased and substantially high density, and if the temperature is higher than 900'C, deformation of the acicular crystal grains and sintering of the grains and the grains among themselves will occur.
また、精度の高い設備、高度な技術を必要とし工業的経
済的ではなし〜次に、本発明者が行った数多くの実験例
からその一部を抽出して説明すれば、次の通りである。In addition, it requires highly accurate equipment and advanced technology, and is not industrially economical.Next, some of the numerous experimental examples conducted by the present inventor will be extracted and explained as follows. .
一般に、出発原料である針状晶α−Fθ001(粒子粉
末若しくはこれにFe以外の異種金属を含むものの粒子
の大きさと該出発原料を加熱還元することにより得られ
る針状晶鉄磁性粒子粉末若しくは針状晶合金磁性粒子粉
末の保磁力とは逆の相関関係があることが知られている
。Generally, the particle size of the starting material acicular crystal α-Fθ001 (particle powder or a material containing a different metal other than Fe) and the acicular crystal iron magnetic particle powder or needles obtained by heating and reducing the starting material are determined. It is known that there is an inverse correlation with the coercive force of crystalline alloy magnetic particles.
即ち、出発原料である針状晶α−FθOOH粒子粉末若
しくはこれにFe以外の異種金属を含むものの粒子の大
きさが小さくなる程、当該出発原料を加熱還元すること
により得られる針状晶鉄磁性粒子粉末若しくは針状晶合
金磁性粒子粉末の保磁力は向上する傾向にある。That is, the smaller the particle size of the starting raw material, acicular α-FθOOH particles, or the powder containing a different metal other than Fe, the higher the acicular iron magnetism obtained by heating and reducing the starting raw material. The coercive force of particle powder or acicular crystal alloy magnetic particle powder tends to be improved.
図4は1出発原料である針状晶α−FeOOH粒子粉末
の粒子の大きさく図中では、粒子の大きさをBET法に
よる比表面積で表現した。)と得られる針状晶合金磁性
粒子粉末の保磁力との関係図である。FIG. 4 shows the particle size of acicular α-FeOOH particle powder, which is a starting material. In the figure, the particle size is expressed by the specific surface area by the BET method. ) and the coercive force of the obtained acicular alloy magnetic particle powder.
図1中、曲線Aは、マグネシウムをFeに対しMg換算
で5.0yA千%含有する針状晶α−FeOOH粒子粉
末の粒子の大きさと得られる針状晶Fe−Mg合金磁性
粒子粉末の保磁力の関係を示したものである。In Fig. 1, curve A shows the particle size of acicular α-FeOOH particles containing 5.0yA 1,000% magnesium based on Fe and the retention of the obtained acicular Fe-Mg alloy magnetic particles. This shows the relationship between magnetic force.
即ち、Feに対しMg換算でS、O原子%を含むように
硫酸マグネシウムを添加して得られた硫酸第一鉄6J
mat/6水溶液と苛性ソーダ水溶液とを用いてpH1
3のFe(OH)、、を含む懸濁液を得、該懸濁液に、
温度45℃において毎分10001の空気を通気して酸
化反応を行わせることにより該反応溶液中に生成したマ
グネシウムを含−有する針状晶a−FeOOH粒子の粒
子の大きさと、該マグネシウムを含有する針状晶α−F
eOOH粒子をP化合物(pos換算で0.56wt%
)と81化合物(S10換算で3.4 wt%)で被覆
し、次いで空気中700℃で加熱処理した後、還元性雰
囲気中490℃で加熱還元することにより得られた針状
晶Fe−Mg合金磁性粒子粉末の保磁力の関係を示した
ものである。That is, ferrous sulfate 6J obtained by adding magnesium sulfate to Fe so as to contain S and O atomic % in terms of Mg.
pH 1 using mat/6 aqueous solution and caustic soda aqueous solution
A suspension containing Fe(OH) of 3 was obtained, and to the suspension,
The particle size of the acicular crystal a-FeOOH particles containing magnesium produced in the reaction solution by performing an oxidation reaction by passing air at a rate of 10,001 per minute at a temperature of 45 ° C. Acicular crystal α-F
The eOOH particles were mixed with a P compound (0.56 wt% in terms of pos).
) and 81 compound (3.4 wt% in terms of S10), followed by heat treatment at 700°C in air, and then heat reduction at 490°C in a reducing atmosphere. This figure shows the relationship between coercive force of alloy magnetic particles.
曲線Aに示されるように、マグネシウムを含有する針状
晶α−FeOOH粒子粉末の粒子の大きさが小さくなる
程、得られる針状晶lFe−Mg合金磁性粒子粉末の保
磁力は大きくなる傾向にある。As shown in curve A, as the particle size of the magnesium-containing acicular α-FeOOH particles becomes smaller, the coercive force of the obtained acicular lFe-Mg alloy magnetic particles tends to increase. be.
図4中、曲!BSOは、マグネシウムとニッケルを含有
する針状晶α−FeOOH粒子の粒子の太きさと得られ
′る針状晶F’s −Mg−Ni合金磁性粒子粉末の保
磁力の関係を、曲!IDはニッケルを含有する針状晶a
−PeOOH粒子の粒子の大きさと得られる針状晶Fe
−Ni合金磁性粒子粉末の保磁力の関係を示したもので
ある。In Figure 4, the song! BSO calculates the relationship between the particle size of acicular α-FeOOH particles containing magnesium and nickel and the coercive force of the obtained acicular F's-Mg-Ni alloy magnetic particle powder. ID is acicular crystal a containing nickel
-Particle size of PeOOH particles and obtained acicular Fe
- The relationship between the coercive force of the Ni alloy magnetic particles is shown.
即ち、曲線Bは、Feに対しMg換算で5.0原子%を
含むように硫酸マグネシウムを、Feに対しN1換算で
2.0原子%を含むように硫酸ニッケルをそれぞれ添加
して得られた硫酸第一鉄Q、f3 mol/1水溶液と
苛性ソーダ水溶液とを用いてpH13のFe(OH〜を
含む懸濁液を得、該懸濁液に温度45℃において毎分1
oooJの空気を通気して酸化反応を行わせることによ
り得られたマグネシウムとニッケルを含有する針状晶α
−FeOOH粒子の粒子の大きさと、該マグネシウムと
ニッケルを含有する針状晶α−Fe00H粒子を曲線A
の場合と同様にしてP化合物と81化合物で被覆し、次
いで空気中700℃で加熱処理した後、還元性雰囲気中
490℃で加熱還元することにより得られた針状晶Fe
−Mg−Ni合金磁性粒子粉末の保磁力の関係を示した
ものである。That is, curve B was obtained by adding magnesium sulfate to Fe in an amount of 5.0 atomic % in terms of Mg, and adding nickel sulfate in an amount of 2.0 atomic % in terms of N1 to Fe. Ferrous sulfate Q, f3 mol/1 aqueous solution and caustic soda aqueous solution were used to obtain a suspension containing Fe (OH ~) with a pH of 13, and the suspension was heated at 1 min/min at a temperature of 45°C.
