JPS59222903A - Magnetic grain powders of needle crystal iron alloy for magnetic recording and method of manufacturing the same - Google Patents

Magnetic grain powders of needle crystal iron alloy for magnetic recording and method of manufacturing the same

Info

Publication number
JPS59222903A
JPS59222903A JP58098506A JP9850683A JPS59222903A JP S59222903 A JPS59222903 A JP S59222903A JP 58098506 A JP58098506 A JP 58098506A JP 9850683 A JP9850683 A JP 9850683A JP S59222903 A JPS59222903 A JP S59222903A
Authority
JP
Japan
Prior art keywords
particles
acicular
water
magnetic
aqueous solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58098506A
Other languages
Japanese (ja)
Other versions
JPH0261124B2 (en
Inventor
Hiroo Mishima
三島 啓男
Yoshiro Okuda
奥田 嘉郎
Toshiharu Harada
俊治 原田
Akira Mukozaka
向坂 章
Tomoyuki Imai
知之 今井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toda Kogyo Corp
Original Assignee
Toda Kogyo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toda Kogyo Corp filed Critical Toda Kogyo Corp
Priority to JP58098506A priority Critical patent/JPS59222903A/en
Priority to US06/573,489 priority patent/US4514216A/en
Priority to EP84300567A priority patent/EP0124953B1/en
Priority to DE8484300567T priority patent/DE3462834D1/en
Priority to KR1019840000424A priority patent/KR840008308A/en
Publication of JPS59222903A publication Critical patent/JPS59222903A/en
Publication of JPH0261124B2 publication Critical patent/JPH0261124B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/68Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent
    • G11B5/70Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer
    • G11B5/706Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer characterised by the composition of the magnetic material
    • G11B5/70605Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer characterised by the composition of the magnetic material metals or alloys
    • G11B5/70615Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer characterised by the composition of the magnetic material metals or alloys containing Fe metal or alloys

Landscapes

  • Engineering & Computer Science (AREA)
  • Metallurgy (AREA)
  • Magnetic Record Carriers (AREA)
  • Hard Magnetic Materials (AREA)
  • Paints Or Removers (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To obtain grains having uniform grain size without mixing of tree- like grains or without grain crossing, by a method wherein aqueous solution of ferrous salt and aqueous solution of alkali are reacted and oxidation is performed by gas passing, and needle crystal including Si, Cr and Ni is produced. CONSTITUTION:Aqueous solution of ferrous salt and aqueous solution of alkali are reacted thereby suspension including Fe(OH)2 in pH 11 or more is obtained. Gas including oxygen passes through the suspension and oxidation is performed thereby needle crystal alpha-FeOOH grains are produced. Water-soluble silicate of 0.1-1.7atom% in Si equivalent to Fe, water-soluble chrome salt of 0.1-5.0 atom% in Cr equivalence to Fe and water-soluble nickel salt of 0.1-7.0atom% in Ni equivalence to Fe are added to the liquid previously. The grains are separated from the mother liquor and then suspended in water. Phosphate salt and water-soluble silicate are added in the suspension state of pH 8 or more, and then the pH value is adjusted thereby grains including Si, Cr and Ni are obtained in coated state by P compound and Si compound. Grains of alpha- Fe2O3 are made and then heated and reduced thereby magnetic grains of needle crystal iron alloy are obtained.

Description

【発明の詳細な説明】 本発明は、オーディオ、ビデオ等の磁気記録用磁性材料
、特に、ビデオ用の磁性材料として最適である針状晶を
有し、粒度が均斉であり樹枝状粒子が混在しておらず粒
子のからみ合い等がなく、その結果、がさ密度が大きい
ものであり、且つ、微粒子で比表面積が大きく粒子表面
並びに粒子内部の結晶性の度合が高められ実質的に高密
度なものであり、しかも、高い保磁力Haと大きな飽和
磁化σSとを有するsl、Or、I・11及びPを含有
する針状晶鉄合金磁性粒子粉末及びその製造法に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides a magnetic material for magnetic recording of audio, video, etc., which has acicular crystals that are most suitable as a magnetic material for video, has uniform particle size, and has dendritic particles mixed therein. There is no entanglement of particles, and as a result, the bulk density is large, and the particles are fine and have a large specific surface area, and the degree of crystallinity on the particle surface and inside the particles is increased, resulting in a substantially high density. The present invention relates to an acicular iron alloy magnetic particle powder containing sl, Or, I.11, and P, which has a high coercive force Ha and a large saturation magnetization σS, and a method for producing the same.

磁気記録媒体の製造に際して、本発明により得られるS
i、、Or、 Ni及びPを含有する針状晶鉄合金磁性
粒子粉末を用いた場合には、針状晶を有し、粒度が均斉
であり、樹枝状粒子が混在しておらず粒子のからみ合い
等がなく、その結果、がさ密度が大きいものであり、且
つ、飯粒子で比表面積が大きく粒子表面並びに粒子内部
の結晶性の度合カ高められ実質的に高密度なものであり
、しかも、高い保磁力Hcと大きな飽和磁化σBとを有
することに起因して、磁性粒子のビークル中での分散性
、塗膜中での配向性及び充填性が極めて優れており、磁
気テープの記録再生時に生じるノイズレベルが低く、且
つ、高出力特性が得られる優れた磁気記録媒体を得るこ
とができる。
When manufacturing magnetic recording media, S obtained by the present invention
i, Or, When using acicular iron alloy magnetic particle powder containing Ni and P, it has acicular crystals, the particle size is uniform, there are no dendritic particles mixed, and the particle size is small. There is no entanglement, etc., and as a result, the bulk density is large, and the specific surface area of the grains is large, and the degree of crystallinity on the particle surface and inside the particles is increased, and the density is substantially high. Moreover, due to the high coercive force Hc and large saturation magnetization σB, the dispersibility of the magnetic particles in the vehicle, the orientation and filling properties in the coating film are extremely excellent, and the recording properties of the magnetic tape are improved. An excellent magnetic recording medium with low noise level during reproduction and high output characteristics can be obtained.

近年、ビデオ用、オーディオ用磁気記録再生用機器の長
時間記録化、小型軽量化が激化しており、特に、昨今G
こおけるVTR(ビデオ・テープ・レコーダー)の普及
は目覚しく1.長時間記録化並びに小型軽量化を目指し
たVTRの開発が盛んに行われており、一方においては
、磁気記録媒体である磁気テープに対する高性能化、高
密度記録化の要求が益々高まってきている。
In recent years, magnetic recording and reproducing equipment for video and audio has become increasingly compact and lightweight.
The spread of VTRs (video tape recorders) in Korea is remarkable.1. VTRs are being actively developed with the aim of recording for longer periods of time and being smaller and lighter.On the other hand, there is an increasing demand for higher performance and higher recording density for magnetic tape, which is a magnetic recording medium. .

即ち、磁気記録媒体の高画像画質、高出力特性、殊に周
波数特性の向上及びレイズレベルの低下が要求され、そ
の為には、残留磁束密度Brの向上、高保磁力He化並
びに、分散性、充填性、テープ表面の平滑性の向上が必
要であり、益々S/N比の向上が要求されてきている。
That is, magnetic recording media are required to have high image quality, high output characteristics, especially improved frequency characteristics, and lowered raise levels. It is necessary to improve the filling property and the smoothness of the tape surface, and there is an increasing demand for an improvement in the S/N ratio.

磁気記録媒体のこれら緒特性は磁気記録媒体に使用され
る磁性材料と密接な関係を持っており、例えば、日経エ
レクトロニクス(1976年)5月6日号第82頁〜1
05頁に掲載されている「ビデオ及びオーディオ用磁気
テープの最近の進歩」という文献中、第83〜84頁に
記載の「ビデオ テープ レコーダの画質の内テープに
よって変化する特性で主要なものは、■SZN比、■ク
ロマ・ノイズ、■ビデオ周波数特性−である。
These characteristics of magnetic recording media are closely related to the magnetic materials used in the magnetic recording media, and for example, Nikkei Electronics (1976) May 6th issue, pages 82-1.
In the document ``Recent Advances in Video and Audio Magnetic Tapes'' published on page 05, ``Among the image quality of video tape recorders, the main characteristics that change depending on the tape are as described on pages 83-84. ■SZN ratio, ■Chroma noise, and ■Video frequency characteristics.

・・・・・・・・−これら画質を表す量は、テープ、ヘ
ッド系の電磁変換特性によって決まり、電磁変換特性は
テープの物理特性と相関を持っている。更にテープの物
理特性は磁性材料によって決まる要素が大きい。」とい
う記載等から明らかである。
--- These quantities representing image quality are determined by the electromagnetic conversion characteristics of the tape and head system, and the electromagnetic conversion characteristics have a correlation with the physical characteristics of the tape. Furthermore, the physical properties of the tape are largely determined by the magnetic material. It is clear from the statement, etc.

上述した通り、磁気記録媒体の高画像画質等の緒特性は
、使用される磁性材料と密接な関係を有するものであり
、磁性材料の特性改善が強く望まれている。
As mentioned above, the characteristics of magnetic recording media, such as high image quality, are closely related to the magnetic materials used, and there is a strong desire to improve the characteristics of magnetic materials.

今、磁気記録媒体の緒特性と使用される磁性材料の特性
との関係について詳述ずれは次の通りである。
The following is a detailed explanation of the relationship between the characteristics of the magnetic recording medium and the characteristics of the magnetic material used.

ビデオ用磁気記録媒体として高画像画質を得る為には、
前出の日経エレクトロニクスの記載からも明らかな通り
、■ビデオS/N比 ■クロマ・ノイズ ■ビデオ周波
数特性の向上が要求される。
In order to obtain high image quality as a magnetic recording medium for video,
As is clear from the above-mentioned Nikkei Electronics description, improvements in ■video S/N ratio, ■chroma noise, and ■video frequency characteristics are required.

ビデオS/N比の向上をはかる為には、磁性粒子粉末の
微粒子化及びそのビークル中での分散性、塗膜中での配
向性及び充填性を向上させること、並びに、磁気記録媒
体の表面の平滑性を改良することが重要である。
In order to improve the video S/N ratio, it is necessary to make the magnetic particles finer, improve their dispersibility in the vehicle, improve their orientation and filling properties in the coating film, and improve the surface of the magnetic recording medium. It is important to improve the smoothness of the surface.

この事実は、前出日経エレクトロニクス第85頁の「輝
度信号のSN比(ON比)に関係しているテープの物理
量としては、単位体積当りの平均粒子数とその分散状態
(分散性)及び表面の平滑性がある。表面性、分散性が
一定なら平均粒子数の平方根に比例してSN比は良くな
るので、粒子体積が小さく、かつ充てん度の高くできる
磁性粉はど有利である。」等の記載からも明らかである
This fact is based on the aforementioned Nikkei Electronics, p. 85, ``The physical quantities of the tape that are related to the SN ratio (ON ratio) of the luminance signal are the average number of particles per unit volume, their dispersion state (dispersibility), and the surface If the surface properties and dispersibility are constant, the S/N ratio will improve in proportion to the square root of the average number of particles, so magnetic powders with small particle volumes and high packing are advantageous. It is clear from the descriptions such as.

即ち、ビデオS/Nの向上をはかる一つの方法としては
磁気記録媒体に起因するノイズレベルを低下させること
が重要であり、そのためには、上記記載から明らかなよ
うに使用される磁性材料である針状磁性粒子粉末の粒子
サイズを微細化する方法が有効であることが知られてい
る。
That is, as one method for improving the video S/N, it is important to reduce the noise level caused by the magnetic recording medium, and for this purpose, as is clear from the above description, it is necessary to reduce the noise level caused by the magnetic recording medium. It is known that a method of reducing the particle size of acicular magnetic particles is effective.

磁性粒子粉末の粒子サイズを表す一般的な方法として粒
子粉末の比表面積の値がしばしば用いられるが磁気記録
媒体に起因するノイズレベルが磁性粒子粉末の比表面積
が大きくなる程、低くなる傾向にあることも一般的に知
られているところである。
The value of the specific surface area of the magnetic particles is often used as a general method of expressing the particle size of the magnetic particles, but the noise level caused by the magnetic recording medium tends to decrease as the specific surface area of the magnetic particles increases. This is also generally known.

この現象は、例えば電子通信学会技術研究報告MR81
−11第27頁26−9の「rlg 、ろ」等に示され
ている。「Fig、3」はCO被着ml状晶マグヘマイ
ト粒子粉末における粒子の比表面積とノイズレベルとの
関係を示す図であり、粒子の比表面積が大きくなる程ノ
イズレベルは直線的に低下している。
This phenomenon can be seen, for example, in IEICE technical research report MR81.
-11, page 27, 26-9, "rlg, ro" etc. "Fig. 3" is a diagram showing the relationship between the specific surface area of particles and the noise level in CO-coated ml-shaped maghemite particle powder, and the noise level decreases linearly as the specific surface area of the particles increases. .

この関係は、針状晶鉄磁性粒子粉末及び全1状晶合金磁
性粒子粉末についても同様に言えることである。
This relationship holds true for the acicular iron magnetic particles and the all monomorphic alloy magnetic particles.

磁性粒子粉末のビークル中での分散性、塗膜中での配向
性及び充填性を向上させる為には、ビークル中に分散さ
せる磁性粒子粉末が針状晶を有し、粒度が均斉であり、
樹枝状粒子が混在しておらず粒子のからみ合い等がなく
、その結果、かさ密度が大きいことが要求される。
In order to improve the dispersibility of the magnetic particles in the vehicle, the orientation and filling properties in the coating film, it is necessary that the magnetic particles dispersed in the vehicle have acicular crystals and have a uniform particle size.
It is required that dendritic particles are not mixed, there is no entanglement of particles, etc., and as a result, the bulk density is high.

次に、クロマ・ノイズの向上をはかる為には、磁気記録
媒体の表面性の改良が重要であり、その為には分散性、
配向性の良い磁性粒子粉末がよく、そのような磁性粒子
粉末としては針状晶を有し、粒度が均斉であり、樹枝状
粒子が混在しておらず粒子のからみ合い等がなく、その
結果、かさ密度が大きいことが要求される。
Next, in order to improve chroma noise, it is important to improve the surface properties of magnetic recording media.
Magnetic particle powder with good orientation is preferred, and such magnetic particle powder has acicular crystals, uniform particle size, no dendritic particles are mixed, there is no entanglement of particles, etc., and as a result, , high bulk density is required.

この事実は、前出日経エレクトロニクス第85頁の[ク
ロマ・ノイズはテープ表面性の比較的長周期の粗さに起
因しており、塗布技術との関係が深い。分散性、配向性
の良い粉の方が表面性を良くしやすい。」等の記載から
も明らかである。
This fact is explained in the aforementioned Nikkei Electronics, p. 85 [Chroma noise is caused by relatively long-period roughness of the tape surface and is closely related to coating technology. Powders with good dispersibility and orientation are easier to improve surface properties. It is clear from the statements such as ".