Acicular crystal α containing magnesium and nickel obtained by aerating the air of oooJ to perform an oxidation reaction
- The particle size of FeOOH particles and the acicular crystal α-Fe00H particles containing magnesium and nickel are calculated by curve A.
The acicular Fe obtained by coating with P compound and 81 compound in the same manner as in the case of
- The relationship between the coercive force of Mg-Ni alloy magnetic particles is shown.
曲IfilOは、添加する硫酸ニッケルをFeに対しN
1換算で5.0原子%以外は曲l1IBの場合と同様に
して生成したマグネシウム及びニッケルを含有する針状
晶α−Pe00H粒子の粒子の大きさど議マグネシウム
及びニッケル、を含有する針状晶α−FeOOH粒子を
曲線Aの場合と同様にしてP化合物と81化合物で被覆
し、次いで空気中700℃で加熱処理した後、還元性雰
囲気中490℃で加熱還元することにより得られた針状
晶Fe−Mg−Ni合金磁性粒子粉末の保磁力の関係を
示したものである。The song IfilO shows that the added nickel sulfate is N compared to Fe.
Acicular crystals containing magnesium and nickel The particle size of α-Pe00H particles containing magnesium and nickel produced in the same manner as in the case of curve 11IB except for 5.0 atomic % in terms of 1 atomic %. The acicular shape obtained by coating α-FeOOH particles with P compound and 81 compound in the same manner as in the case of curve A, then heat-treating them in air at 700°C, and then heat-reducing them at 490°C in a reducing atmosphere. This figure shows the relationship between the coercive forces of crystalline Fe-Mg-Ni alloy magnetic particles.
曲11Dは、マグネシウムを添加しない以外は直lsB
の場合と同様にして生成したニッケルを含有する針状晶
α−FeOOH粒子の大きさと、該ニッケルを含有する
針状晶α−FeOOH粒子を曲IsAの場合と同様にし
てP化合物と81化合物で被覆し、次磁力の関係を示し
たものである。Song 11D is straight B except that no magnesium is added.
The size of the nickel-containing acicular α-FeOOH particles produced in the same manner as in the case of nickel and the nickel-containing acicular α-FeOOH particles were determined in the same manner as in the case of curve IsA, and the P compound and the 81 compound were This figure shows the relationship between the magnetic force and the magnetic force.
図4に示されるように、針状晶Pa−Mg−Ni合金磁
性粒子粉末は、同一の大きさを有するマグネシウムを含
有する針状晶a−?eOOH粒゛子を用いて得られた針
状晶lFe−Mg合金磁性粒子粉末と比較して保磁力が
一層向上したものである。As shown in FIG. 4, the acicular Pa-Mg-Ni alloy magnetic particle powder has acicular crystals a-? containing magnesium having the same size. The coercive force is further improved compared to the acicular lFe-Mg alloy magnetic particle powder obtained using eOOH particles.
また、ニッケルの添加量が多くなる程、針状晶Fe−M
g合金磁性粒子粉末の保磁力を向上させる効果が大きい
。In addition, as the amount of nickel added increases, the acicular crystal Fe-M
It is highly effective in improving the coercive force of the g-alloy magnetic particles.
次に、本発明方法実施にあたっての諸条件について述べ
る。Next, various conditions for implementing the method of the present invention will be described.
本発明において使用される第一鉄塩水溶液としては、硫
酸第一鉄水溶液、塩化第−鉄水溶液等がある。Examples of the ferrous salt aqueous solution used in the present invention include a ferrous sulfate aqueous solution and a ferrous chloride aqueous solution.
本発明において使用され色水可溶性マグネシウム塩とし
ては4酸マグネシウム、塩化マグネシウム、硝酸マグネ
994台“等を使用することができるO
水可溶性マグネシウム塩の添加時期については、本発明
ではwe(on\を含む懸濁液中に酸素含有ガスを通気
して酸化反応を行わせてa−FeOOH粒子粉末を生成
させる前にマグネシウムを存在させておくことが必要で
あり、このためには、第一鉄塩水溶液中、アルカリ水溶
液中又は、酸素含有ガス通気前のIPe(on)、を含
む懸濁液中のいずれかに水可溶性マグネシウム塩を添加
しておけばよい。As the colored water-soluble magnesium salt used in the present invention, magnesium tetraacid, magnesium chloride, magnesium nitrate, etc. can be used. Regarding the timing of addition of the water-soluble magnesium salt, in the present invention we It is necessary for magnesium to be present before a-FeOOH particle powder is produced by passing an oxygen-containing gas through the suspension to carry out an oxidation reaction. The water-soluble magnesium salt may be added to either an aqueous solution, an alkaline aqueous solution, or a suspension containing IPe(on) before oxygen-containing gas ventilation.
尚、酸素含有ガス通気開始後、酸化反応によって既に一
部針状晶α−FθOOH核粒子が生成している段階で水
可溶性マグネシウム塩を添加しても十分な効果は得られ
ない。Note that even if the water-soluble magnesium salt is added at a stage when some needle-like α-FθOOH core particles have already been generated by the oxidation reaction after the oxygen-containing gas ventilation is started, a sufficient effect will not be obtained.
本発明において、水可溶性マグネシウム塩の添加量は、
Feに対しMg’換算で0.5〜20.0 yJL子%
である。In the present invention, the amount of water-soluble magnesium salt added is
0.5 to 20.0 yJL% in terms of Mg' to Fe
It is.
′水可溶性マグネシウム塩の添加蓋がFeに対しJg換
算でα5111.子%以下である。場合には本発明の目
的を十分達成することができない。'The water-soluble magnesium salt addition cap is α5111. in terms of Jg compared to Fe. child% or less. In some cases, the object of the present invention cannot be fully achieved.
200原子%以上である場合も、本発明の目的を達成す
ることができるが、得られたマグネシウム及びニッケル
を含有する針状晶α−FeOOH粒子をP化合物と81
化合物で被覆し、次いで、非還元性雰囲気中500℃〜
900℃の温度範囲で加熱処理した後、加熱還元して得
られた針状晶Fe−Mg−Ni合金磁性粒子粉末は純度
の低下により、飽和磁化が大巾に減少し好ましくない。Although the object of the present invention can be achieved even when the content is 200 atomic % or more, the obtained acicular α-FeOOH particles containing magnesium and nickel are combined with the P compound at 81%.
coated with a compound and then heated to 500°C in a non-reducing atmosphere
The acicular Fe--Mg--Ni alloy magnetic particles obtained by heat treatment in a temperature range of 900° C. and then thermal reduction are undesirable because the saturation magnetization is greatly reduced due to a decrease in purity.
得られる針状晶Fe−Mg−Ni合金磁性粒子粉末の飽
和磁化を考慮した場合、0.5〜15,0原子%が好ま
しい。When considering the saturation magnetization of the obtained acicular Fe-Mg-Ni alloy magnetic particles, the content is preferably 0.5 to 15.0 atomic %.
水可溶性ニッケル塩の添加時期については、本発明では
、針状晶α−FeOOH粒子の生成反応時にニッケルを
存在させておくことが必要であり、このためには第一鉄
塩水溶液中、アルカリ水溶液中。Regarding the timing of adding the water-soluble nickel salt, in the present invention, it is necessary to have nickel present during the formation reaction of acicular α-FeOOH particles, and for this purpose, it is necessary to add nickel in the ferrous salt aqueous solution, in the alkaline aqueous solution. During.
Fe(OH〜を含む懸濁液中、又は、酸素含有ガスの通
気開始後針状晶α−FeOOH粒子が生成中の反応溶液
中のいずれかに添加しておけばよい。It may be added either to a suspension containing Fe(OH~) or to a reaction solution in which acicular α-FeOOH particles are being generated after the start of aeration of oxygen-containing gas.
尚、針状晶a−PeOOH粒子の生成が完全に完了して
しまっている段階で水可溶性ニッケル塩を添加してもニ
ッケルが粒子中に入らないからニッケル添加の効果は得
られない。Incidentally, even if water-soluble nickel salt is added at a stage when the formation of acicular a-PeOOH particles has been completely completed, the effect of nickel addition cannot be obtained because nickel does not enter the particles.
本発明における水可溶性ニッケル塩の添加量はFEIに
対しN1換算で0.5〜60原子%である。The amount of water-soluble nickel salt added in the present invention is 0.5 to 60 atomic % based on FEI in terms of N1.
水可溶性ニッケル塩の添加量がFeに対しN1換算で0
.5原子%以下である場合には、本発明の目的を十分達
成することができない。The amount of water-soluble nickel salt added is 0 in terms of N1 compared to Fe.
.. If it is less than 5 atomic %, the object of the present invention cannot be fully achieved.
6.0原子%以上である場合には、未反応の水酸化ニッ
ケルが残り好ましくない。If it is 6.0 atomic % or more, unreacted nickel hydroxide remains, which is not preferable.
得られるマグネシウム及びニッケルを含有する針状晶α
−p6oon粒子粉末は、平均値で長軸0.6〜2.0
μIn1軸比(長軸:短軸)20:1以上である。Acicular crystal α containing magnesium and nickel obtained
- p6oon particle powder has a long axis of 0.6 to 2.0 on average
The μIn1 axis ratio (long axis: short axis) is 20:1 or more.
長軸が平均値で05μm以下、20μm以上である場合
は磁気記録用出発原料として好ましくない。If the long axis has an average value of 05 μm or less and 20 μm or more, it is not preferred as a starting material for magnetic recording.
マグネシウム及びニッケルを含有する針状晶α−FeO
O)f粒子粉末の軸比(長軸:短軸)が20:1以下で
ある場合には、該マグネシウム及びニッケルを含有する
針状晶α−FeOOH粒子粉末をP化合物と81化合物
で被着処理し、次いで非還元性雰囲気中500℃〜90
0℃の温度範囲で加熱処理した後、加熱還元して得られ
た針状晶lFe−Mg−Ni合金磁性粒子粉末は、加熱
還元工程に於いて粒子が収縮するので軸比が優れたもの
とは言い難く、従って、磁気記録用出発原料としてのマ
グネシウム及びニッケルを含有する針状晶a−FeOO
H粒子粉末の軸比は20:1以上であることが好ましい
。Acicular α-FeO containing magnesium and nickel
O) If the axial ratio (long axis: short axis) of the f particle powder is 20:1 or less, the acicular α-FeOOH particle powder containing magnesium and nickel is coated with a P compound and an 81 compound. treatment and then at 500°C to 90°C in a non-reducing atmosphere.
The acicular lFe-Mg-Ni alloy magnetic particle powder obtained by heat treatment at a temperature range of 0°C and then heat reduction has an excellent axial ratio because the particles shrink in the heat reduction process. It is difficult to say, therefore, the acicular a-FeOO containing magnesium and nickel as a starting material for magnetic recording.
The axial ratio of the H particle powder is preferably 20:1 or more.
本発明における加熱還元温度は650〜600℃である
。The heating reduction temperature in the present invention is 650 to 600°C.
550℃以下である場合には還元反応の進行が遅く、長
時間を要する。If the temperature is 550°C or lower, the reduction reaction progresses slowly and requires a long time.
また、600℃以上である場合には還元反応が急激に進
行して針状晶粒子の変形と、粒子および粒子相互間の焼
結をぢ]き起こしてしまう。Further, if the temperature is 600° C. or higher, the reduction reaction proceeds rapidly, causing deformation of the acicular crystal particles and sintering of the particles and the particles themselves.
以上の通りの構成の本発明は、次の通りの効果を奏する
ものである。The present invention configured as described above has the following effects.
即ち、本発明によれば、pH11以上のアルカリ領域で
得られる針状晶α−IPeOOH粒子の極微細化を招来
することなく軸比を向上させることができ、平均値で長
軸0.3〜2.0μ清、軸比(長軸:短軸)20:1以
上である優れた針状晶を有するマグネシウム及びニッケ
ルを含有する針状晶(1−FeOOH粒子粉末を得るこ
とができ、該マグネシウムを含有する針状晶α−FsO
OH粒子粉末をP化合物と81化合物で被覆処理した後
、該被覆粒子を非還元性雰囲気中で加熱処理したP化合
物と81化合物で被覆されたマグネシウム及びニッケル
を含有する針状晶α−Fe203粒子を加熱還元するこ
とにより、マグネシウム及びニッケルを含有した針状晶
α−PeOOH粒子の優れた針状晶を保持継承しており
、また、粒子のからみ合い等がなく、単一粒子の十分な
、且つ、均一な粒子成長に起因して粒子表面並びに粒子
内部の結晶性の度合が高められた実質的に高密度なFe
−Mg−Niを主成分とする針状晶合金磁性粒子粉末
を得ることができる。That is, according to the present invention, it is possible to improve the axial ratio of the acicular α-IPeOOH particles obtained in the alkaline region of pH 11 or higher without causing ultra-fineness, and the average value of the long axis is 0.3 to 0.3. Acicular crystals containing magnesium and nickel (1-FeOOH particles) having excellent acicular crystals with an axial ratio (long axis: short axis) of 2.0 μm or more of 20:1 can be obtained, and the magnesium Acicular crystal α-FsO containing
Acicular crystal α-Fe203 particles containing magnesium and nickel coated with P compound and 81 compound, which are obtained by coating OH particle powder with P compound and 81 compound, and then heat-treating the coated particles in a non-reducing atmosphere. By heating and reducing the acicular crystal α-PeOOH particles containing magnesium and nickel, the excellent acicular crystal structure is maintained and inherited, and there is no entanglement of particles, and sufficient single particle size is obtained. In addition, substantially high-density Fe has an increased degree of crystallinity on the particle surface and inside the particle due to uniform particle growth.
Acicular alloy magnetic particles containing -Mg-Ni as a main component can be obtained.