更に、ビデオ周波数特性の向上をはかる為には、磁気記
録媒体の保磁力Hcが高く、且つ、飽和残留磁束密度B
rが大きいことが必要である。
Furthermore, in order to improve the video frequency characteristics, the magnetic recording medium must have a high coercive force Hc and a saturated residual magnetic flux density B.
It is necessary that r be large.

磁気記録媒体の保磁力Hcを高める為には、磁性粒子粉
末の保磁力Haができるだけ高いことが要求される。
In order to increase the coercive force Hc of the magnetic recording medium, it is required that the coercive force Ha of the magnetic particles be as high as possible.

飽和残留磁束密度Brは、磁性粒子粉末の飽和磁化σB
ができるだけ大きく、磁性粒子粉末のビークル中での分
散性、塗膜中での配向性及び充填性に依存している。
The saturated residual magnetic flux density Br is the saturation magnetization σB of the magnetic particle powder.
is as large as possible and depends on the dispersibility of the magnetic particles in the vehicle, orientation and filling properties in the coating film.

この事実は、前出日経エレクトロニクス第84〜85頁
の「最大出力は、テープの飽和残留磁束精度BrとHa
、及び実効間隔によって決まる。
This fact is based on the above-mentioned Nikkei Electronics, pages 84-85, ``The maximum output depends on the saturation residual magnetic flux precision Br and Ha of the tape.''
, and the effective interval.

Brが大きければ再生ヘッドに入る磁束が多くなり出力
は増加する。・・・・・・・・・。Hcを増加させると
自己減磁は少なくなり、出力は増加する。・・・・・・
・・・。
If Br is large, more magnetic flux enters the reproducing head and the output increases.・・・・・・・・・・・・As Hc increases, self-demagnetization decreases and output increases.・・・・・・
....

テープのBrを大きくするには、磁性体が完全な状態(
例えば単結晶の状態)で持っている飽和磁化量工8(σ
8)が大きいことがまず基本となる。
To increase the Br of the tape, the magnetic material must be in a perfect state (
For example, the amount of saturation magnetization 8 (σ
8) is large.

・・・・・・・・・。同じ材質でも、・・・・・・・・
・磁性粉の割合を示す充填度などによってもBrは変わ
る。また、角形比(残留磁化量/飽和磁化量)に比例す
るので、これが大きいことが要求される。・・・・・・
・・・。角型比を高くするには、粒子の大きさが揃って
おり、針状比が大きく、磁場配向性に優れでいる磁性粉
が有利である。・・・・・・・・・」等の記載からも明
らかである0 上記に詳述した通り、磁気記録媒体の高画像画質、高出
力特性、殊に、周波数特性の向上、及び、ノイズレベル
の低下等の高性能化の要求を満たす為には、使用される
磁性粒子粉末の特性としては、針状晶を有し、粒度が均
斉であり樹枝状粒子が混在しておらず、粒子のからみ合
い等がなく、且つ、比表面積が大きく粒子表面並びに粒
子内部の結晶性の度合が高められ実質的に高密度なもの
であり、しかも、高い保磁力Hcと大きな飽和磁化0日
を有することが必要である。
・・・・・・・・・・・・Even if the material is the same...
- Br also changes depending on the degree of filling, which indicates the proportion of magnetic powder. Furthermore, since it is proportional to the squareness ratio (amount of residual magnetization/amount of saturation magnetization), this is required to be large.・・・・・・
.... In order to increase the squareness ratio, it is advantageous to use magnetic powder that has uniform particle sizes, a large acicular ratio, and excellent magnetic field orientation. It is clear from the descriptions such as ``...'' etc. 0 As detailed above, improvements in high image quality, high output characteristics, especially frequency characteristics, and noise level of magnetic recording media In order to meet the demands for higher performance, such as lowering the It is free from entanglement, has a large specific surface area, has a high degree of crystallinity on the particle surface and inside the particle, and has a substantially high density, and has a high coercive force Hc and a large saturation magnetization of 0 days. is necessary.

ところで、従来から磁気記録媒体に用いられている磁性
材料は、マグネタイト、マグネタイト、二酸化クロム等
の磁性粉末であり、これらの磁性粉末は飽和磁化σ87
0〜85emu/g、保磁力Ha250〜5000eを
有するものである。
By the way, the magnetic materials conventionally used in magnetic recording media are magnetic powders such as magnetite, magnetite, and chromium dioxide, and these magnetic powders have a saturation magnetization of σ87.
It has a coercive force Ha of 0 to 85 emu/g and a coercive force Ha of 250 to 5000 e.

殊に、上記酸化物磁性粒子粉末のσSは最大85θmu
/り程度であり、一般にはσs70〜QQemu/gで
あることが再生出力並びに記録密度に限度を与えている
主因となっている。
In particular, the σS of the oxide magnetic particles is at most 85θmu
Generally speaking, σs is about 70 to QQemu/g, which is the main reason for limiting the reproduction output and recording density.

更にCOを含有しているCo−マグネタイトやCO−マ
グヘマイト磁性粒子も使用されているが、これらの磁性
粒子粉末は保磁力Hcが400〜8000θと高いとい
う特徴を有するが、これに反して飽和磁化σBが60〜
8Q emu/gと低いものである。
Furthermore, Co-magnetite and CO-maghemite magnetic particles containing CO are also used, but these magnetic particle powders have a high coercive force Hc of 400 to 8000θ, but on the other hand, saturation magnetization σB is 60~
It is as low as 8Q emu/g.

最近、高出力並びに高密度記録に適する特性を備えた磁
性粒子粉末すなわち、飽和磁化σBが大きく、且つ、高
い保磁力を有する磁性粒子粉末の開発が盛んであり、そ
のような特性を有する磁性粒子粉末は、一般に、針状晶
含水酸化鉄粒子、針状晶酸化鉄粒子若しくは、これらに
鉄以外の異種金属を含むものを還元性ガス中350°C
程度で加熱還元することにより得られる針状晶鉄磁性粒
子粉末若しくは針状晶合金磁性粒子粉末である。
Recently, there has been active development of magnetic particles with characteristics suitable for high output and high density recording, that is, magnetic particles with large saturation magnetization σB and high coercive force. Powders are generally acicular crystalline hydrated iron oxide particles, acicular crystalline iron oxide particles, or those containing different metals other than iron, heated at 350°C in a reducing gas.
It is an acicular crystal iron magnetic particle powder or an acicular crystal alloy magnetic particle powder obtained by heating and reducing the powder to a certain extent.

これら針状晶鉄磁性粒子粉末若しくは針状晶合金磁性粒
子粉末は、従来用いられている磁性酸化鉄粒子粉末並び
にCo含有磁性酸化鉄粒子粉末に比較して飽和磁化σB
が著しく大きく、保磁力Haが高いという特徴を有して
おり、磁気記録媒体として塗布した場合、大きい残留磁
束密度Brと高い保磁力Haを有する為に高密度記録、
高出力特性が得られるので注目をあびており近年実用化
がなされている。
These acicular iron magnetic particles or acicular alloy magnetic particles have a higher saturation magnetization σB than conventionally used magnetic iron oxide particles and Co-containing magnetic iron oxide particles.
It has the characteristics of extremely large Br and high coercive force Ha, and when coated as a magnetic recording medium, it has a large residual magnetic flux density Br and a high coercive force Ha, making it suitable for high-density recording.
It has attracted attention because of its high output characteristics, and has been put into practical use in recent years.

高い保磁力1(cと大きな飽和磁化σBを有する針状晶
鉄磁性粒子粉末若しくは針状晶合金磁性粒子粉末は、前
述した通り、針状晶を有し、粒度が均斉であり、樹枝状
粒子が混在しておらず粒子のからみ合い等がないことが
必要であり、このような特性を備えた磁性粒子粉末を得
るためには、先ず出発原料である針状晶α−Felon
粒子が粒度が均斉であり、樹枝状粒子が混在していない
ことが必要であり、次にいかにしてこの優れた特性を保
持継承させながら加熱還元して針状晶鉄磁性粒子粉末若
しくは針状晶合金磁性粒子粉末とするかが大きな胛題と
なってくる。
As described above, the acicular iron magnetic particles or the acicular alloy magnetic particles having a high coercive force 1 (c) and a large saturation magnetization σB have acicular crystals, uniform particle size, and dendritic particles. It is necessary that there be no mixture of particles or entanglement of particles, and in order to obtain magnetic particle powder with such characteristics, first the starting material, acicular α-Felon
It is necessary for the particles to be uniform in particle size and free from dendritic particles, and then how to maintain and inherit these excellent properties while reducing heat to produce acicular ferromagnetic particles or acicular ferromagnetic particles. The big question is how to make crystal alloy magnetic particles.

従来pH11以上のアルカリ領域で針状晶α−FeOO
H粒子を製造する方法として最も代表的な公知方法は、
第一鉄塩水溶液に当量以上のアルカリ溶液を加えて得ら
れるFe(oH)2を含む水溶液をpH11jJ上にて
80°C以下の温度で酸化反応を行うことにより、針状
晶α−FθOOH粒子を得るものである。
Conventionally, needle-like α-FeOO is produced in the alkaline region with a pH of 11 or higher.
The most typical known method for producing H particles is
Acicular α-FθOOH particles are obtained by oxidizing an aqueous solution containing Fe(oH)2 obtained by adding an equivalent or more amount of alkaline solution to a ferrous salt aqueous solution at a temperature of 80°C or less at pH 11jJ. This is what you get.

この方法により得られた針状晶α−FeOOH粒子粉末
は長さ05〜1.5μ程度の針状形態を呈した粒子であ
るが、樹枝状粒子が混在して皓り、また粒度から言えば
、均斉な粒度を有した粉子であるとは言い難い。このよ
うに、粒度が不均斉であり、また樹枝状粒子が混在して
いる針状晶α−FeOOH粒子が生成する原因について
以下に考察する。
The acicular α-FeOOH particles obtained by this method have a needle-like shape with a length of about 0.5 to 1.5 μm, but they are coarse with dendritic particles mixed in, and in terms of particle size. , it is difficult to say that the powder has a uniform particle size. The reason why acicular α-FeOOH particles having asymmetric particle sizes and dendritic particles are generated will be discussed below.

一般に、針状晶α−FeOOH粒子の生成は、φ(状晶
α−FeOOH核の発生と該針状晶α−11eoOH核
の成長の二段階からなる。そして、針状晶α−FeOO
H核は、第一鉄塩水溶液とアルカリとを反応して得られ
るFe(OH)2と溶存酸素との反応により生成するが
、溶存酸素との接触反応が部分的、且つ、不均一である
為、針状晶α−FeOOH核の発生と該針状晶α−Fe
OOH核の成長が同時に生起し、しかも、α−FeOO
H生成反応が終了するまでに幾重にも新しい核が発生す
るので、得られた針状晶α−FeOOH粒子は粒度が不
均斉であり、また樹枝状粒子力く混在したものになると
考えられる。
Generally, the generation of acicular α-FeOOH particles consists of two steps: the generation of φ(-shaped α-FeOOH nuclei and the growth of the acicular α-FeOOH nuclei.
H nuclei are generated by the reaction between Fe(OH)2 obtained by reacting a ferrous salt aqueous solution with an alkali and dissolved oxygen, but the contact reaction with dissolved oxygen is partial and non-uniform. Therefore, the generation of acicular α-FeOOH nuclei and the acicular α-Fe
Growth of OOH nuclei occurs simultaneously, and α-FeOO
Since many new nuclei are generated until the H production reaction is completed, the obtained acicular α-FeOOH particles are considered to have asymmetric particle sizes and to have a strong mixture of dendritic particles.

また、前記方法における反応水溶液中の反応鉄(Fe”
)9度は、通常、0.2 mol/B程度であり、力)
つ、針状晶α−FeOOH粒子の生成に、長時間を必要
とする。      − 即ち、前記方法によれば、(3,2mob/l程度のう
すい反応鉄濃度においてさえも、粒度が不均斉であり、
樹枝状粒子が混在している針状晶α−I+’eOOH粒
子粉末が生成しやすかったのである。
In addition, the reactive iron (Fe”) in the reaction aqueous solution in the above method
) 9 degrees is usually about 0.2 mol/B, and force)
First, it takes a long time to generate acicular α-FeOOH particles. - That is, according to the above method, the particle size is asymmetric even at a dilute reaction iron concentration of about 3.2 mob/l,
Acicular α-I+'eOOH particles containing dendritic particles were likely to be produced.