このようにして得られたFe−Mg−Niを主成分とす
る針状晶合金磁性粒子粉末は、磁気特性におI、zては
より高い保磁力と大きな飽和磁化を有し、粉体特性にお
いては、高分散性、高配向性、高充填性を有するので、
現在、−最も要求されている高山−Mg−Niを主成分
とする針状晶合金磁性粒子粉末を用いた場合には、塗膜
中での配向性及び充填性が極めて優れ、好ま゛しい磁気
記録媒体を得ることができる。The thus obtained acicular alloy magnetic particles mainly composed of Fe-Mg-Ni have magnetic properties such as higher coercive force and larger saturation magnetization in I and Z, and powder properties. Because it has high dispersibility, high orientation, and high filling property,
Currently, when using the most demanded alpine-Mg-Ni acicular alloy magnetic particle powder, it has extremely excellent orientation and filling properties in the coating film, and has a desirable magnetic property. A recording medium can be obtained.
次に、実施例並びに比較例により本発明を説明する。Next, the present invention will be explained with reference to Examples and Comparative Examples.
尚、前出の実験例及び以下の実施例並びに比較例におけ
る粒子の軸比(長軸:短軸)、長軸は、いずれも電子顕
微鏡写真から測定した数値の平均値で示した。In addition, the axial ratio (long axis: short axis) and long axis of the particles in the above experimental examples, the following examples, and comparative examples are all shown as average values of values measured from electron micrographs.
また、粒子中のMg量、Ni量は螢光Xm分析により測
定した。Further, the Mg content and Ni content in the particles were measured by fluorescence Xm analysis.
磁気テープの緒特性は外部磁場10KOeの下で測定し
た結果である。The magnetic tape characteristics were measured under an external magnetic field of 10 KOe.
く針状晶α−FeOOH粒子粉末の製造〉 実施例1〜
11比較例1〜6;
実施例 1
Feに対しMg換算で1.0原子%を含むように硫酸マ
グネシウム(MgSO4・7%O) 895 ’I及び
Feに対しN1換算で2.0原子%を含むように硫酸ニ
ッケル(N15O4・6%O) 1922 fを添加さ
せて得られた硫酸第一鉄0.80m0//27水溶液4
50 lを、あらがじめ反応器中に準備された4、05
−NのNaOH水溶液4501に加え、pH13,4、
温度45℃においてマグネシウム及びニッケルを含むF
e(OH)2懸濁液の生成反応を行った。Production of acicular α-FeOOH particle powder> Example 1~
11 Comparative Examples 1 to 6; Example 1 Magnesium sulfate (MgSO4.7%O) 895 'I and Fe contained 2.0 at% in terms of N1 so as to contain 1.0 at% in terms of Mg with respect to Fe. Ferrous sulfate 0.80 m0//27 aqueous solution 4 obtained by adding nickel sulfate (N15O4, 6% O) 1922 f to contain
50 l of 4,05 liters previously prepared in the reactor
-N NaOH aqueous solution 4501, pH 13.4,
F containing magnesium and nickel at a temperature of 45°C
e(OH)2 suspension production reaction was carried out.
上記マグネシウム及びニッケルを含むFe(OH)2懸
濁液に温度45″Cにおいて、毎分10001の空気を
98時間通気してマグネシウム及びニッケルを含有する
針状晶α−FeOOH粒子を生成した。Air was passed through the Fe(OH)2 suspension containing magnesium and nickel at a rate of 1000 l/min for 98 hours at a temperature of 45''C to produce acicular α-FeOOH particles containing magnesium and nickel.
酸化反応終点は、反応液の一部を抜き取り塩醗酸性に調
整した後、赤血塩溶液を用いてFe2+の青色呈色反応
の有無で判定した。The end point of the oxidation reaction was determined by extracting a portion of the reaction solution and adjusting the acidity with salt, and then using a red blood salt solution to determine the presence or absence of a blue coloring reaction of Fe2+.
生成粒子は、常法により、p別水洗した後、一部を乾燥
、粉砕して分析及び電子G微鏡観察に用いるサンプルと
した。The generated particles were washed with water in a conventional manner, and then a portion was dried and ground to obtain a sample for analysis and electron G microscopic observation.
得られたマグネシウム及びニッケルを含有する針状晶α
−FeOOH粒子は、X線回折の結果、α−IFeOO
H粒子の結晶構造と同じ回折図形が得られた。また、螢
光X線分析の結果、Mg及びN1が検出された。The obtained acicular crystal α containing magnesium and nickel
-FeOOH particles were found to be α-IFeOO as a result of X-ray diffraction.
A diffraction pattern identical to the crystal structure of H particles was obtained. Furthermore, as a result of fluorescent X-ray analysis, Mg and N1 were detected.
従って、マグネシウム及びニッケルが針状晶α−PeO
OH粒子中に固溶していると考えられる。Therefore, magnesium and nickel are acicular α-PeO
It is thought that it is solidly dissolved in the OH particles.
このマグネシウム及びニッケルを含有する針状晶α−P
θOOH粒子は、電子顕微鏡観察の結果、平均値で長軸
Q、62μM、軸比(長軸:短軸)24:1であり、針
状晶が優れたものであった。This acicular crystal α-P containing magnesium and nickel
As a result of electron microscopic observation, the θOOH particles had an average long axis Q of 62 μM, an axial ratio (long axis: short axis) of 24:1, and were excellent in needle-like crystals.
実施例 2〜11
第一鉄塩水溶液の種類、NaOH水溶液の濃度、水可溶
性マグネシウム塩の種類、添加量、添加時期及び水可溶
性ニッケル塩の種類、添加量、添加時期を種々変化させ
た以外は実施例1と同様にしてマグネシウム及びニッケ
ルを含有する針状晶α−FeOOH粒子を生成した。Examples 2 to 11 Except that the type of ferrous salt aqueous solution, the concentration of NaOH aqueous solution, the type, amount, and timing of addition of water-soluble magnesium salt, and the type, amount, and timing of addition of water-soluble nickel salt were varied. Acicular α-FeOOH particles containing magnesium and nickel were produced in the same manner as in Example 1.
この時の主要製造条件及び特性を表1に示す。Table 1 shows the main manufacturing conditions and characteristics at this time.
実施例2〜11で得られたマグネシウム及びニッケルを
含有する針状晶α−FeOOH粒子粉末はいずれも電子
顕微鏡観察の結果、針状晶が優れたものであった。As a result of electron microscopic observation, all of the acicular crystal α-FeOOH particle powders containing magnesium and nickel obtained in Examples 2 to 11 were found to have excellent acicular crystals.
実施例3で得られたマグネシウム及びニッケルを含有す
る針状晶a−FeOOH粒子粉末の電子顕微鏡写真(X
20000 )を図5に示す。Electron micrograph (X
20000) is shown in FIG.
比較例 1
硫酸マグネシウム及び硫酸ニッケルを添加しないで、他
の諸条件は実施例1と同様にして針状晶α−Fe00H
粒子粉末を生成した。Comparative Example 1 Acicular α-Fe00H was produced under the same conditions as Example 1 without adding magnesium sulfate and nickel sulfate.
A particulate powder was produced.
・この時の主要製造条件及び特性を表1に示す。・Table 1 shows the main manufacturing conditions and characteristics at this time.
得られた針状晶α−FθOOH粒子粉末は、平均値で長
軸0.45μm1軸比(長軸:短軸)9:1であり、針
状晶が悪いものであった。The obtained needle-like α-FθOOH particles had a long axis of 0.45 μm on average and a uniaxial ratio (long axis: short axis) of 9:1, indicating that the needle-like crystals were poor.
比較例 2
硫酸マグネシウムを添加しないで、他の諸条件は実施例
1と同様にしてニッケルを含有する針状晶α−FeOO
H粒子粉末を生成した。Comparative Example 2 Acicular α-FeOO containing nickel was produced under the same conditions as Example 1 without adding magnesium sulfate.
H particle powder was produced.
この時の主要製造条件及び特性を表1に示す。Table 1 shows the main manufacturing conditions and characteristics at this time.
得られたニッケルを含有する針状晶α−FeOOH粒子
粉末は、平均値で長軸0.48μm1軸比(長軸:短軸
) 15 : 1であった。The obtained nickel-containing acicular α-FeOOH particle powder had an average long axis of 0.48 μm and a uniaxial ratio (long axis:short axis) of 15:1.
比較例 3
硫酸ニッケルの添加蓋をFeに対しN1換算でzO原原
子色した以外は、実施例3と同様にして粒子粉末を生成
した。Comparative Example 3 Particle powder was produced in the same manner as in Example 3, except that the addition lid of nickel sulfate was changed to zO primary atom color in terms of N1 with respect to Fe.
得られた粒子粉末は、針状晶粒子と不定形粒子の混在し
たものであった。The obtained powder particles were a mixture of acicular crystal particles and irregularly shaped particles.
針状晶粒子と不定形粒子は、X線分析の結果、マグネシ
ウム及びニッケルを含有する針状晶α−FeOOH〜
粒子粉末と未反応の水酸化ニッケルであった。As a result of X-ray analysis, the acicular crystal particles and irregularly shaped particles were found to be unreacted nickel hydroxide with the acicular crystal α-FeOOH~ particles containing magnesium and nickel.
〈P化合物と81化合物で被覆された針状晶α−FθO
OH粒子粉末の製造〉 実施例 12〜22比
較例 4.5;
実施例 12
実施例1で得られたp別吃水洗したマグネシウム及びニ
ッケルを含有する針状晶a−FeOOH粒子ノペース粒
子ノロ−ストマグネシウム及びニッケルを含有する針状
晶α−FθOOH粒子約2000 ’iに相当する。)
を6ogの水中に懸濁させた。<Acicular crystal α-FθO coated with P compound and 81 compound
Production of OH particle powder> Examples 12 to 22 Comparative Example 4.5; Example 12 Acicular crystal a-FeOOH particles containing magnesium and nickel obtained in Example 1 and washed with water. This corresponds to approximately 2000'i of acicular α-FθOOH particles containing magnesium and nickel. )
was suspended in 6 og of water.
この時の懸濁液の声値は96であった。The voice value of the suspension at this time was 96.
次いで、上記懸濁液にヘキサメタリン酸ナトリウム16
gを含む水溶液soog/(マグネシウム及びニッケル
を含有する針状晶α−FeOOH粒子に対しPO2とし
て0.56wt%に相当する。)を添加して30分攪拌
した。Next, sodium hexametaphosphate 16 was added to the above suspension.
An aqueous solution containing soog/g (corresponding to 0.56 wt% as PO2 with respect to acicular α-FeOOH particles containing magnesium and nickel) was added and stirred for 30 minutes.
次いで上記Mfti液にケイ酸す) IJウム(3号水
ガラス) 2009 (マグネシウム及びニッケルを含
有する針状晶α−FeOOH粒子に対し5in2として
28wt%に相当する。)を添加し60分間攪拌した後
、WaZ液のpH値が60となるように10%の酢酸を
添加した後、プレスフィルターによりマグネシウム及び
ニッケルを含有する針状晶α−FθOOH粒子をp別、
乾燥してP化合物と81化合物で被覆されたマグネシウ
ム及びニッケルを含有する針状晶α−FeOOH粒子粉
末を得た。Next, IJum (No. 3 water glass) 2009 (corresponding to 28 wt% as 5in2 based on acicular α-FeOOH particles containing magnesium and nickel) was added to the above Mfti liquid and stirred for 60 minutes. After that, 10% acetic acid was added so that the pH value of the WaZ solution became 60, and then acicular α-FθOOH particles containing magnesium and nickel were separated by p, using a press filter.
After drying, acicular α-FeOOH particle powder containing magnesium and nickel coated with P compound and 81 compound was obtained.
実施例13〜22、比較例4.5
被処理粒子の種類、リン酸塩添加時の懸濁液のpH1リ
ン酸塩の添加量、水可溶性ケイ酸塩の添加量、調整後の
pHを種々、変化させた以外は、実施例12と同様にし
てP化合物と81化合物で被覆されたマグネシウム及び
ニッケルを含有する針状晶α−PeOOH粒子粉末、ニ
ッケルを含有する針状晶a−IFeOOH粒子粉末又は
針状晶α−IPeOOH粒子粉末を得た。Examples 13 to 22, Comparative Example 4.5 Various types of particles to be treated, pH of suspension when phosphate is added, amount of phosphate added, amount of water-soluble silicate added, and pH after adjustment , Acicular α-PeOOH particles containing magnesium and nickel coated with P compound and 81 compound, and Acicular α-IFeOOH particles containing nickel coated with P compound and 81 compound, except for the following changes: Alternatively, acicular crystal α-IPeOOH particle powder was obtained.
この時の主要製造条件を表2に示す。Table 2 shows the main manufacturing conditions at this time.
〈針状晶α−h^粒子粉末の製造〉
実施例 23〜54
比較例 6〜8;
実施例 25
実施例12で得られたP化合物と81化合物で被覆され
たマグネシウム及びニッケルを含有する針状晶(1−F
eOOH粒子粉末600gを空気中750°Cで加熱処
理して、マグネシウム及びニッケルを含有する針状晶(
z−Fe203粒子粉末を得た。<Production of needle-shaped α-h^ particle powder> Examples 23 to 54 Comparative Examples 6 to 8; Example 25 Needles containing magnesium and nickel coated with the P compound obtained in Example 12 and the 81 compound Crystal (1-F
600 g of eOOH particle powder was heat-treated at 750°C in air to produce acicular crystals containing magnesium and nickel (
Z-Fe203 particle powder was obtained.
この粒子は、電子顕微鏡観察の結果、平均値で長軸06
0μm1軸比(長軸:短軸) 23 : 1であり、針
状晶の優れたものであった。As a result of electron microscopy observation, the average value of these particles was 06 on the long axis.