本発明者は、上述したところに鑑み、針状晶を有し、粒
度が均斉であり、樹枝状粒子が混在しておらず粒子のか
らみ合い等がなく、且つ、比表面積が大きく、粒子表面
並びに粒子内部の結晶性の度合が高められた実質的に高
密度なものであり、しかも、高い保磁力Haと大きな飽
和磁化σBを有する針状晶合金磁性粒子粉末を得るべく
、種々検討を重ねてきた。そして、本発明者は、第一鉄
塩水溶液とアルカリ水溶液とを反応させて得られたFe
(OH)2を含むpH11以上の懸濁液に酸素含有ガス
を通気して酸化することにより針状晶α−FeOOH粒
子を生成させるにあたり、前記アルカリ水溶液及び酸素
含有ガスを通気して酸化反応を行わせる前の前記懸濁液
のいずれかの液中に、水可溶性ケイi塩をFeに対しS
1換算で0.1〜17原子外添加しておき、且つ、前記
第一鉄塩水溶液、前記アルカリ水溶液、酸素含有ガスを
通気して酸化反応を行わせる前の前記懸濁液及び酸素含
有ガスを通気して酸化反応を行わせている前記反応溶液
のいずれかの液中に水可溶性クロム塩をFeに対しOr
換算で01〜50原子係及び水可溶性ニッケル塩をFe
に対しN1換算で0.1〜ZO原子多添加しておくこと
により、Sl、Or及びN1を含有する針状晶α−Fe
OOH粒子を生成させ、該S1、Or及びN1を含有す
る針状晶α−FθOOH粒子を母液から分離した後水中
に懸濁させ、該懸濁液のpH値8以上の状態で81、O
r及びNiを含有する針状晶α−FeOOH粒子に対し
、0.1−2 wt% (po、に換算)のリン酸塩を
添加し、次いで0.1〜ZQwt%(S102に換算)
の水可溶性ケイ酸塩を添加した後、懸濁液のpH値を6
〜7に調製することによりP化合物と81化合物で被覆
されたSl、Or及びN1を含有する針状晶α−FeO
OH粒子を得、該粒子をp別、乾燥し、次いで非還元性
雰囲気中で加熱処理してP化合物と81化合物で被覆さ
れたsl、Or及びN1を含有する針状晶α−Fe20
s粒子とした後、該粒子を還元性ガス中で加熱還元する
ことによって針状晶を有し、粒度が均斉であり、樹枝状
粒子が混在しておらず粒子のからみ合い等がなく、且つ
、比表面積が大きく粒子表面並びに粒子内部の結晶性の
度合が高められた実質的に高密度なものであり、しかも
、高い保磁力Heと大きな飽和磁化σ8とを有する針状
晶合金磁性粒子粉末が得られることを見出し本発明を完
成したものである。
In view of the foregoing, the present inventors have found a material that has acicular crystals, uniform particle size, no dendritic particles, no intertwining of particles, etc., and a large specific surface area and a particle surface. In addition, various studies have been carried out to obtain acicular alloy magnetic particles that have a substantially high density with an increased degree of crystallinity inside the particles, and also have a high coercive force Ha and a large saturation magnetization σB. It's here. Then, the present inventor discovered that Fe obtained by reacting a ferrous salt aqueous solution and an alkaline aqueous solution
When generating acicular α-FeOOH particles by passing an oxygen-containing gas through a suspension containing (OH)2 and having a pH of 11 or higher, the oxidation reaction is carried out by passing the alkaline aqueous solution and oxygen-containing gas through the suspension. A water-soluble silica salt is added to any of the above suspensions before the S reaction to Fe.
The suspension and the oxygen-containing gas have been added with 0.1 to 17 atoms in terms of 1, and the ferrous salt aqueous solution, the alkaline aqueous solution, and the oxygen-containing gas are passed through the suspension to perform an oxidation reaction. A water-soluble chromium salt is added to Fe in any of the reaction solutions in which the oxidation reaction is carried out by aeration.
01 to 50 atoms and water-soluble nickel salt in terms of Fe
By adding 0.1 to ZO atoms in terms of N1 to the acicular crystal α-Fe containing Sl, Or and N1,
OOH particles are generated, and the acicular α-FθOOH particles containing S1, Or, and N1 are separated from the mother liquor, and then suspended in water.
To the acicular α-FeOOH particles containing r and Ni, 0.1-2 wt% (in terms of po) of phosphate was added, followed by 0.1-ZQwt% (in terms of S102).
After adding the water-soluble silicate, the pH value of the suspension was adjusted to 6.
Acicular α-FeO containing Sl, Or and N1 coated with P compound and 81 compound by preparing ~7
OH particles are obtained, the particles are separated from P, dried, and then heat treated in a non-reducing atmosphere to obtain acicular α-Fe20 containing sl, Or and N1 coated with P and 81 compounds.
After forming s particles, the particles are heated and reduced in a reducing gas to have needle-like crystals, uniform particle size, no dendritic particles mixed, no entanglement of particles, etc. , an acicular crystal alloy magnetic particle powder having a large specific surface area, a substantially high density with an increased degree of crystallinity on the particle surface and inside the particle, and also having a high coercive force He and a large saturation magnetization σ8. The present invention was completed by discovering that the following can be obtained.

即ち、本発明は、Sl、0rXNi及びPを含有する針
状晶鉄合金磁性粒子からなる磁気記録用針状晶鉄合金磁
性粒子粉末及び第一鉄塩水溶液とアルカリ水溶液とを反
応させて得られたFe(OH)、を会心pH11以上の
懸濁液に酸素含有ガスを通気して酸化することにより針
状晶α−Fe00)(粒子を生成させるにあたり、前記
アルカリ水溶液及び酸素含有ガスを通気して酸化反応を
行わせる前の前記懸濁液のいずれかの液中に、水可溶性
ケイ酸塩をFeに対しS1換算で01〜1.7原子%添
加しておき、且つ、前記第一鉄塩水溶液、前記アルカリ
水溶液、酸素含有ガスを通気して酸化反応を行わせる前
の前記懸濁液及び酸素含有ガスを通気して酸化反応を行
わせている前記反応溶液のいずれかの液中に水可溶性ク
ロム塩をFeに対しOr換算で01〜500r及びN1
を含有する針状晶α−1ieoOH粒子を生成させ、該
S1、Or及びN1を含有する針状晶α−FeOOH粒
子を母液から分離した後水中に懸濁さぜ、該懸濁液のp
I(値8以上の状態で81、Or及びN1を含有する針
状晶α−FeOOH粒子に対し、0.1〜2wt% (
PO,に換W)のリン酸塩を添加し、次いで01〜7.
0wt外(5to2に換算)の水可溶性ケイ酸塩を添加
した後、懸濁液のpH値を3〜7に調製することにより
P化合物と81化合物で被覆されたSi 、−Or及び
Nj、を含有する針状晶α−FeOOH粒子を得、該粒
子をp別、乾燥し、次いで、非還元性雰囲気中で加熱処
理してP化合物と81化合物で被覆されたSl、Or及
びNiを含有する針状晶α−F0203粒子とした後、
該粒子を還元性ガス中で加熱還元してSi、Or、、N
i及びPを含有する針状晶鉄合金磁性粒子を得ることに
よりなる磁気記録用針状晶鉄合金磁性粒子粉末の製造法
である。
That is, the present invention provides an acicular iron alloy magnetic particle powder for magnetic recording comprising acicular iron alloy magnetic particles containing Sl, 0rXNi and P, which is obtained by reacting an aqueous ferrous salt solution with an aqueous alkaline solution. The aqueous alkali solution and oxygen-containing gas are oxidized by passing an oxygen-containing gas through a suspension of Fe(OH) having a critical pH of 11 or higher to produce acicular crystal α-Fe00) particles. A water-soluble silicate is added in an amount of 01 to 1.7 atomic % based on Fe in terms of S1 to any one of the suspensions before the oxidation reaction is carried out, and the first In any one of the iron salt aqueous solution, the alkaline aqueous solution, the suspension before an oxidation reaction is carried out by passing an oxygen-containing gas through it, and the reaction solution before an oxidation reaction is carried out by passing an oxygen-containing gas through it. 01 to 500r and N1 in terms of Or for Fe with water-soluble chromium salt
The acicular α-FeOOH particles containing S1, Or and N1 are separated from the mother liquor and then suspended in water, and the p of the suspension is
I (0.1 to 2 wt% relative to acicular α-FeOOH particles containing 81, Or, and N1 with a value of 8 or more)
01-7.
After adding a water-soluble silicate other than 0wt (in terms of 5to2), the pH value of the suspension was adjusted to 3 to 7 to remove Si, -Or and Nj coated with P compound and 81 compound. Acicular α-FeOOH particles containing P are obtained, the particles are separated from P, dried, and then heat treated in a non-reducing atmosphere to contain Sl, Or and Ni coated with P and 81 compounds. After forming acicular α-F0203 particles,
The particles are heated and reduced in a reducing gas to form Si, Or, N
This is a method for producing acicular iron alloy magnetic particles for magnetic recording by obtaining acicular iron alloy magnetic particles containing i and P.

次に、本発明を完成するに至った技術的背景及び本発明
の構成について述べる。
Next, the technical background that led to the completion of the present invention and the configuration of the present invention will be described.

pH11以上のアルカリ領域で、従来法により生成した
針状晶α−FeOOH粒子は前述した通り、粒度が不均
斉であり、また樹枝状粒子が混在したものである。
As described above, the acicular α-FeOOH particles produced by the conventional method in the alkaline region of pH 11 or higher have asymmetric particle sizes and contain dendritic particles.

本発明者は、長年にわたり針状晶α−FeOOH粒子粉
末の製造及び開発にたずされっているものであるが、そ
の過程において、粒度が均斉であり、樹枝状粒子が混在
していない針状晶α−FeOOH粒子を得ることができ
るという技術を既に確立している。
The present inventor has been involved in the production and development of acicular α-FeOOH particles for many years, and in the process, the inventor has developed acicular α-FeOOH particles with uniform particle size and no dendritic particles. We have already established a technology that allows us to obtain crystalline α-FeOOH particles.

1i1Jち、粒度が均斉であり、樹枝状粒子が混在して
いない針状晶α−FeOOH粒子は、第一鉄塩水溶液と
アルカリ水溶液とを反応させて得られたFe(oH)2
を含む懸濁液に酸素含有ガスを通気して酸化することに
より針状晶α−FeOOH粒子を生成させる方法におい
て、前記アルカリ水溶液及び酸素含有ガスを通気して酸
化反応を行わせる前の前記懸濁液のいずれかの液中に、
水可溶性ケイ酸塩をFeに対しSi@算で01〜17原
子係添加しておくことにより得ることができる(特公昭
55−8461号公報、特公昭55−32652号公報
)。
1i1J, acicular α-FeOOH particles with uniform particle size and no dendritic particles are Fe(oH)2 obtained by reacting a ferrous salt aqueous solution with an alkaline aqueous solution.
In the method of producing acicular α-FeOOH particles by passing an oxygen-containing gas through a suspension containing the aqueous alkali solution and oxidizing it, In any of the turbid liquids,
It can be obtained by adding water-soluble silicate to Fe in an amount of 01 to 17 atoms calculated as Si (Japanese Patent Publication No. 8461/1983, Japanese Patent Publication No. 32652/1983).

従来、pH11以上のアルカリ領域で得られた針状晶α
−FeOOH粒子は、一般に粒度が不均斉で樹枝状粒子
が混在しているが、これは、針状晶α−FeOOH粒子
の前駆体であるF61(OH)2のフロックが不均斉で
あると同時に、ye(oH)2のフロックを構成してい
るhe(oH)、の粒子そのものが不均斉であること、
更に、Fe(oH)、、を含む水溶液から針状晶α−F
eOOE(核粒子の発生と該針状晶α−FeOOH核粒
子の成長が同時に生起し、しかもα−FeOOH生成反
応が終了するまで幾重にも新しい核が発生することに起
因する。
Conventionally, acicular crystals α obtained in an alkaline region with a pH of 11 or higher
-FeOOH particles generally have asymmetric particle sizes and a mixture of dendritic particles, but this is because the flocs of F61(OH)2, the precursor of acicular α-FeOOH particles, are asymmetric and , the particles of he(oH) constituting the floc of ye(oH)2 are themselves asymmetric;
Furthermore, acicular crystals α-F are obtained from an aqueous solution containing Fe(oH).
eOOE (This is due to the fact that the generation of core particles and the growth of the acicular α-FeOOH core particles occur simultaneously, and new nuclei are generated many times over until the α-FeOOH production reaction is completed.

前述した様に、第一鉄塩水溶液とアルカリ水溶液とを反
応させて得られたF e (OH)2を含む懸濁液に酸
素含有ガスを通気して酸化することにより針状晶α−F
eOOH粒子を生成させるにあたり、前記アルカリ水溶
液及び酸素含有ガスを通気して酸化反応を行わせる前の
前記懸濁液のいずれかの液中に水可溶性ケイ酸塩をFe
に対しs1換算でo1〜1.7原子%となるように添加
した場合には、Fe(oN()2のフロックを十分微細
で均斉なフロックにし、また、Fe(OH)2のフロッ
クを構成しているye(oH)2粒子そのものを十分微
細で均斉な粒子とすることができ、更に、水可溶性ケイ
酸塩がFe (oH)2を含む水溶液から針状晶α−7
eOOH粒子を生成する際の酸化反応を抑制する効果を
有することに起因して、針状晶α−FeOOH核粒子の
発生と該針状晶α−FeOOH核粒子の成長を段階的に
行うことができるため、粒度が均斉であり、また、樹枝
状粒子が混在しない針状晶α−FeOOH粒子を得るこ
とができるのである。
As mentioned above, acicular crystals α-F are formed by passing an oxygen-containing gas through a suspension containing F e (OH)2 obtained by reacting a ferrous salt aqueous solution with an alkaline aqueous solution to oxidize it.
In producing eOOH particles, water-soluble silicate is added to any of the suspensions before the alkali aqueous solution and oxygen-containing gas are passed through to perform the oxidation reaction.
When added in an amount of o1 to 1.7 atomic % calculated as s1 to The ye(oH)2 particles themselves can be made into sufficiently fine and uniform particles, and furthermore, the water-soluble silicate can be made into acicular crystals α-7 from an aqueous solution containing Fe(oH)2.
Because it has the effect of suppressing the oxidation reaction when generating eOOH particles, it is possible to generate acicular α-FeOOH core particles and grow the acicular α-FeOOH core particles in stages. Therefore, it is possible to obtain acicular α-FeOOH particles with uniform particle size and without dendritic particles mixed therein.

上記の方法において使用されろ水可溶性ケイ酸塩として
はナトリウム、カリウムのケイ酸塩がある。
The filtrate soluble silicates used in the above method include sodium and potassium silicates.

アルカリ水溶液への水可溶性ケイ酸塩の添加量は、Fe
に対しSi換算で01〜1.7原子外である。
The amount of water-soluble silicate added to the alkaline aqueous solution is Fe
01 to 1.7 atoms in terms of Si.

添加した水可溶性ケイ酸塩はほぼ全量か生成針状晶α−
FeOOH粒子中に含有され、後出の表2Gこ示される
通り、得られた針状晶α−F1300H粒子は、添加量
とはぼ同景のFeに対しS1換算で0206〜106原
子係を含有している。
Almost all of the added water-soluble silicate was formed into acicular crystals α-
Contained in the FeOOH particles, as shown in Table 2G below, the obtained acicular α-F1300H particles contain 0206 to 106 atoms in terms of S1 to Fe, which is approximately the same as the amount added. are doing.

水可溶性ティ酸塩の添加量がFeに対しS1換算で01
原子外以下である場合には、粒度が均斉で樹枝状粒子が
混在していない針状晶粒子を得る効果は十分ではなく、
17原子外以上である場合は粒状のマグネタイト粒子が
混入してくる。
The amount of water-soluble tiate salt added is 01 in terms of S1 relative to Fe.
If the particle size is subatomic or less, the effect of obtaining acicular grains with uniform grain size and no dendritic grains is not sufficient;
If it is more than 17 atoms, granular magnetite particles will be mixed in.

上述した粒度が均斉であり、樹枝状粒子が混在していな
い針状晶α−FθOOH粒子を出発原料とし、該出発原
料を加熱還元することにより得られた全1状晶合金磁性
粒子粉末もまた粒度が均斉であり、樹枝状粉子が混在し
ていないものであるが、その結果、かさ密度か大きく、
塗料化の際の分散性力(よく、且つ、塗膜中での充填性
が高く、残留磁束密度Brが大きくなるという特徴を有
するものであるが、比表面積について言えば高々20’
/g程度である。
All monomorphic alloy magnetic particle powder obtained by using the above-mentioned acicular α-FθOOH particles with uniform particle size and no dendritic particles as a starting material and heating and reducing the starting material is also used. The particle size is uniform and dendritic powder is not mixed, but as a result, the bulk density is large and
Dispersibility when forming into a paint (it has the characteristics of good filling properties in the paint film and a large residual magnetic flux density Br, but the specific surface area is at most 20'
/g.

そこで、本発明者は、粒度が均斉であり、樹枝状粒子が
混在していないSlを含有する針状晶鉄合金磁性粒子粉
末の比表面積を向上させる方法について種々検剃を重ね
た結果、粒度が均斉であり、樹枝状粒子が混在していな
いSlを含有する針状晶α−FθOOH粒子の生成にあ
たり、第一鉄塩水溶液、アルカリ水溶液、酸素含有ガス
を通気して酸化反応を行わせる前のFe(on)2懸濁
液及び酸素含有ガスを通気して酸化反応を行わせている
反応溶液のいずれかの液中に水可溶性クロム塩を添加し
、得られたSi及びOrを含有する針状晶α−FθOO
H粒子を加熱還元した場合には、Siを含有する針状晶
鉄合金磁性粒子粉末の比表面積を向上させることができ
るという知見を得た。
Therefore, the present inventor conducted various tests on methods for improving the specific surface area of acicular iron alloy magnetic particles containing Sl, which have a uniform particle size and do not contain dendritic particles, and found that the particle size In order to generate acicular α-FθOOH particles containing Sl, which are uniform and do not contain dendritic particles, a ferrous salt aqueous solution, an alkaline aqueous solution, and an oxygen-containing gas are passed through the oxidation reaction. A water-soluble chromium salt is added to either of the Fe(on)2 suspension and the reaction solution in which an oxidation reaction is carried out by passing oxygen-containing gas, and the resulting Si and Or containing Acicular crystal α-FθOO
It has been found that when H particles are thermally reduced, the specific surface area of Si-containing acicular iron alloy magnetic particles can be improved.

この現象について、本発明者が行った数多くの実験例か
ら、その一部を抽出して説明すれは、次の通りである。
This phenomenon will be explained by extracting some of the many experimental examples conducted by the present inventors as follows.

図1は、水可溶性クロム塩の添加量とSi及びOrを含
有する針状晶鉄合金磁性粒子粉末及びOrを含有する針
状晶鉄合金磁性粒子粉末の比表面積の関係図である。
FIG. 1 is a diagram showing the relationship between the amount of water-soluble chromium salt added and the specific surface area of acicular iron alloy magnetic particles containing Si and Or and acicular iron alloy magnetic particles containing Or.

即ち、Fe” 1.2 mol/lを含む硫酸第一鉄水
溶液6001を、あらかじめ、反応器中に準備されたケ
イ酸ソーダをFeに対しS1換算で0〜10原子係、硫
酸クロムをFeに対しOr換算で0〜5.0原子係を添
加して得られたNaOH水溶液4001に加え、pH1
3,8においてre(on)2を含む懸濁液を得、該懸
濁液に湿度45℃において毎分10001の空気を通気
して酸化反応を行わせることによりSl及びOrを含有
する針状晶α−FeOOH粒子を生成し、次いで、該粒
子を430℃で4.0時間加熱還元することにより得ら
れたSl及びOrを含有する針状晶鉄合金磁性粒子粉末
及びOrを含有する針状晶合金磁性粒子粉末の比表面積
と硫酸クロムの添加量の関係を示したものである。
That is, ferrous sulfate aqueous solution 6001 containing 1.2 mol/l of Fe was prepared in advance in a reactor with sodium silicate prepared in advance at a ratio of 0 to 10 atoms in terms of S1 to Fe, and chromium sulfate to Fe. In addition to NaOH aqueous solution 4001 obtained by adding 0 to 5.0 atomic ratio in terms of Or,
3.8, a suspension containing re(on)2 was obtained, and the suspension was aerated with air at a rate of 10,001 per minute at a humidity of 45°C to perform an oxidation reaction. Acicular crystalline iron alloy magnetic particle powder containing Sl and Or obtained by producing crystalline α-FeOOH particles and then heating and reducing the particles at 430° C. for 4.0 hours; and acicular crystalline iron alloy magnetic particle powder containing Or. This figure shows the relationship between the specific surface area of crystalline alloy magnetic particles and the amount of chromium sulfate added.

図中、曲線aはS1無添加の場合、曲線す、cは、それ
ぞれSi添加量か0.35原子%、10原子%の場合で
ある。
In the figure, curve a is for the case where no S1 is added, and curves S and C are for the case where the amount of Si added is 0.35 atomic % and 10 atomic %, respectively.

曲線す、cに示されるように81及びOrを併用して添
加した場合には得られるSl及びOrを含有する針状晶
鉄合金磁性粒子粉末の比表面積を著しく向上させること
ができ、この場合、硫酸クロムの添加量の増加に伴って
比表面積が大さくなる傾向を示す。
As shown in curve c, when 81 and Or are added in combination, the specific surface area of the obtained acicular iron alloy magnetic particles containing Sl and Or can be significantly improved, and in this case , the specific surface area tends to increase as the amount of chromium sulfate added increases.

この現象は、図1中のmMaに示されるOrを単独で添
加した場合よりも一層顕著に現われることから本発明者
は社とOrとの相乗効果によるものと考えている。
Since this phenomenon appears more markedly than when Or alone is added, as indicated by mMa in FIG. 1, the inventors believe that this phenomenon is due to the synergistic effect between Or and Or.

上述したように81及びOrを含有する針状晶鉄/ 合金磁性粒子粉末は粒度が均斉であり、樹枝状粒子が混
在しておらず、且つ、比表面積が大きいものであるが、
一方、Orの添加量の増加に伴って保磁力が低下すると
いう傾向があった。
As mentioned above, the acicular iron/alloy magnetic particle powder containing 81 and Or has uniform particle size, does not contain dendritic particles, and has a large specific surface area.
On the other hand, there was a tendency that the coercive force decreased as the amount of Or added increased.

そこで、本発明者は、$1及びOrを含有する針状晶鉄
合金磁性粒子粉末の保磁力を向上させる方法について、
種々検討を重ねた結果、Sl及びOrを含有する針状晶
α−FeOOH粒子の生成にあたり、第一鉄塩水溶液、
アルカリ水溶液、酸素含有ガスを通気して酸化反応を行
わせる前のFe(OH)2懸濁液及び酸素含有ガスを通
気して酸化反応を行わせている反応溶液のいずれかの液
中に水可溶性ニッケル塩を添加し、得られたSl、Cr
及びN1を含有する針状晶α−FeOOH粒子を加熱還
元した場合には、大きな比表面積を維持したままで81
及びOrを含有する針状晶鉄合金磁性粒子粉末の保磁力
を向上させることができるという知見を得た。
Therefore, the present inventors have proposed a method for improving the coercive force of acicular iron alloy magnetic particles containing $1 and Or.
As a result of various studies, we found that ferrous salt aqueous solution,
Water is present in either the alkaline aqueous solution, the Fe(OH)2 suspension before an oxidation reaction is carried out by passing an oxygen-containing gas through it, or the reaction solution in which an oxidation reaction is carried out by passing an oxygen-containing gas through the solution. By adding soluble nickel salt, the obtained Sl, Cr
When acicular α-FeOOH particles containing N1 and N1 were thermally reduced, 81
It has been found that the coercive force of acicular iron alloy magnetic particles containing and Or can be improved.

この現象について、本発明者が行った数多くの実験例か
らその一部を抽出して説明すれば、次の通りである。
This phenomenon will be explained as follows by extracting some of the many experimental examples conducted by the present inventor.

図2は、水可溶性ニッケル壌の添加量と81、Or及び
N1を含有する針状晶鉄合金磁性粒子粉末の保磁力の関
係図である。
FIG. 2 is a diagram showing the relationship between the amount of water-soluble nickel powder added and the coercive force of acicular iron alloy magnetic particles containing 81, Or, and N1.

即ち、Fe2+1.2 mo170を含む硫酸第一鉄水
溶液6001を、あらかじめ、反応器中に準備されたケ
イ酸ソーダをFeに対しS1換算で0.65原子外、硫
酸クロムをFeに対しOr換算で0.5原子外、硫酸ニ
ッケルを7eに対しN1換算で0〜7.0原子%を含む
ように添加して得られたNaOH水溶液4001に加え
、pH14,0においてFe(on)2を含む懸濁液を
得、該懸濁液に温度45°Cにおいて毎分I C!00
βの空気を通気して酸化反応を行わせることによりSl
、Or及びN1を含有する針状晶α−FθOOH粒子を
生成し、次いで、該粒子を420°Cで、4.0時間加
熱還元することにより得られたSl、Or及びNj。
That is, ferrous sulfate aqueous solution 6001 containing Fe2 + 1.2 mo170 was prepared in advance in a reactor with sodium silicate prepared in advance at 0.65 atoms in terms of S1 for Fe, and chromium sulfate in terms of Or for Fe. In addition to NaOH aqueous solution 4001 obtained by adding nickel sulfate to 7e to contain 0 to 7.0 at% in terms of N1, a suspension containing Fe(on)2 at pH 14.0 was added. A suspension was obtained and the suspension was subjected to I C!/min at a temperature of 45°C. 00
Sl
, Or and Nj obtained by producing acicular α-FθOOH particles containing , Or and N1, and then heating and reducing the particles at 420°C for 4.0 hours.

を含有する針状晶鉄合金磁性粒子粉末の保磁力と硫酸ニ
ッケルの添加量の関係を示したものである。
This figure shows the relationship between the coercive force of acicular iron alloy magnetic particles containing nickel sulfate and the amount of nickel sulfate added.

図2に示されるように硫酸ニッケルの添加量の増加に伴
ってSl、Or及びN1を含有する針状晶鉄合金磁性粒
子粉末の保磁力が高くなる傾向を示す。
As shown in FIG. 2, the coercive force of the acicular iron alloy magnetic particles containing Sl, Or, and N1 tends to increase as the amount of nickel sulfate added increases.

このように大きな比表面積を維持したままで保磁力を向
上させるという現象は、Si、C!r、Niのいずれを
除去した場合にも得られないことから、本発明者はSi
、及びOrとN1との相乗効果によるものと考えている
This phenomenon of increasing coercive force while maintaining a large specific surface area is due to the fact that Si, C! Since it cannot be obtained even if either r or Ni is removed, the inventors of the present invention
This is thought to be due to the synergistic effect of , Or, and N1.

次に、本発明実施にあたっての諸条件について述べる。Next, various conditions for implementing the present invention will be described.

本発明において使用されろ水可溶性クロム塩としては、
硫酸クロム、塩化クロムを使用することができる。
The filtrate soluble chromium salts used in the present invention include:
Chromium sulfate and chromium chloride can be used.

水可溶性クロム塩の添加時期については、本発明では釦
状晶α−FeOOH粒子の生成反応時にクロムを存在さ
せておくことが必要であり、このためには第一鉄塩水溶
液中、アルカリ水溶液中、Fe(OH)2を含む懸濁液
中、又は、酸素含有ガスの通気開始後針状晶α−FθO
OH粒子が生成中の反応溶液中のいずれかに添加してお
けばよい。
Regarding the timing of addition of the water-soluble chromium salt, in the present invention, it is necessary to make chromium present during the formation reaction of button-shaped α-FeOOH particles. , in a suspension containing Fe(OH)2, or after the start of aeration of oxygen-containing gas, acicular crystals α-FθO
The OH particles may be added to any part of the reaction solution that is being produced.

尚、針状晶α−FeOOH粒子の生成が完全に完了して
しまっている段階゛で水可溶性クロム塩を添加してもク
ロムが粒子中に入らないから本発明におけるクロム添加
の効果は得られない。
Furthermore, even if water-soluble chromium salt is added at the stage when the formation of acicular α-FeOOH particles has been completely completed, chromium does not enter the particles, so the effect of chromium addition in the present invention cannot be obtained. do not have.

本発明における水可溶性クロム塩の添加量はFeに丸し
Or換算で0.1〜5.0原子%である。
The amount of water-soluble chromium salt added in the present invention is 0.1 to 5.0 atomic % in terms of Fe and Or.

添加した水可溶性クロム塩はほぼ全垣が生成針状晶α−
FθOOH粒子中に含有され、後出の表2に示される通
り、得られた針状晶α−FeOOH粒子は、添加量とほ
ぼ同量のFeに対しOr換算で0296〜298原子頭
を含有している。
Almost all of the water-soluble chromium salt added was formed into needle-shaped α- crystals.
Contained in the FθOOH particles, as shown in Table 2 below, the obtained acicular α-FeOOH particles contain 0296 to 298 atomic heads in terms of Or for approximately the same amount of Fe as the added amount. ing.

水可溶性クロム塩の添加量がFeに対しOr換算で0.
1原子係以下である場合には、得られる金1状晶鉄合金
磁性粒子粉末の比表面積を大さくする効果が得られない
The amount of water-soluble chromium salt added is 0.0 in terms of Or to Fe.
If it is less than 1 atomic ratio, the effect of increasing the specific surface area of the obtained monomorphic gold iron alloy magnetic particles cannot be obtained.

5.0原子%以上である場合にも、得られる針状晶鉄合
金磁性粒子粉末の比表面積を大きくするという効果は得
られるが保磁力及び飽和磁化が低下し好ましくない。
If the content is 5.0 atomic % or more, the effect of increasing the specific surface area of the obtained acicular iron alloy magnetic particles can be obtained, but the coercive force and saturation magnetization decrease, which is not preferable.

本発明において使用される水可溶性ニッケル塩としては
、硫酸ニッケル、塩化ニッケル、硝酸ニッケル等を使用
することができる。
As the water-soluble nickel salt used in the present invention, nickel sulfate, nickel chloride, nickel nitrate, etc. can be used.

水可溶性ニッケル塩の添加時期については、本発明では
針状晶α−FeOOH粒子の生成反応時にニッケルを存
在させておくことが必要であり、このためには第一・鉄
塩水溶液中、アルカリ水溶液中、Fllll(OH)、
を含む懸濁液中、又は、酸素含有ガスの通気開始後針状
晶α−FeOOH粒子が生成中の反応溶液中のいずれか
に添加しておけばよい。
Regarding the timing of addition of the water-soluble nickel salt, in the present invention, it is necessary to make nickel present during the formation reaction of acicular α-FeOOH particles, and for this purpose, it is necessary to add nickel in the ferrous iron salt aqueous solution, in the alkaline aqueous solution. Medium, Fllll(OH),
or into a reaction solution in which acicular α-FeOOH particles are being formed after the start of aeration of oxygen-containing gas.

尚、針状晶α−FeOOH粒子の生成が完全に完了して
しまっている段階で水可溶性ニッケル塩を添加してもニ
ッケルか粒子中に入らないから本発明におけるニッケル
添加の効果は得られない。
Furthermore, even if a water-soluble nickel salt is added at a stage when the formation of acicular α-FeOOH particles has been completely completed, the effect of nickel addition in the present invention cannot be obtained because nickel does not enter the particles. .

本発明における水可溶性ニッケル塩の添加量はFQに対
しN1換算で0.1〜70原子係である。
The amount of water-soluble nickel salt added in the present invention is 0.1 to 70 atoms per FQ in terms of N1.