The uniaxial ratio (long axis: short axis) of 0 μm was 23:1, and the crystals were excellent in needle-like crystals.
実施例24〜64、比較例6〜8
P化合物とS1化合物で被覆された針状晶α−Fθ00
)1粒子粉末の柚1、加熱処理温度及び非還元性雰囲気
の種類を種々変化させた以外は実施例23と同様にして
マグネシウム及びニッケルを含有する針状晶α−F’e
2Q3粒子粉末ニッケルを含有する針状晶α−Fe2o
s粒子粉末又は針状晶α−’F e20s粒子粉末を得
た。Examples 24-64, Comparative Examples 6-8 Acicular crystals α-Fθ00 coated with P compound and S1 compound
) Acicular crystal α-F'e containing magnesium and nickel was prepared in the same manner as in Example 23, except that the 1-particle powder of Yuzu 1, the heat treatment temperature and the type of non-reducing atmosphere were varied.
Acicular crystal α-Fe2o containing 2Q3 particle powder nickel
s particle powder or acicular α-'F e20s particle powder was obtained.
この時の主要製造条件及び特性を表5に示す。Table 5 shows the main manufacturing conditions and characteristics at this time.
尚、比較例8で得られたマグネシウム及びニアケルを含
有する針状晶α−Fち01粒子粉末は平均値゛で長軸0
47μm1軸比(長軸:短軸)18:1で粒子形状の変
形と粒子および粒子相互間の焼結を引き起こしたもので
あった。Incidentally, the acicular α-F 01 particle powder containing magnesium and Niacel obtained in Comparative Example 8 had an average value of 0 and a long axis of 0.
The 47 μm uniaxial ratio (long axis: short axis) of 18:1 caused deformation of the particle shape and sintering of the particles and each other.
(IFe−Mg−Ni又はPe−N1を主成分とする針
状晶合金磁性粒子粉末又は鉄を主成分とする針状晶金属
磁性粒子粉末の製造〉 実施例35〜46比較例 9
〜11;
実施例 35
実施例23で得られたP化合物と81化合物で被覆され
たマグネシウム及びニッケルを含有する針状晶a−IF
e、QJ粒子粉末150gを51の一端開放型レトルト
容器中に投入し、駆動回転させなから4ガスを毎分so
bの割合で通気し、還元温度490℃で還元した。(Production of acicular crystal alloy magnetic particle powder containing IFe-Mg-Ni or Pe-N1 as the main component or acicular crystal metal magnetic particle powder containing iron as the main component) Examples 35 to 46 Comparative Example 9
~11; Example 35 Acicular crystal a-IF containing magnesium and nickel coated with the P compound obtained in Example 23 and the 81 compound
e. Pour 150 g of QJ particle powder into a retort container with one end open (51), and while driving and rotating, 4 gases were supplied per minute.
Aeration was carried out at a rate of b, and reduction was carried out at a reduction temperature of 490°C.
還元して得られたIi’e −Mg−Niを主成分とす
る針状晶合金磁性粒子粉末は、空気中に取り出したとき
急激な酸化を起さないように、一旦、トルエン液中に浸
漬して、これを蒸発させることにより、粒子表面に安定
な酸化皮膜を施した。The acicular alloy magnetic particles mainly composed of Ii'e -Mg-Ni obtained by reduction are immersed in a toluene solution to prevent rapid oxidation when taken out into the air. By evaporating this, a stable oxide film was formed on the particle surface.
このようにして得たPe−Mg−Niを主成分とする針
状晶合金磁性粒子粉末は、X線回折の結果、鉄と同じ体
心立方構造単−相の回折図形が得られた。As a result of X-ray diffraction, the thus obtained acicular alloy magnetic particles containing Pe--Mg--Ni as a main component had a single-phase diffraction pattern with a body-centered cubic structure similar to that of iron.
また、螢光XS分析の結果、所定量のMg及びN1が検
出された。従って、鉄とマグネシウム及びニッケルが固
溶していると考えられる。Further, as a result of fluorescent XS analysis, predetermined amounts of Mg and N1 were detected. Therefore, it is considered that iron, magnesium, and nickel are in solid solution.
このFe −Mg−Niを主成分とする針状晶合金磁性
粒子粉末の緒特性を表4に示す。Table 4 shows the characteristics of this acicular crystal alloy magnetic particle powder mainly composed of Fe-Mg-Ni.
実施例36〜46、比較例9〜11
P化合物と81化合物で被覆された針状晶α−Fe20
s粒子粉末の種類、還元温度を種々変化さ仕以外は実施
例35と同様にしてFe−Mg−Niを主成分とする針
状晶合金磁性粒子粉末、Fe−Niを掠分とする針状晶
合金磁性粒子粉末又は、鉄を主成分とする針状晶金属磁
性粒子粉末を得た。Examples 36-46, Comparative Examples 9-11 Acicular α-Fe20 coated with P compound and 81 compound
Acicular crystal alloy magnetic particle powder mainly composed of Fe-Mg-Ni and acicular crystal alloy magnetic particle powder mainly composed of Fe-Ni were prepared in the same manner as in Example 35 except that the type of s-particle powder and the reduction temperature were varied. A crystalline alloy magnetic particle powder or an acicular crystalline metal magnetic particle powder containing iron as a main component was obtained.
この粒子粉末の緒特性を表4に示す。Table 4 shows the properties of this particulate powder.
実施例36〜46で、得られた:EPe −Mg−Ni
を主成分とする針状晶合金磁性粒子粉末は、いずれも電
子顕微鏡観察の結果、針状晶が優れたものであっム実施
例67で得られたli’e−Mg−Niを主成分とする
針状晶合金磁性粒子粉末の電子顕微鏡写真(X2000
0)を図6に示す。In Examples 36-46, obtained: EPe-Mg-Ni
As a result of electron microscopy, all of the acicular crystal alloy magnetic particles containing li'e-Mg-Ni obtained in Example 67 as the main component were found to have excellent acicular crystals. Electron micrograph (X2000
0) is shown in FIG.
比較例9で得られた鉄を主成分とする針状晶金属磁性粒
子粉末は、保磁力が126400であり、電子顕微鏡観
察の結果、平均値で長軸03μM1軸比(長軸:短軸)
6;1であり、針状晶が悪いものであった。The acicular metal magnetic particles mainly composed of iron obtained in Comparative Example 9 had a coercive force of 126,400, and as a result of electron microscopy observation, the average value was 03 μM on the long axis and the uniaxial ratio (long axis: short axis).
The ratio was 6:1, and the needle crystals were poor.
比較例10で得られたPe−Mlを主成分とする針状晶
合金磁性粒子粉末の保磁力は11800eであり、比較
例9で得られた鉄を主成分とする針状晶金属磁性粒子粉
末←比べ、更に低いものであった。The coercive force of the acicular crystal alloy magnetic particle powder mainly composed of Pe-Ml obtained in Comparative Example 10 is 11800e, and the coercive force of the acicular crystal metal magnetic particle powder mainly composed of iron obtained in Comparative Example 9 ←It was even lower than that.
比較例11で得られたlFe−Mg−Niを主成分とす
る針状晶合金磁性粒子粉末は平均値で長軸0.55μm
1軸比(長軸:短軸)9:1で粒子形状の変形、と粒子
および粒)相互間。焼結を引、起ユL、Th’b(7)
−cあった′0
く磁気テープの製造〉 実施例47〜58比較例12
.13i
実施例 47
実施例35で得られたlFe−Mg−Niを主成分とす
る針状晶合金磁性粒子粉末を用いて適量の分散剤、塩ビ
酢ビ共重合体、熱可塑性ポリウレタン樹脂及びトルエン
、メチルエチルケトン、メチルイソブチルケトンから成
る混合溶剤を一定の組成に配合した後、ボールミルで8
時間混合分散して磁気塗料とした。The average long axis of the acicular alloy magnetic particles mainly composed of lFe-Mg-Ni obtained in Comparative Example 11 was 0.55 μm.
Deformation of particle shape with a uniaxial ratio (long axis: short axis) of 9:1, and between particles and grains). Pull sintering, Kiyu L, Th'b (7)
-Manufacture of magnetic tape> Examples 47 to 58 Comparative Example 12
.. 13i Example 47 Using the acicular alloy magnetic particle powder mainly composed of lFe-Mg-Ni obtained in Example 35, appropriate amounts of a dispersant, a vinyl chloride-vinyl acetate copolymer, a thermoplastic polyurethane resin, and toluene, After blending a mixed solvent consisting of methyl ethyl ketone and methyl isobutyl ketone to a certain composition,
The mixture was mixed and dispersed for a period of time to form a magnetic paint.
得られた磁気塗料に上記混合溶剤を加え、適性な塗料粘
度になるように調整し、ポリエステル樹脂フィルム上に
通常の方法で塗布乾燥させて、磁′気テープを製造した
。この磁気テープの保磁力Haは、15030s 、残
留磁束密度Brは、3457 Gauss、角型Br/
B、nはo、796、配向度2.34であった。The above-mentioned mixed solvent was added to the obtained magnetic paint to adjust the paint viscosity to an appropriate level, and the mixture was coated on a polyester resin film by a conventional method and dried to produce a magnetic tape. The coercive force Ha of this magnetic tape is 15030s, the residual magnetic flux density Br is 3457 Gauss, and the square type Br/
B and n were o, 796, and the degree of orientation was 2.34.
実施例48〜58、 比較例12〜15針状晶磁性粒子
粉末の種類を種々変化した以外は、実施例47と同様に
して磁気テープを製造した。この磁気テープの緒特性を
表5に示す。Examples 48 to 58, Comparative Examples 12 to 15 Magnetic tapes were manufactured in the same manner as in Example 47, except that the type of acicular magnetic particles was varied. Table 5 shows the characteristics of this magnetic tape.
図1は、水可溶性マグネシウム塩の添加蓋とマグネシウ
ムを含有する針状晶a−F’aOOH粒子の軸比の関係
図である。
図2は、水可溶性マグネシウム塩の添加蓋と図1の場合
と同一の反応条件のもとで生成されたマグネシウムを含
有する針状晶α−IFeOOH粒子の長軸との関係図で
ある。
@3は、マグネシウムを含有する針状晶α−FθOOH
粒子粉末の電子顕微鏡写真(X20000)である。
図4は、出発原料である針状晶α−FeOOH粒子粉末
の粒子の大きさと得られる針状晶合金磁性粒子粉末の保
磁力の関係図である。
図4中、曲線Aは、針状晶Pa−Mg合金磁性粒子粉末
(Mg含有量5原子%)、曲1[Bは、針状晶Fe−M
g−Ni合金磁性粒子粉末(Mg含有量5原子%、N1
含有量2%)、曲線0は、針状晶?e−Mg−Ni合金
磁性粒子粉末(Mg含有量5原子%、Ni含有量5原子
%)、曲線りは、針状晶Ire−Ni合金磁性粒子粉末
(in含有@2原子%)の場合である。
図5乃至図6は、いずれも電子顕微鏡写真(X2000
0 )であり、図5は実施例3で得られたマグネシウム
及びニッケルを含有する針状晶α−FeOOH粒子粉末
、図6は実施例37で得られた針状晶fI′e−Mg−
Ni合金磁性粒子粉末である。
特許出願人
戸田工業株式会社
代表者松井五部
13浜加」連子2)
一1奈7aiclr、+Z)
口 4
d−Fe00HJホに槓(m〃)FIG. 1 is a diagram showing the relationship between the addition cap of a water-soluble magnesium salt and the axial ratio of acicular crystal a-F'aOOH particles containing magnesium. FIG. 2 is a diagram showing the relationship between the water-soluble magnesium salt addition cap and the long axis of the magnesium-containing acicular α-IFeOOH particles produced under the same reaction conditions as in FIG. @3 is acicular crystal α-FθOOH containing magnesium
It is an electron micrograph (X20000) of particle powder. FIG. 4 is a diagram showing the relationship between the particle size of the acicular crystal α-FeOOH particle powder, which is a starting material, and the coercive force of the obtained acicular crystal alloy magnetic particle powder. In FIG. 4, curve A is acicular crystal Pa-Mg alloy magnetic particle powder (Mg content 5 at%), curve 1 [B is acicular crystal Fe-M
g-Ni alloy magnetic particle powder (Mg content 5 at%, N1
content 2%), curve 0 is needle crystal? e-Mg-Ni alloy magnetic particle powder (Mg content 5 atom%, Ni content 5 atom%), the curve is in the case of acicular crystal Ire-Ni alloy magnetic particle powder (in content @2 atom%) be. 5 and 6 are electron micrographs (X2000
0 ), FIG. 5 shows the acicular α-FeOOH particle powder containing magnesium and nickel obtained in Example 3, and FIG. 6 shows the acicular crystal fI'e-Mg- obtained in Example 37.
This is Ni alloy magnetic particle powder. Patent applicant Toda Kogyo Co., Ltd. Representative Matsui Gobe 13 Hamaka" Renko 2) 11 Na 7 aiclr, +Z) Mouth 4 d-Fe00HJ Honi Kaku (m〃)
Claims (1)
られたFe(OH)、を含むpH11以上の懸濁液に酸
素含有ガスを通気して酸化反応を行わせることにより該
反応溶液中に針状晶α−FeOOH粒子を生成させるに
あたり、前記第一鉄塩水溶液、前記アルカリ水溶液及び
酸素含有ガスを通気して酸化反応を行わせる前の前記懸
濁液のいずれかの液中に水可溶性マグネシウム塩をFa
に対しMg換算で05〜20.0原子%添加しておき、
且つ、前記第一鉄塩水溶液、前記アルカリ水溶液、酸素
含有ガスを通気して酸化反応を行わせる前の前記懸濁液
及び酸素含有ガスを通気して酸化反応を行わせている前
記反応溶液のいずれかの液中に水可溶性ニッケル塩をI
Feに対しN1換算でα5〜60原子襲添加しておくこ
とにより、平均値で長軸0,3〜2.0μm1軸比(長
軸:短軸)20:1以上であるマグネシウム及びニッケ
ルを含有する針状晶a−FeOOH粒子を生成させ、該
マグネシウム及びニッケルを含有する針状晶α−?eO
OH粒子を母液から分離した後水中に懸濁させ、該懸濁
液のpH値8以上の状態でマグネシウム及びニッケルを
含有する針状晶1l−1F600H粒子に対゛し、0.