添加した水可溶性ニッケル塩はほぼ全量が生成針状晶α
−FeOOH粒子中に含有され、後出の表2に示される
通り、得られた針状晶α−FeOOH粒子は添加量とほ
ぼ同量のFQに対しNj換算で2.05〜7.00原子
襲を含有している。
Almost all of the added water-soluble nickel salt is formed into needle-shaped α crystals.
-FeOOH particles, and as shown in Table 2 below, the obtained acicular α-FeOOH particles have 2.05 to 7.00 atoms in terms of Nj for approximately the same amount of FQ added. Contains attack.

水可溶性ニッケル塩の添加量がFQに対しN1換算で0
1原子係以下である場合には、得られる針状晶鉄合金磁
性粒子粉末の保磁力を大きくする効果が得られない。
The amount of water-soluble nickel salt added is 0 in terms of N1 compared to FQ.
If it is less than 1 atomic ratio, the effect of increasing the coercive force of the obtained acicular iron alloy magnetic particles cannot be obtained.

ZO原子外以上である場合にも、本発明の目的を達成す
ることはできるがα−FθOOH粒子生成の際に針状晶
以外の異物が混在するので好ましくない。
Although it is possible to achieve the object of the present invention in the case where the particle size is larger than that of ZO atoms, it is not preferable because foreign substances other than needle crystals are mixed in when α-FθOOH particles are generated.

次に、加熱還元過程について言えば、粒度が均斉であり
、樹枝状粒子が混在していないSl、Or及びN1を含
有する針状晶α−FeOOH粒子を加熱還元して針状晶
鉄合金磁性粒子粉末を得る場合、還元温度が高ければ高
い程大きな飽和磁化を有する針状晶鉄合金磁性粒子粉末
を得ることができるが、還元温度が高くなると、針状晶
鉄合金磁性粒子粉末の針状晶粒子の変形と粒子および粒
子相互間の焼結が著しくなり、得られた針状晶鉄合金磁
性粒子粉末の保磁力は極度に低下することとなる。
Next, regarding the thermal reduction process, the acicular α-FeOOH particles containing Sl, Or, and N1, which are uniform in particle size and do not contain dendritic particles, are thermally reduced to form an acicular iron alloy magnetic material. When obtaining powder particles, the higher the reduction temperature, the greater the saturation magnetization. The deformation of the crystal grains and the sintering between the grains and the grains become significant, and the coercive force of the obtained acicular iron alloy magnetic particles is extremely reduced.

殊に、粒子の形状は加熱温度の影響を受けやすく、特に
雰囲気が還元性である場合には、粒子成長が著しく、単
一粒子が形骸粒子の大きさを越えて成長し、形骸粒子の
外形は漸次消え、粒子形状の変形と粒子および粒子相互
間の焼結を引き起こす。その結果、保磁力が低下するの
である。
In particular, the shape of particles is easily affected by the heating temperature, and especially when the atmosphere is reducing, particle growth is significant, and a single particle grows to exceed the size of a skeleton particle. gradually disappears, causing deformation of the particle shape and sintering of the particles and each other. As a result, the coercive force decreases.

このように加熱還元過程において針状晶粒子の変形と粒
子および粒子相互間の焼結が生起する原因について以下
に説明する。
The causes of the deformation of the acicular crystal particles and the sintering of the particles and their mutual particles during the thermal reduction process will be explained below.

一般に、針状晶α−FθOOH粒子を300°C付近の
湿度で加熱脱水して得られる針状晶α−F’203粒子
は、針状晶を保持継承したものであるが、一方、その粒
子表面並びに粒子内部には脱水により発生する多数の空
孔が存在し、単一粒子の粒子成長が十分ではなく、従っ
て結晶性の度合が非常に小さいものである。
In general, acicular α-F'203 particles obtained by heating and dehydrating acicular α-FθOOH particles at a humidity of around 300°C retain and inherit the acicular crystals, but on the other hand, the particles There are many pores generated by dehydration on the surface and inside the particles, and the growth of single particles is insufficient, so the degree of crystallinity is very small.

このような針状晶α−Fe、O,粒子を用いて加熱還元
した場合、単一粒子の粒子成長、即ち、物理的変化が急
激であるため単一粒子の均一な粒子成長が生起し静<、
従って、単一粒子の粒子成長が急激に生起した部分では
粒子および粒子相互間の焼結が生起し、粒子形状がくず
れやすくなると考えられる。
When thermal reduction is performed using such acicular α-Fe, O, particles, uniform particle growth of a single particle occurs because the physical change is rapid, and the growth of a single particle occurs. <,
Therefore, it is considered that in the portion where the grain growth of a single grain has rapidly occurred, sintering of grains and grains occurs, and the grain shape is likely to be distorted.

また、加熱還元過程においては、酸化物から金属への急
激な体積収縮が生起することにより粒子形状は一層くず
れやすいものとなる。
Furthermore, in the thermal reduction process, rapid volumetric contraction from the oxide to the metal occurs, making the particle shape more likely to collapse.

従って、加熱還元過程において粒子形状の変形と粒子お
よび粒子相互間の焼結を防止するためには、加熱還元過
程に先立って、予めSl、Cr及びN1を含有する針状
晶α−F8203粒子の単一粒子の充分、且つ均一な粒
子成長を図ることにより結晶性の度合が高められた実質
的に高密度であり、且つSl、Or及びN1を含有する
針状晶α−FeOOH粒子の針状晶を保持継承している
Sl、Or及びNiを含有する針状晶α−Fe20.粒
子としておく必要がある。
Therefore, in order to prevent particle shape deformation and sintering between particles during the thermal reduction process, it is necessary to prepare acicular α-F8203 particles containing Sl, Cr and N1 before the thermal reduction process. Needle-shaped α-FeOOH particles with substantially high density and containing Sl, Or, and N1 have an increased degree of crystallinity by achieving sufficient and uniform particle growth of single particles. Acicular crystal α-Fe20. It is necessary to keep it as a particle.

このような結晶性の度合が高められた実質的に高密度な
針状晶α−Fe203粒子を得る方法として金1状晶α
−FeOOH粒子を非還元性雰囲気中で加熱処理する方
法が知られている。
As a method for obtaining substantially high-density acicular α-Fe203 particles with an increased degree of crystallinity, gold monomorphic α-Fe203 particles are used.
A method is known in which -FeOOH particles are heat-treated in a non-reducing atmosphere.

一般に、針状晶α−FeOOH粒子を加熱脱水して得ら
れる針状晶α−F Q20.粒子は、非還元性雰囲気中
で加熱処理する温度が高ければ高い程、効果的に単一粒
子の粒子成長をはかることができ、従って、結晶性の度
合も高めることができるが、一方、加熱処理温度が65
0°Cを越えて高くなると焼結が進んで針状晶粒子がく
ずれることが知られている。
Generally, acicular α-F Q20. is obtained by heating and dehydrating acicular α-FeOOH particles. The higher the temperature at which the particles are heat-treated in a non-reducing atmosphere, the more effectively single particles can grow, and therefore the degree of crystallinity can be increased. Processing temperature is 65
It is known that when the temperature exceeds 0°C, sintering progresses and the acicular crystal grains collapse.

従って、結晶性の度合が高められた実質的に高密度であ
り、且つ、針状晶α−FθOOH粒子の針状晶を保持継
承している針状晶α−Fe208粒子を得る為には、非
還元性雰囲気中で加熱処理するに先立って、あらかじめ
、焼結防止効果を有する有機化合物、無機化合物で針状
晶α−FeOOH粒子の粒子表面を被覆する方法が知ら
れている。
Therefore, in order to obtain acicular α-Fe208 particles that have a substantially high density with an increased degree of crystallinity and retain and inherit the acicular crystals of the acicular α-FθOOH particles, A method is known in which the surface of acicular α-FeOOH particles is coated with an organic compound or inorganic compound having an anti-sintering effect prior to heat treatment in a non-reducing atmosphere.

本発明者は、長年に亘り、針状晶磁性粒子粉末の製造及
び開発にたずされっているものであるが、その研究過程
において、焼結防止効果を有するSi化合物で被覆され
た針状晶α−FeOOH粒子を製造する方法を既に開発
している。
The present inventor has been engaged in the production and development of acicular magnetic particles for many years, and in the course of his research, he discovered acicular crystal magnetic particles coated with a Si compound that has a sintering prevention effect. A method for producing crystalline α-FeOOH particles has already been developed.

例えば、次に述べるようである。For example, as described below.

即ち、P化合物と81化合物で被覆されたSl、Or及
びN1を含有する針状晶α−FθooH17子粉末は、
第一鉄塩水溶液とアルカリ水溶液との湿式反応により生
成したSl、Or及びN1を含有するσト状晶α−Fe
OOH粒子を母液から分離した後、水中に懸濁させ、該
懸濁液のpH値8以上の状態で31、Or及びN1を含
有する針状晶α−FeOOH粒子に対し01〜2 wt
% (PO3に換算)のリン酸塩を添加した後、pH値
を3〜7に調整することにより、得ることができる。
That is, the acicular α-FθooH17 powder containing Sl, Or and N1 coated with P compound and 81 compound is
σ toroidal α-Fe containing Sl, Or and N1 produced by a wet reaction between a ferrous salt aqueous solution and an alkaline aqueous solution
After the OOH particles are separated from the mother liquor, they are suspended in water, and when the pH value of the suspension is 8 or more, 01 to 2 wt.
% (calculated as PO3) by adjusting the pH value to 3-7.

上記の方法について説明ずれは次のようである。The differences in explanation regarding the above method are as follows.

一般に、5iXOr及びN1を含有する針状晶α−Fe
OOH粒子は、湿式反応時における反応母液中の結晶成
長の過程でかなり強固にからみ合い、結合し合った粒子
群を形成しており、該からみ合い、結合し合っているS
l、Or及びNiを含有する針状晶α−FeOOH粒子
の粒子群をそのまま焼結防止剤で被覆した場合には、そ
れ以上の焼結を防止するだけで、反応母液中の結晶成長
の過程で発生したからみ合し・、結合はそのままの状態
である為、上記からみ合い、結合し合っているSl、O
r及びN1を含有する針状晶α−FeOOH粒子を非還
元性雰囲気中で加熱処理した後、加熱還元して得られた
針状晶合金磁性粒子粉末も粒子がからみ合い、結合し合
ったものとなる。
Generally, acicular α-Fe containing 5iXOr and N1
OOH particles are quite tightly entangled and bonded together during the crystal growth process in the reaction mother liquor during wet reaction, forming a group of particles that are intertwined and bonded to each other.
If a particle group of acicular α-FeOOH particles containing l, Or, and Ni is directly coated with a sintering inhibitor, further sintering is prevented, and the process of crystal growth in the reaction mother liquor is prevented. Since the entanglements and bonds that occurred in
Acicular crystal alloy magnetic particles obtained by heat-treating acicular α-FeOOH particles containing r and N1 in a non-reducing atmosphere and then thermally reducing the particles are also entangled and bonded together. becomes.

このような粒子は、ビークル中での分散性1.塗膜中で
の配向性及び充填性が十分であるとは言い難い。
Such particles have a high dispersibility in the vehicle.1. It cannot be said that the orientation and filling properties in the coating film are sufficient.

従って、Sl、Or及びN1を含有する針状晶α−’F
e0OH粒子を81化合物で被覆するに先立って、あら
かじめ、反応母液中の結晶成長の過程で発生したからみ
合い、結合を解きほぐしておく必要がある。
Therefore, acicular crystals α-'F containing Sl, Or and N1
Before coating the e0OH particles with the 81 compound, it is necessary to disentangle the entanglements and bonds generated during the crystal growth process in the reaction mother liquor.

Si、、Or及びN1を含有する針状晶α−7eOOH
粒子を母液から分離した後、水中に懸濁させ、該懸濁液
のpH値8以上の状態で81、Or及びN1を含有する
針状晶α−FeOOH粒子に対し0.1〜2wt%(p
o3に換算)のリン酸塩を添加することにより、Sl、
Or及びN1を含有する針状晶α−Fe00H粒子のか
らみ合い、結合を解きほぐすことが可能である。
Acicular α-7eOOH containing Si, , Or and N1
After the particles are separated from the mother liquor, they are suspended in water, and when the pH value of the suspension is 8 or higher, 0.1 to 2 wt% ( p
By adding phosphate (converted to o3), Sl,
It is possible to disentangle the entanglements and bonds of the acicular α-Fe00H particles containing Or and N1.

Sl、Or及びN1を含有する針状晶α−FeOOH粒
子は、Sl、Or及びN1を含有する針状晶α−FeO
OH粒子の生成後、常法により反応母液より炉別、水洗
したものを用いれば良い。
Acicular α-FeOOH particles containing Sl, Or and N1 are acicular α-FeOOH particles containing Sl, Or and N1.
After the OH particles are generated, the reaction mother liquor may be separated from the reaction mother liquor by a conventional method and washed with water.

懸濁液の濃度は、水に対して20wt%以下であるのが
望ましい。20wt%以上の場合には懸濁液の粘度が高
すぎて、リン酸塩の添加によるからみ合い等を解きほぐ
す効果が不十分となる。
The concentration of the suspension is preferably 20 wt% or less based on water. When the amount is 20 wt% or more, the viscosity of the suspension becomes too high, and the effect of disentangling entanglements caused by the addition of the phosphate becomes insufficient.

リン酸塩の添加量は、懸濁液中のsl、Qr及びN1を
含有する針状晶、α−FθOOH粒子に対しPo3に換
算して01〜2wt%であれば、該粒子のからみ合い等
を解きほぐし、粒子を均一に分散させることができる。
If the amount of phosphate added is 01 to 2 wt% in terms of Po3 to the acicular crystals and α-FθOOH particles containing sl, Qr, and N1 in the suspension, entanglement of the particles, etc. can be loosened and particles can be uniformly dispersed.

添加したリン酸塩は、針状晶α−FθOOH粒子表面に
吸着され、後出の表6に示される通り、得られた針状晶
α−FeOOH粒子はFeに対しP換算で0158〜1
.737原子外を含有している。
The added phosphate is adsorbed on the surface of the acicular α-FθOOH particles, and as shown in Table 6 below, the obtained acicular α-FeOOH particles have a Fe ratio of 0158 to 1 in terms of P.
.. It contains 737 extra atoms.

ぶ加電が0.1 wt%以下の場合には添加効果が十分
でない。
If the applied electric current is less than 0.1 wt%, the effect of addition is not sufficient.

一方、添加量が2wt%以上の場合には粒子を分散させ
ることはできるが、粒子が液中に均一に強分散している
為、液中からのp別分離が固辞となり適当でない。
On the other hand, when the amount added is 2 wt % or more, the particles can be dispersed, but since the particles are uniformly and strongly dispersed in the liquid, separation by p from the liquid is strictly prohibited, which is not appropriate.

添加するリン酸塩としては、例えば、メタリン酸ナトリ
ウム、ビロリン酸ナトリウム等が挙げられる。
Examples of the phosphate to be added include sodium metaphosphate and sodium birophosphate.