1〜2 wt% (po、に換算)のリン酸塩を添加し
、次いで0.1〜70 wt%(S1O2に換算)の水
可溶性ケイ酸塩を添加した後、懸濁液のpH値を3〜7
に調整することによりP化合物と81化合物で被覆され
たマグネシウム及びニッケルを含有する針状晶α−Fe
00H粒子を得、該粒子をp別、乾燥し、次いで、非還
元性雰囲気中500〜900℃の温度範囲で加熱処理し
てP化合物と81化合物で被覆されたマグネシウム及び
ニッケルを含有する針状晶α−′I!e2QJ粒子とし
た後、還元性ガス中350℃〜600℃の温度範囲で加
熱還元してPa−Mg−Niを主成分とする針状晶合金
磁性粒子とすることを特徴とするPe−Mg−Niを主
成分とする針状晶合金磁性粒子粉末の製造法。 2.Fe(OH)2を含む懸濁液中に添加しておく水可
溶性マグネシウム塩が、Feに対しMg換算で0,5造
法。[Claims] 1. Oxygen-containing gas is passed through a suspension containing Fe(OH) obtained by reacting an aqueous ferrous salt solution with an aqueous alkaline solution and having a pH of 11 or more to carry out an oxidation reaction. In order to produce acicular α-FeOOH particles in the reaction solution, any of the ferrous salt aqueous solution, the alkaline aqueous solution, and the suspension before the oxygen-containing gas is passed through the suspension to perform the oxidation reaction. Add a water-soluble magnesium salt to the solution.
05 to 20.0 atomic % in terms of Mg is added to
and the ferrous salt aqueous solution, the alkaline aqueous solution, the suspension before an oxidation reaction is carried out by passing an oxygen-containing gas through the solution, and the reaction solution in which an oxidation reaction is carried out by passing an oxygen-containing gas through the suspension. Water-soluble nickel salt I in either solution
Contains magnesium and nickel with an average long axis of 0.3 to 2.0 μm and a uniaxial ratio (long axis: short axis) of 20:1 or more by adding α5 to 60 atoms in terms of N1 to Fe. The acicular a-FeOOH particles containing magnesium and nickel are produced, and the acicular a-? eO
After the OH particles are separated from the mother liquor, they are suspended in water, and when the pH value of the suspension is 8 or higher, 0.0% is added to the acicular crystal 11-1F600H particles containing magnesium and nickel.
After adding 1-2 wt% (in terms of PO) of phosphate and then 0.1-70 wt% (in terms of S1O2) of water-soluble silicate, the pH value of the suspension was 3-7
Acicular α-Fe containing magnesium and nickel coated with P compound and 81 compound by adjusting
00H particles were obtained, the particles were separated from P, dried, and then heat treated in a non-reducing atmosphere at a temperature range of 500 to 900°C to obtain acicular particles containing magnesium and nickel coated with P compound and 81 compound. Akira α-'I! A Pe-Mg- A method for producing acicular crystal alloy magnetic particles containing Ni as a main component. 2. A water-soluble magnesium salt added to a suspension containing Fe(OH)2 has a ratio of 0.5 to Fe in terms of Mg.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP56163917A JPS5864303A (en) | 1981-10-13 | 1981-10-13 | Production of magnetic particle powder of needle crystal alloy consisting essentially of fe-mg-ni |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP56163917A JPS5864303A (en) | 1981-10-13 | 1981-10-13 | Production of magnetic particle powder of needle crystal alloy consisting essentially of fe-mg-ni |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5864303A true JPS5864303A (en) | 1983-04-16 |
JPS649371B2 JPS649371B2 (en) | 1989-02-17 |
Family
ID=15783274
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP56163917A Granted JPS5864303A (en) | 1981-10-13 | 1981-10-13 | Production of magnetic particle powder of needle crystal alloy consisting essentially of fe-mg-ni |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5864303A (en) |
-
1981
- 1981-10-13 JP JP56163917A patent/JPS5864303A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS649371B2 (en) | 1989-02-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5645652A (en) | Spindle-shaped magnetic iron-based alloy particles containing cobalt and iron as the main ingredients and process for producing the same | |
JPS5853688B2 (en) | Method for producing acicular alloy magnetic particle powder mainly composed of Fe-Mg | |
EP0124953B1 (en) | Acicular ferromagnetic alloy particles for use in magnetic recording media | |
JP3428351B2 (en) | Spindle-shaped metal magnetic particles containing iron as a main component and method for producing the same | |
JP3750414B2 (en) | Spindle-shaped goethite particle powder, spindle-shaped hematite particle powder, spindle-shaped metal magnetic particle powder containing iron as a main component, and production method thereof | |
KR100445590B1 (en) | Cobalt-coated needle iron magnetic iron oxide particles | |
US5989516A (en) | Spindle-shaped geothite particles | |
JPS5864303A (en) | Production of magnetic particle powder of needle crystal alloy consisting essentially of fe-mg-ni | |
JPS62158801A (en) | Magnetic metallic particle powder essentially consisting of iron having spindle shape and production thereof | |
JP3166809B2 (en) | Method for producing acicular magnetic iron oxide particles | |
JPH026805B2 (en) | ||
JP3092649B2 (en) | Method for producing spindle-shaped metal magnetic particles containing iron as a main component | |
JPS6239203B2 (en) | ||
JPS5891102A (en) | Production of magnetic particle powder of needle crystal alloy | |
JP2965606B2 (en) | Method for producing metal magnetic powder | |
JP3055308B2 (en) | Method for producing acicular magnetic iron oxide particles | |
JPS5941453A (en) | Needle crystal iron alloy magnetic particulate powder for magnetic recording and preparation thereof | |
JP2883962B2 (en) | Method for producing acicular goethite particle powder | |
JP2970699B2 (en) | Method for producing acicular magnetic iron oxide particles | |
JPS62128931A (en) | Production of magnetic iron oxide grain powder having spindle type | |
JPS59202610A (en) | Magnetic recording acicular crystal iron alloy magnetic powderly grain and manufacture thereof | |
JPS59222903A (en) | Magnetic grain powders of needle crystal iron alloy for magnetic recording and method of manufacturing the same | |
JPS5946281B2 (en) | Method for producing acicular Fe-Co alloy magnetic particle powder | |
JPH0755827B2 (en) | Manufacturing method of spindle-shaped iron-based metallic magnetic particle powder | |
JPS5923806A (en) | Magnetic particle powder of acicular crystal iron alloy for magnetic recording and its production |