リン酸塩を添加する懸濁液のpH値は8以上でなければ
ならない。
The pH value of the suspension to which the phosphate is added must be greater than or equal to 8.

pH値が8以下である場合には、粒子を分散させようと
するリン酸塩を2wt%以上添加しなければならず、リ
ン酸塩を2 wt%以上添加すると前述した通り、p別
分離において整置が生ずる為、好ましくない。
If the pH value is 8 or less, 2 wt% or more of phosphate must be added to disperse the particles, and if 2 wt% or more of phosphate is added, as mentioned above, it will be difficult to separate by p. This is not preferable because alignment occurs.

次に、Sl、Or及びN1を含有する針状晶α−FeO
OH粒子の粒子表面に形成させるSl化合物被膜につい
て述べると、該Sl化合物被膜の形成は、必ず、リン酸
塩によりSl、Or及びN1を含有する針状晶α−Fθ
○OH粒子のからみ合い等を解きほぐした後でなければ
ならない。
Next, acicular α-FeO containing Sl, Or and N1
Regarding the Sl compound film formed on the particle surface of the OH particles, the formation of the Sl compound film is always performed using acicular crystals α-Fθ containing Sl, Or, and N1 by phosphate.
○This must be done after disentangling the OH particles.

水可溶性ケイ酸塩を添加する際の懸濁液のpH値は8以
上の状態であることが望ましい。
The pH value of the suspension when adding the water-soluble silicate is preferably 8 or higher.

pH値が8以下の状態で水可溶性ケイ酸塩を添加すると
、添加と同時に固体である5iC12として単独に析出
してしまい、粒子表面に効率よく薄膜として形成さぜる
ことかできない。
If a water-soluble silicate is added at a pH value of 8 or less, it will precipitate independently as solid 5iC12 at the same time it is added, and it cannot be efficiently formed as a thin film on the particle surface.

従って1、懸濁液のpH値が8以上の状態で水可溶性ケ
イ酸塩を添加し、該懸濁液中に均一に混合した後にpH
値を5in2の析出する範囲、即ち、pH値を3〜7に
調整すれば、5in2は粒子の表面上に析出して被膜を
形成する。
Therefore, 1. Add water-soluble silicate when the pH value of the suspension is 8 or higher, and after uniformly mixing it into the suspension, the pH value
If the value is adjusted to the range in which 5in2 precipitates, that is, the pH value is adjusted to 3 to 7, 5in2 precipitates on the surface of the particles to form a film.

添加する水可溶性ケイ酸塩の量は、5in2に換算して
Sl、Or及びN1を含有する針状晶α−FeOOH粒
子に対し01〜7.0wt%である。
The amount of water-soluble silicate added is 01 to 7.0 wt% based on the acicular α-FeOOH particles containing Sl, Or, and N1 in terms of 5in2.

0.1 wt%以下の場合には、添加の効果が顕著に現
われず、7.0wt%以上である場合には、優れた針状
晶を有する針状晶合金磁性粒子粉末を得ることができる
が純度の低下により、飽和磁束密度が減少し好ましくな
い。
If it is less than 0.1 wt%, the effect of addition is not noticeable, and if it is more than 7.0 wt%, it is possible to obtain acicular crystal alloy magnetic particles having excellent acicular crystals. However, due to the decrease in purity, the saturation magnetic flux density decreases, which is not preferable.

添加した水可溶性ケイ酸塩は、針状晶α−FθOOH粒
子表面に析出吸着され、後出の表3に示される通り、得
られた針状晶α−Fe00H粒子は、針状晶α−FeO
OH粒子の反応生成中に含有されるSi量と合せて06
5〜7.05原子%を含有する。
The added water-soluble silicate is precipitated and adsorbed on the surface of the acicular α-FθOOH particles, and as shown in Table 3 below, the obtained acicular α-Fe00H particles are acicular α-FeOOH particles.
06 in total with the amount of Si contained during the reaction generation of OH particles.
Contains 5 to 7.05 at%.

尚、添加する水可溶性ケイ酸塩としては、ケイ酸ナトリ
ウム、ケイ酸カリウム等が挙げられる。
Note that examples of the water-soluble silicate to be added include sodium silicate and potassium silicate.

次に、Sl、Or及びN1を含有する針状晶α−FeO
OH粒子にP化合物と31化合物で被膜を形成させた後
、懸濁液中から該粒子をp別分離する条件について述べ
る。
Next, acicular α-FeO containing Sl, Or and N1
The conditions for forming a film on the OH particles with the P compound and the 31 compound and then separating the particles by P from the suspension will be described.

通常のp別手段を用いる場合には、粒子が均一に液中に
強分散していると、例えばP、t’P漏れ、あるいはp
布の目づまり、その他種々の一過効率も層化させる要因
となる。
When using ordinary p-separate means, if the particles are uniformly and strongly dispersed in the liquid, for example, P, t'P leakage, or p
Clogging of the fabric and various other transient efficiencies are also factors that cause stratification.

一過効率を高める為には、前記したリン酸塩の添加によ
り分散させた粒子が適度に凝集している必要がある。
In order to increase the transient efficiency, it is necessary that the particles dispersed by the addition of the phosphate described above should be appropriately aggregated.

リン酸塩の添加量を0.1〜2 wt%の範囲内とした
場合、懸濁液のpH値を7以下とすれば懸濁液の粘度は
上昇し、粒子の凝集が起き、p別を容易に行うことがで
きる。
When the amount of phosphate added is within the range of 0.1 to 2 wt%, if the pH value of the suspension is set to 7 or less, the viscosity of the suspension increases, particle aggregation occurs, and the can be easily done.

また、懸濁液のpH値を3以下とした場合にもSl、O
r及びN1を含有する針状晶α−FeOOH粒子の凝集
及びリン酸塩の吸着、更には前述した5102被膜の形
成は可能となるが、設備上の問題及び品質上の問題(溶
解等)が発生する為、好ましくない。
Furthermore, even when the pH value of the suspension is 3 or less, Sl, O
Although it is possible to agglomerate acicular α-FeOOH particles containing r and N1, adsorb phosphate, and form the 5102 film described above, there are equipment problems and quality problems (dissolution, etc.). This is not desirable because it occurs.

尚、pH3〜7に調整する為には、酢酸、硫酸、リン酸
等を使用することができる。
In addition, in order to adjust the pH to 3 to 7, acetic acid, sulfuric acid, phosphoric acid, etc. can be used.

以上、説明したところによって得られるP化合物と81
化合物で被覆されたSi、Or及びN1を含有する針状
晶α−FeOOH粒子を非還元性雰囲気中で加熱処理し
て得られたSi、Or及びN1を含有する針状晶α−7
%Os粒子は、結晶性の度合が高められた実質的に高密
度なものであり、且つ、粒子のからみ合いや結合のない
優れた針状晶を保持継承したものである。
The P compound obtained as explained above and 81
Acicular α-7 containing Si, Or and N1 obtained by heat-treating compound-coated acicular α-FeOOH particles containing Si, Or and N1 in a non-reducing atmosphere
The %Os particles are substantially dense with an increased degree of crystallinity, and retain and inherit excellent acicular crystals without particle entanglement or bonding.

非還元性雰囲気中における加熱処理の温度範囲は500
〜900°Cであることが好ましい。
The temperature range of heat treatment in a non-reducing atmosphere is 500℃.
It is preferable that it is -900 degreeC.

非還元性雰囲気中の加熱処理温度が500°C以下であ
る場合は、P化合物と81化合物で被覆されたSl、O
r及びN1を含有する針状晶α−Fe203粒子の結晶
性の度合が高められた実質的に高密度な粒子とは言い難
く、900°C以上である場合は、針状晶粒子の変形と
粒子および粒子相互間の焼結を引き起してしまう。また
、精度の高い設備、高度な技術を必要とし工業的経済的
ではない。
When the heat treatment temperature in a non-reducing atmosphere is 500°C or less, Sl and O coated with P and 81 compounds
It is hard to say that the acicular α-Fe203 particles containing r and N1 are substantially high-density particles with an increased degree of crystallinity, and if the temperature is 900°C or higher, the acicular crystal particles may be deformed. This causes sintering of the particles and between particles. Furthermore, it requires highly accurate equipment and advanced technology, and is not industrially economical.

上述の結晶性の度合が高められた実質的に高密度なもの
であり、且つ、粒子のからみ合いや結合のない優れた針
状晶を保持継承しているP化合物と81化合物で被覆さ
れたSl、Or及びN1を含有する針状晶α−Fe20
.粒子を還元性ガス中加熱還元することにより得られた
Sl、Or、Ni及びPを含有する針状晶鉄合金磁性粒
子粉末もまた粒子表面並びに粒子内部の結晶性の度合が
高められた実質的に高密度なものであり、且つ、粒子の
からみ合いや結合のない優れた針状晶を保持継承したも
のである。
It is coated with the P compound and the 81 compound, which has a substantially high density with an increased degree of crystallinity as described above, and retains excellent acicular crystals without particle entanglement or bonding. Acicular α-Fe20 containing Sl, Or and N1
.. The acicular iron alloy magnetic particle powder containing Sl, Or, Ni, and P obtained by heating and reducing particles in a reducing gas also has a substantially increased degree of crystallinity on the particle surface and inside the particle. It has a high density and retains excellent acicular crystals with no entanglement or bonding of particles.

得られた$1、Or、Ni及びPを含有する針状晶鉄合
金磁性粒子粉末は、後出の表5に示される通り、Slを
Feに対しS1換算で0.65−7.04原子多、Or
をFeに対しOr換算で0.296〜2.99原子多、
N1をFeに対しN1換算で2.02〜7.00原子%
及びPをFeに対しP換算で0.157〜1.737原
子%含有しており、添加量のほぼ全量が含有されるので
ある。
The obtained acicular iron alloy magnetic particle powder containing $1, Or, Ni, and P has 0.65 to 7.04 atoms of Sl in terms of S1 to Fe, as shown in Table 5 below.多、Or
is 0.296 to 2.99 atoms in Or conversion to Fe,
2.02 to 7.00 atomic% of N1 to Fe in terms of N1
It contains 0.157 to 1.737 at% of P in terms of P based on Fe, which is almost the entire amount added.

還元性ガス中における加熱還元の温度範囲は、650°
C〜600℃が好ましい。
The temperature range of thermal reduction in reducing gas is 650°
C to 600°C is preferred.

650℃以下である場合には還元反応の進行が遅く、長
時間を要する。
When the temperature is 650°C or lower, the reduction reaction progresses slowly and requires a long time.

また、600°C以上である場合には還元反応が急激に
進行して針状晶粒子の変形と、粒子および粒子相互間の
焼結を引き起してしまう。
Furthermore, if the temperature is 600° C. or higher, the reduction reaction proceeds rapidly, causing deformation of the acicular crystal particles and sintering of the particles and the particles themselves.

以上の通りの構成の本発明は、次の通りの効果を奏する
ものである。
The present invention configured as described above has the following effects.

即ち、本発明によれば、針状晶を有し、粒度が均斉であ
り、樹枝状粒子が混在しておらず粒子のからみ合い等が
なく、その結果、がさ密度が大きいものであり、且つ、
比表面積が大きく粒子表面並びに粒子内部の結晶性の度
合が高められた実質的に高密度なものであり、しかも、
高い保磁力Haと大きな飽和磁化0日とを有するsl、
Or、Ni及びPを含有する針状晶鉄合金磁性粒子粉末
を得ることができるので、現在最も要求されている高画
像画質、高出力、高感度、高記録密度用磁性粒子粉末と
して使用することができる。
That is, according to the present invention, it has acicular crystals, has uniform particle size, has no dendritic particles mixed therein, has no entanglement of particles, etc., and, as a result, has a large bulk density. and,
It is substantially dense with a large specific surface area and an increased degree of crystallinity on the particle surface and inside the particle, and
sl with high coercive force Ha and large saturation magnetization 0 days,
Since it is possible to obtain acicular iron alloy magnetic particles containing Or, Ni, and P, it can be used as magnetic particles for high image quality, high output, high sensitivity, and high recording density, which are currently most required. Can be done.

更に、磁性塗料の製造に際して、上記の81、Or、N
i及びPを含有する針状晶鉄合金磁性粒子粉末を用いた
場合には、ノイズレベルが低く、且つ、ビークル中での
分散性、塗膜中での配向性及び充填性が極めて優れ、好
ましい磁気記録媒体を得ることができる。
Furthermore, in the production of magnetic paint, the above 81, Or, N
When acicular iron alloy magnetic particles containing i and P are used, the noise level is low, and the dispersibility in the vehicle, the orientation and filling properties in the coating film are excellent, and it is preferable. A magnetic recording medium can be obtained.

しかも、本発明により得られるsl、Or、lJ4及び
Pを含有する針状晶鉄合金磁性粒子粉末はあまりに超微
粒子ではないから、塗料化時に於ける取扱いが比較的容
易である。
Moreover, since the acicular iron alloy magnetic particles containing sl, Or, lJ4, and P obtained by the present invention are not ultrafine particles, they are relatively easy to handle when forming into a paint.

次に、実施例並びに比較例により本発明を説明する。Next, the present invention will be explained with reference to Examples and Comparative Examples.

尚、前出の実験例及び以下の実施例並びに比較例におけ
る粒子の比表面積はIT法により測定したものであり、
粒子の軸比(長軸°短軸)、長軸は、いずれも電子顕微
鏡写真がら測定した数値の平均値で示した。
In addition, the specific surface area of the particles in the above experimental examples, the following examples, and comparative examples were measured by the IT method,
The axial ratio (long axis x short axis) and long axis of the particles are both shown as average values of values measured from electron micrographs.

また、かさ密度はJIS K 51o1−1978 「
顔料試験方法」に従って測定した。
In addition, the bulk density is determined by JIS K 51o1-1978 "
Measured according to the Pigment Test Method.

粒子中のSi量、Or量、NiMおよびpilは、「螢
光xiIiIi!分析装置3063 M型J (理学t
1M工業製)を使用し、:r工s K 0119−19
79 ノrけい光X線分析通則」に従って、けい光X線
分析を行うことにより測定した。
The amount of Si, amount of Or, NiM and pil in the particles can be determined using the "Fluorescence xiIiIi! Analyzer 3063 M type J (Rigaku t
(manufactured by 1M Kogyo), : rkos K 0119-19
It was measured by performing fluorescence X-ray analysis in accordance with ``General Rules for Fluorescence X-ray Analysis''.

磁気テープの緒特性は外部磁場10KOeの下で測定し
た結果である。
The magnetic tape characteristics were measured under an external magnetic field of 10 KOe.

く針状晶α−FeOOH粒子粉末の製造〉実施例1〜1
4、比較例1; 実施例1 Fe” 1.2 m017gを含む硫酸第一鉄水溶液3
00βを、あらかじめ、反応器中に準備されたFeに対
しS1換算で0.20原子%を含むようにケイ酸ソーダ
(3号) (5ic228.55 wt%) 1529
、Feに対しOr換算で0.50原子外を含むように硫
酸クロム644g、Inに対しN1換算で6.0原子%
を含むように硫酸ニッケル2884 gを添加して得ら
れた5、45−NのNaOH水溶液4001に加え、p
H14,0、温度45°Cにおいて81、Or及びN1
を含むFe(oH)。
Production of acicular α-FeOOH particle powder> Examples 1 to 1
4. Comparative Example 1; Example 1 Ferrous sulfate aqueous solution 3 containing 1.2 m017 g of Fe”
Sodium silicate (No. 3) (5ic228.55 wt%) 1529 was added to contain 00β in advance in an amount of 0.20 at% in terms of S1 based on the Fe prepared in the reactor.
, 644 g of chromium sulfate to contain 0.50 atomic % in terms of Or for Fe, and 6.0 at% in terms of N1 for In
5,45-N NaOH aqueous solution 4001 obtained by adding 2884 g of nickel sulfate to contain p
H14,0, 81 at temperature 45°C, Or and N1
Fe(oH) containing.

懸濁液の生成反応を行った。A suspension production reaction was performed.

上記S1、Or及びN1を含むye(on)2懸濁液に
、温度50°Cにおいて毎分10004の空気を6,3
時間通気してSl、Or及びN1を含有する針状晶α−
FeOOH粒子を生成した。
The above ye(on)2 suspension containing S1, Or and N1 was blown with 10,004 air per minute at a temperature of 50°C for 6,3
Needle crystal α- containing Sl, Or and N1 by aeration for a time
FeOOH particles were produced.

酸化反応終点は、反応液の一部を抜き取り塩酸酸性に調
節した後、赤血塩溶液を用いてFe2+の青色呈色反応
の有無で判定した。
The end point of the oxidation reaction was determined by extracting a portion of the reaction solution and acidifying it with hydrochloric acid, and then using a red blood salt solution to determine the presence or absence of a blue coloring reaction of Fe2+.

生成粒子は、常法により、p別、水洗した。The generated particles were separated from P and washed with water in a conventional manner.

上記p別、水洗したSi、Or及びN1を含有する針状
晶α−FeOOH粒子の一部を乾燥、粉砕して、特性を
評価する為の試料とした。
A part of the acicular α-FeOOH particles containing Si, Or, and N1, which had been washed with water according to p, was dried and pulverized to obtain a sample for evaluating the characteristics.

得られたSl、Or及びN1を含有する針状晶α−Fe
OOH粒子は、X線回折の結果、α−FeOOH粒子の
結晶構造と同じ回折図形が得られた。
The obtained acicular α-Fe containing Sl, Or and N1
As a result of X-ray diffraction, the OOH particles had the same diffraction pattern as the crystal structure of the α-FeOOH particles.

また、螢光Xi分析の結果、SlをFeに対し0204
原子%、OrをFeに対し0.496原子外、N1をF
eに対し502原子係含有するものであった。
In addition, as a result of fluorescent Xi analysis, Sl was 0204 compared to Fe.
atomic%, Or is 0.496 extra atoms for Fe, N1 is F
It contained 502 atomic proportions per e.

従って、Sl、Or及びN1が針状晶α−FeOOH粒
子中に固溶していると考えられる。
Therefore, it is considered that Sl, Or, and N1 are solidly dissolved in the acicular α-FeOOH particles.

このSl、Or及びN1を含有する針状晶α−FeOO
H粒子は図6に示す電子顕微鏡写真(X20000)か
ら明らかな通り平均値で長軸050μπ、軸比(長軸:
短軸) 28 : 1であった。
This acicular α-FeOO containing Sl, Or and N1
As is clear from the electron micrograph (X20000) shown in Figure 6, the H particles have an average value of long axis of 050 μπ and an axial ratio (long axis
short axis) was 28:1.

実施例2〜14 第一鉄塩水溶液の種類、濃度、NaOH水溶液の濃度、
及び水可溶性ケイ酸塩、水可溶性クロム塩、水可溶性ニ
ッケル塩の種類、添加量、添加時期を種々変化させた以
外は実施例1と同様にしてSl、Or及びN1を含有す
る針状晶α−FeOOH粒子を生成した。
Examples 2 to 14 Type and concentration of ferrous salt aqueous solution, concentration of NaOH aqueous solution,
Acicular crystals α containing Sl, Or, and N1 were prepared in the same manner as in Example 1, except that the types, amounts, and times of addition of the water-soluble silicate, water-soluble chromium salt, and water-soluble nickel salt were varied. -FeOOH particles were generated.

この時の主要製造条件を表1に、特性を表2に示す。The main manufacturing conditions at this time are shown in Table 1, and the characteristics are shown in Table 2.

尚、実施例5におけるFe(oH)2懸濁液の生成反応
は40℃で行い、針状晶α−FeOOHの生成反応は4
5°Cで行った。
In addition, the production reaction of Fe(oH)2 suspension in Example 5 was carried out at 40°C, and the production reaction of acicular α-FeOOH was carried out at 40°C.
The temperature was 5°C.

比較例1 ケイ酸ソーダ、硫酸クロム及び硫酸ニッケルを添加しな
いで、他の諸条件は実施例1と同様にして針状晶α−F
eOOH粒子粉末を生成した。
Comparative Example 1 Acicular crystal α-F was produced in the same manner as in Example 1, except that sodium silicate, chromium sulfate, and nickel sulfate were not added.
An eOOH particle powder was produced.

この時の主要製造条件を表1に、特性を表2に示す。The main manufacturing conditions at this time are shown in Table 1, and the characteristics are shown in Table 2.

得られた針状晶α−FeOOH粒子粉末は、図4に示す
電子顕微鏡写真(X20000)がら明らがな通り、平
均値で長軸045μm1軸比(長軸:短軸)9:1であ
り、粒度が不均斉で、樹枝状粒子が混在しているもので
あった。
As is clear from the electron micrograph (X20000) shown in FIG. 4, the obtained acicular α-FeOOH particle powder has an average value of 045 μm on the long axis and a uniaxial ratio (long axis: short axis) of 9:1. , the particle size was asymmetric, and dendritic particles were mixed.

くP化合物と81化合物で被覆された針状晶α−FeO
OH粒子粉末の製造〉実施例15〜28比較例 2: 実施例15 実施例1で得られたp別、水洗したSi、Or及びN1
を含有する針状晶α−FeOOH粒子のペースト3oo
o g(st、Or及びN1を含有する針状晶(1−F
eOOH粒子約10009に相当する。)を606の水
中に懸濁させた。
Acicular α-FeO coated with P compound and 81 compound
Production of OH particle powder> Examples 15 to 28 Comparative Example 2: Example 15 Separate p obtained in Example 1, water washed Si, Or and N1
A paste of acicular α-FeOOH particles containing 3oo
o g(acicular crystals containing st, Or and N1 (1-F
This corresponds to approximately 10,009 eOOH particles. ) was suspended in 606 water.

この時の懸濁液のpH値は97であった。The pH value of the suspension at this time was 97.

次いで上記懸濁液にヘキサメタリン酸ナトリウム8gを
含む水溶液300 d (Si、cr及びN1を含有す
る針状晶α−FeOOH粒子に対しPO,として0.5
6 wt%に相当する。)を添加して30分間攪拌した
Next, 300 d of an aqueous solution containing 8 g of sodium hexametaphosphate was added to the above suspension (0.5 as PO for acicular α-FeOOH particles containing Si, Cr, and N1).
This corresponds to 6 wt%. ) and stirred for 30 minutes.

次いで上記懸濁液にケイ酸ナトリウム(3号水ガラス)
148g(Si、Or及びN1を含有する針状晶α−F
eOOH粒子に対しSiQ、として4.2 wt%に相
当する。)を添加し60分間攪拌した後、懸濁液のpH
値が5.8となるように10外の酢酸を添加した後、プ
レスツイツタ−によりSi、Or及びN1を含有する針
状晶α−FeOOH粒子をp別、乾燥してP化合物とS
l化合物で被覆された8士、Or及びN1を含有する針
状晶α−FeOOH粒子粉末を得た。
Next, sodium silicate (No. 3 water glass) was added to the above suspension.
148g (acicular crystal α-F containing Si, Or and N1
This corresponds to 4.2 wt% of SiQ with respect to eOOH particles. ) and stirred for 60 minutes, the pH of the suspension
After adding 100 grams of acetic acid to give a value of 5.8, the acicular α-FeOOH particles containing Si, Or, and N1 were separated using a press tweeter and dried to form P compounds and S.
Acicular α-FeOOH particle powder containing 8, Or and N1 coated with a compound was obtained.

得られたSl、Or及びN1を含有する針状晶α−Fe
OOH粒子粉末の緒特性を表3に示す。
The obtained acicular α-Fe containing Sl, Or and N1
Table 3 shows the properties of the OOH particles.

実施例16〜2B、比較例2 被処理粒子の種類、リン酸塩添加時の懸濁液のp)i、
 IJン酸塩の添加量、水可溶性ケイ酸塩の添加量、調
整後のpHを種々変化させた以外は、実施例15と同様
にしてP化合物と81化合物で被覆されたSl、Or及
びN1を含有する針状晶α−FθOOH粒子粉末又は針
状晶α−FθOOH粒子粉末を得た。
Examples 16 to 2B, Comparative Example 2 Type of particles to be treated, p)i of suspension when phosphate is added,
Sl, Or, and N1 coated with P compound and 81 compound were prepared in the same manner as in Example 15, except that the amount of IJ phosphate, the amount of water-soluble silicate, and the adjusted pH were varied. Acicular α-FθOOH particles or acicular α-FθOOH particles containing acicular α-FθOOH were obtained.

この時の主要製造条件及び特性を表6に示す。Table 6 shows the main manufacturing conditions and characteristics at this time.

〈P化合物とSl化合物で被覆されたSl、Or及びN
1を含有する針状晶α−Fe208粒子粉末の製造〉 
       実施例29〜42比較例 5 実施例29 実施例15で得られたP化合物と81化合物で被覆され
たSl、Or及びN1を含有する針状晶α−FeOOH
粒子粉末10009を空気中750°Cで加熱処理して
、P化合物とSl化合物で被覆されたSl、Or及びN
1を含有する針状晶α−Fe203粒子粉末を得た。
<Sl, Or and N coated with P and Sl compounds
Production of acicular α-Fe208 particle powder containing 1>
Examples 29 to 42 Comparative Example 5 Example 29 Acicular α-FeOOH containing Sl, Or and N1 coated with the P compound obtained in Example 15 and the 81 compound
Particle powder 10009 was heat treated at 750°C in air to form Sl, Or and N coated with P compound and Sl compound.
Acicular crystal α-Fe203 particle powder containing 1 was obtained.

この粒子は、電子顕微鏡観察の結果、平均値で長軸04
8μm1軸比(長軸:短軸) 26 : 1であり、針
状晶の優れたものであった。
As a result of electron microscopy observation, the average value of these particles was 04 on the long axis.
The crystal had an 8 μm uniaxial ratio (long axis: short axis) of 26:1, and had excellent acicular crystals.

実施例30〜42、比較例3 P化合物とSl化合物で被覆されたSi、Or及びN1
を含有する針状晶α−FeOOH粒子粉末の種類、加熱
処理温度及び非還元性雰囲気を種々変化させた以外は実
施例29と同様にしてP化合物と81化合物で被覆され
たsl、Or及びN1を含有する針状晶α−Fe20.
粒子粉末を得た。
Examples 30 to 42, Comparative Example 3 Si, Or and N1 coated with P compound and Sl compound
sl, Or, and N1 coated with the P compound and the 81 compound in the same manner as in Example 29, except that the type of the acicular α-FeOOH particle powder, the heat treatment temperature, and the non-reducing atmosphere were varied. Acicular crystal α-Fe containing 20.
A particulate powder was obtained.

この時の主要製造条件及び特性を表4に示す。Table 4 shows the main manufacturing conditions and characteristics at this time.

尚、比較例6で得られたP化合物と81化合物で被覆さ
れた針状晶α−F111203粒子粉末は平均値で長軸
044μm、軸比(長軸:短軸)9:1であった。
The acicular α-F111203 particles coated with the P compound and the 81 compound obtained in Comparative Example 6 had an average long axis of 044 μm and an axial ratio (long axis:short axis) of 9:1.

〈U状晶鉄又は鉄合金磁性粒子粉末の製造〉実施例46
〜56 比較例 4; 実施例43 実施例29で得られたP化合物と81化合物で被覆され
たSl、Or、Niを含有する針状晶α−F’1120
3粒子粉末120gを34のレトルト還元容器中に投入
し、駆動回転させなからH2ガスを毎分401の割合で
通気し、還元温度440’Cで還元した。
<Production of U-shaped crystalline iron or iron alloy magnetic particles> Example 46
~56 Comparative Example 4; Example 43 Acicular crystal α-F'1120 containing Sl, Or, and Ni coated with the P compound obtained in Example 29 and the 81 compound
120 g of the 3-particle powder was put into a 34 retort reduction container, and while the container was being driven and rotated, H2 gas was passed through the container at a rate of 401/min, and reduction was carried out at a reduction temperature of 440'C.

還元して得られたSl、Or、Ni及びPを含有する針
状晶鉄合金磁性粒子粉末は、空気中に取り出したとき急
激な酸化を起さないように、一旦、トルエン液中に浸漬
して、これを蒸発させることにより、粒子表面に安定な
酸化皮膜を施した。
The acicular iron alloy magnetic particle powder containing Sl, Or, Ni, and P obtained by reduction was once immersed in a toluene solution to prevent rapid oxidation when taken out into the air. By evaporating this, a stable oxide film was formed on the particle surface.

このようにして得たSl、Or、Ml及びPを含有する
釦状晶鉄合金磁性粒子粉末は、X巌回折の結果、鉄と同
じ体心立方構造単−相の回折図形か得られた。
The button-like iron alloy magnetic particles containing Sl, Or, Ml, and P thus obtained had a single-phase diffraction pattern with a body-centered cubic structure similar to that of iron as a result of X-Iwa diffraction.

また、螢光X線分析の結果、SlをFeに対し4.70
原子係、OrをFeに対し0495原子饅、NiをFe
に対し301原子係、PをFeに対し0661原子係含
有するものであった。
In addition, as a result of fluorescent X-ray analysis, Sl was 4.70 compared to Fe.
Atomic section, Or is 0495 atomic rice for Fe, Ni is for Fe.
It contained 301 atoms of P compared to Fe, and 0,661 atoms of P to Fe.

従って、鉄とSi、 Or、 IJi及びPが固溶して
いると考えられる。
Therefore, it is considered that iron, Si, Or, IJi, and P are in solid solution.

このSl、Or、Ni及びPを含有する針状晶鉄合金磁
性粒子粉末は、平均値で長軸030μm 、軸比(長軸
:短軸)12:1、比表面積47.1m/り、かさ密度
0.479 /dであり、保磁力14200e、飽和磁
化165.2 emu/gであった。
This acicular iron alloy magnetic particle powder containing Sl, Or, Ni, and P has an average long axis of 030 μm, an axial ratio (long axis: short axis) of 12:1, a specific surface area of 47.1 m/l, and a bulk. The density was 0.479/d, the coercive force was 14200e, and the saturation magnetization was 165.2 emu/g.

また、この粒子粉末は、図5に示す電子顕微鏡写真(X
20000)から明らかな通り、粒度が均斉であり、樹
枝状粒子が混在していないものであった。
Moreover, this particle powder is shown in the electron micrograph (X
20000), the particle size was uniform and dendritic particles were not mixed.

実施例44〜56、比較例4 出発原料の種類、還元温度を種々変化させた以外は実施
例46と同様にしてSl、Or、Ni及びPを含有する
針状晶鉄合金磁性粒子粉末又は鉄磁性粒子粉末を得た。
Examples 44 to 56, Comparative Example 4 Acicular iron alloy magnetic particles or iron containing Sl, Or, Ni, and P were prepared in the same manner as in Example 46, except that the type of starting materials and the reduction temperature were varied. Magnetic particle powder was obtained.

得られた粒子粉末の緒特性を表5に示す。Table 5 shows the properties of the obtained powder particles.

実施例44〜56で得られたSl、Or、Ni及びPを
含有する針状晶鉄合金磁性粒子粉末は、電子顕微鏡観察
の結果、粒度が均斉であり、樹枝状粒子が混在しないも
のであった。
As a result of electron microscopic observation, the acicular iron alloy magnetic particles containing Sl, Or, Ni, and P obtained in Examples 44 to 56 were found to have uniform particle size and no dendritic particles. Ta.

比較例4で得られた鉄磁性粒子粉末は、平均値で長軸0
4μm、軸比(長軸:短軸)5:1、比表面積19.3
n//9、カサ密度0.19’/mlであり、保磁力1
0130θ、飽和磁化166.4 emu/gであった
The ferromagnetic particles obtained in Comparative Example 4 had an average long axis of 0.
4 μm, axial ratio (long axis: short axis) 5:1, specific surface area 19.3
n//9, bulk density 0.19'/ml, coercive force 1
0130θ, and the saturation magnetization was 166.4 emu/g.

また、この粒子粉末は図6に示す電子顕微鏡写真(X2
0000)から明らかな通り、粒度が不均斉であり、軸
比が悪いものであった。
Moreover, this particle powder is shown in the electron micrograph (X2
0000), the particle size was asymmetric and the axial ratio was poor.

く磁気テープの製造〉   実施例57〜70、比較例
 5; 実施例57 実施例43で得られたSl、0rXNi及びPを含有す
る針状晶鉄合金磁性粒子粉末を用いて、適量の分散剤、
塩ビ詐ビ共重合体、熱可塑性ポリウレタン樹脂及びトル
エン、メチルエチルケトン、メチルイソブチルケトンか
らなる混合溶剤を一定の組成に配合した後、ボールミル
で8時間混合分散して磁気塗料とした。
Manufacturing of magnetic tape> Examples 57 to 70, Comparative Example 5; Example 57 Using the acicular iron alloy magnetic particle powder containing Sl, OrXNi, and P obtained in Example 43, an appropriate amount of dispersant was added. ,
A PVC copolymer, a thermoplastic polyurethane resin, and a mixed solvent consisting of toluene, methyl ethyl ketone, and methyl isobutyl ketone were blended to a certain composition, and then mixed and dispersed in a ball mill for 8 hours to obtain a magnetic paint.

得られた磁気塗料に上記混合溶剤を加え適性な塗料粘度
になるように調整し、ポリエステル樹脂フィルム上に通
常の方法で塗布乾燥させて、磁気テープを製造した。
The above-mentioned mixed solvent was added to the obtained magnetic paint to adjust the paint viscosity to an appropriate paint viscosity, and the mixture was coated on a polyester resin film and dried in a conventional manner to produce a magnetic tape.

この磁気テープの保磁力Haは、16450e、残留磁
束密度Brは、3910 Gauss 、角型B r 
/ Bmは0790、配向度2.02であった。
The coercive force Ha of this magnetic tape is 16450e, the residual magnetic flux density Br is 3910 Gauss, and the square shape B r
/Bm was 0790, and the degree of orientation was 2.02.

実施例58〜70、 比較例5; 針状晶磁性粒子粉末の種類を種々変化した以外は、実施
例57と全く同様にして磁気テープを製造した。
Examples 58 to 70, Comparative Example 5: Magnetic tapes were produced in exactly the same manner as in Example 57, except that the type of acicular magnetic particles was varied.

この磁気テープの緒特性を表6に示す。Table 6 shows the characteristics of this magnetic tape.

【図面の簡単な説明】[Brief explanation of drawings]

図1は、水可溶性クロム塩の添加量と81及びCrを含
有する針状晶鉄合金磁性粒子粉末及びOrを含有する針
状晶鉄合金磁性粒子粉末の比表面積の関係図である。 図2は、水可溶性ニッケル塩の添加量とSi。 Or及びN1を含有する鎖状晶鉄合金磁性粒子粉末の保
磁力の関係図である。 図6乃至図4は、いずれも電子顕微鏡写真(X2000
0)であり、図3は実施例1で得られたSl、を含有す
る針状晶鉄合金磁性粒子粉末、図6は比較例2で得られ
た鉄磁性粒子粉末である。 特許出願人 戸田工業株式会社 図 3 (X 20600) 記4 (X26000)
FIG. 1 is a diagram showing the relationship between the amount of water-soluble chromium salt added and the specific surface area of acicular iron alloy magnetic particles containing 81 and Cr and acicular iron alloy magnetic particles containing Or. Figure 2 shows the amount of water-soluble nickel salt added and Si. FIG. 3 is a relationship diagram of coercive force of chain crystal iron alloy magnetic particle powder containing Or and N1. Figures 6 to 4 are all electron micrographs (X2000
0), and FIG. 3 shows the acicular iron alloy magnetic particles containing Sl obtained in Example 1, and FIG. 6 shows the iron magnetic particles obtained in Comparative Example 2. Patent applicant: Toda Kogyo Co., Ltd. Figure 3 (X 20600) Note 4 (X 26000)

Claims (1)

【特許請求の範囲】 1)Sl、Or、Ni及びPを含有する針状晶鉄合金磁
性粒子からなる磁気記録用針状晶鉄合金磁性粒子粉末。 2)第一鉄塩水溶液とアルカリ水溶液とを反応させて得
られたhe(oH)、を含むpH11以上の懸濁液に酸
素含有ガスを通気して酸化することにより針状晶α−F
eOOH粒子を生成させるにあたり、前記アルカリ水溶
液及び酸素含有ガスを通気して酸化反応を行わせる前の
前記懸濁液のいずれかの液中に、水可溶性ケイ酸塩をF
eに対しS1換算で01〜1.7原子多添加しておき、
且つ、前記第一鉄塩水溶液、前記アルカリ水溶液、酸素
含有ガスを通気して酸化反応を行わせる前の前記懸濁液
及び酸素含有ガスを通気して酸化反応を行わせている前
記反応溶液のいずれかの液中に水可溶性クロム塩をIr
eに対しOr換算で0.1〜5.0原子%及び水可溶性
ニッケル塩をFeに対しN1換算で01〜7.0IJ7
.子チ添加しておくことにより、Si。 Cr及びN1を含有する針状晶α−FeOOH粒子を生
成させ、該Si、Or及びN1を含有する針状晶α−F
eOOH粒子を母液から分離した後水中に懸濁させ、該
懸濁液のpH値8以上の状態で81、Or及びN1を含
有する針状晶α−FeOOH粒子に対し、0.1−2 
wt%(PO2に換算)のリン酸塩を添加し、次いで0
1〜ZOwt%(5IQIに換算)の水可溶性ケイ酸塩
を添加した後、懸濁液のpH値を3〜7に調製すること
によりP化合物とSl化合物で被覆されたSi、Or及
びN1を含有する針状晶α−FeOOH粒子を得、該粒
子をp別、乾燥し、次いで、非還元性雰囲気中で加熱処
理してP化合物と81化合物で被覆されたSj、、Or
及びN1を含有する針状晶α−Fe203粒子とした後
、該粒子を還元性ガス中で加熱還元してSl、Or、N
i及びPを含有する針状晶鉄合金磁性粒子を得ることを
特徴とする磁気記録用針状晶鉄合金磁性粒子粉末の製造
法。 6)非還元性雰囲気中における加熱処理の温度範囲が5
00°C〜900°Cである特許請求の範囲第2項記載
の磁気記録用針状晶鉄合金磁性粒子粉末の製造法。 4)還元性ガス中における加熱還元の温度範囲が350
°C〜600°Cである特許請求の範囲第2項記載の磁
気記録用針状晶鉄合金磁性粒子粉末の製造法。
[Claims] 1) An acicular iron alloy magnetic particle powder for magnetic recording comprising acicular iron alloy magnetic particles containing Sl, Or, Ni, and P. 2) Oxygen-containing gas is passed through a suspension containing he(oH) obtained by reacting a ferrous salt aqueous solution and an alkaline aqueous solution and has a pH of 11 or more to oxidize it to produce needle-shaped α-F.
In producing eOOH particles, a water-soluble silicate is added to any of the suspensions before the alkali aqueous solution and oxygen-containing gas are passed through to perform the oxidation reaction.
Add 01 to 1.7 atoms in S1 terms to e,
and the ferrous salt aqueous solution, the alkaline aqueous solution, the suspension before an oxidation reaction is carried out by passing an oxygen-containing gas through the solution, and the reaction solution in which an oxidation reaction is carried out by passing an oxygen-containing gas through the suspension. Add water-soluble chromium salt to Ir in either solution.
0.1 to 5.0 atomic % in terms of Or to e and 01 to 7.0 IJ7 in terms of N1 to Fe and water-soluble nickel salt
.. By adding Si, Si. Acicular α-FeOOH particles containing Cr and N1 are produced, and acicular α-F containing Si, Or and N1 are produced.
After the eOOH particles are separated from the mother liquor, they are suspended in water, and when the pH value of the suspension is 8 or more, 0.1-2
wt% (calculated as PO2) of phosphate was added, then 0
After adding 1~ZOwt% (calculated in 5IQI) of water-soluble silicate, Si, Or and N1 coated with P and Sl compounds were prepared by adjusting the pH value of the suspension to 3~7. Acicular α-FeOOH particles containing acicular crystals were obtained, the particles were separated from P, dried, and then heat-treated in a non-reducing atmosphere to obtain Sj,,Or
After forming acicular α-Fe203 particles containing N1 and N1, the particles are heated and reduced in a reducing gas to form Sl, Or, N
A method for producing acicular iron alloy magnetic particles for magnetic recording, the method comprising obtaining acicular iron alloy magnetic particles containing i and P. 6) The temperature range of heat treatment in a non-reducing atmosphere is 5.
The method for producing acicular iron alloy magnetic particles for magnetic recording according to claim 2, wherein the temperature is 00°C to 900°C. 4) Temperature range of thermal reduction in reducing gas is 350
The method for producing acicular iron alloy magnetic particles for magnetic recording according to claim 2, wherein the temperature is from .degree. C. to 600.degree.
JP58098506A 1983-04-30 1983-05-31 Magnetic grain powders of needle crystal iron alloy for magnetic recording and method of manufacturing the same Granted JPS59222903A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP58098506A JPS59222903A (en) 1983-05-31 1983-05-31 Magnetic grain powders of needle crystal iron alloy for magnetic recording and method of manufacturing the same
US06/573,489 US4514216A (en) 1983-04-30 1984-01-24 Acicular ferromagnetic alloy particles for magnetic recording and process for producing the same
EP84300567A EP0124953B1 (en) 1983-04-30 1984-01-30 Acicular ferromagnetic alloy particles for use in magnetic recording media
DE8484300567T DE3462834D1 (en) 1983-04-30 1984-01-30 Acicular ferromagnetic alloy particles for use in magnetic recording media
KR1019840000424A KR840008308A (en) 1983-04-30 1984-01-31 Needle-shaped ferromagnetic alloy particles for magnetic recording and its manufacturing method (磁 氣 記錄 用 針狀 强 磁性 合 金 粒子 and its method)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58098506A JPS59222903A (en) 1983-05-31 1983-05-31 Magnetic grain powders of needle crystal iron alloy for magnetic recording and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPS59222903A true JPS59222903A (en) 1984-12-14
JPH0261124B2 JPH0261124B2 (en) 1990-12-19

Family

ID=14221526

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58098506A Granted JPS59222903A (en) 1983-04-30 1983-05-31 Magnetic grain powders of needle crystal iron alloy for magnetic recording and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JPS59222903A (en)

Also Published As

Publication number Publication date
JPH0261124B2 (en) 1990-12-19

Similar Documents

Publication Publication Date Title
JPS5853688B2 (en) Method for producing acicular alloy magnetic particle powder mainly composed of Fe-Mg
US4514216A (en) Acicular ferromagnetic alloy particles for magnetic recording and process for producing the same
US4773931A (en) Spindle ferromagnetic alloy particles
JP3427871B2 (en) Cobalt-coated acicular magnetic iron oxide particles
US4495164A (en) Process for producing acicular magnetite or acicular maghemite
JPS62158801A (en) Magnetic metallic particle powder essentially consisting of iron having spindle shape and production thereof
JPS59222903A (en) Magnetic grain powders of needle crystal iron alloy for magnetic recording and method of manufacturing the same
JPS60138002A (en) Magnetic metallic particle powder consisting essentially of iron having spindle shape and its production
JPS5941453A (en) Needle crystal iron alloy magnetic particulate powder for magnetic recording and preparation thereof
JPH026805B2 (en)
JPS6239203B2 (en)
JP3171223B2 (en) Method for producing acicular magnetic particle powder
JPS59202610A (en) Magnetic recording acicular crystal iron alloy magnetic powderly grain and manufacture thereof
JP3166809B2 (en) Method for producing acicular magnetic iron oxide particles
JP2970699B2 (en) Method for producing acicular magnetic iron oxide particles
JP3055308B2 (en) Method for producing acicular magnetic iron oxide particles
JPS5923806A (en) Magnetic particle powder of acicular crystal iron alloy for magnetic recording and its production
JP2883962B2 (en) Method for producing acicular goethite particle powder
JPS5946281B2 (en) Method for producing acicular Fe-Co alloy magnetic particle powder
JPS5864303A (en) Production of magnetic particle powder of needle crystal alloy consisting essentially of fe-mg-ni
JPS62128931A (en) Production of magnetic iron oxide grain powder having spindle type
JPH0532421A (en) Production of needlelike magnetic iron oxide grain powder
JPS62128926A (en) Production of magnetic iron oxide grain powder having spindle type
JPH0774081B2 (en) Manufacturing method of spindle-shaped magnetic iron oxide particles
JPH07331310A (en) Production of spindle shaped metallic magnetic particle powder consisting essencially of iron