JPS586406A - Inspecting system using robot - Google Patents

Inspecting system using robot

Info

Publication number
JPS586406A
JPS586406A JP10443881A JP10443881A JPS586406A JP S586406 A JPS586406 A JP S586406A JP 10443881 A JP10443881 A JP 10443881A JP 10443881 A JP10443881 A JP 10443881A JP S586406 A JPS586406 A JP S586406A
Authority
JP
Japan
Prior art keywords
origin
point
robot
teaching
workpiece
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10443881A
Other languages
Japanese (ja)
Inventor
Akira Dobashi
土橋 亮
Hitoshi Kusakawa
草川 均
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP10443881A priority Critical patent/JPS586406A/en
Publication of JPS586406A publication Critical patent/JPS586406A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B21/00Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant
    • G01B21/02Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring length, width, or thickness
    • G01B21/04Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring length, width, or thickness by measuring coordinates of points

Abstract

PURPOSE:To know simply the position of maximum displacement, by first teaching both the original point and the standard point into the work to be measured to give the coordinate axis and the original point on the coordinate axis into the work and displaying all points in the work on the basis of the coordinate axis. CONSTITUTION:A writst 14 and an antenna 16 are provided at the tips of the shafts 2, 5 and 9 of a robot. The antenna 16 is positioned when the measurement is started, and the teaching is carried out in the teaching mode of the original point. Then the teaching is given to the standard point at the center of other end of the works 17 and 18 respectively. The measurement of the works 17 and 18 are inspected by using the coordinate axis passing through the original point and the standard point as the standard coordinates.

Description

【発明の詳細な説明】 本発U月は複Hな形状の物体の寸法をロボツ)K依って
検査する方式に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for inspecting the dimensions of a complex H-shaped object using a robot.

ロボ・ソトにしろ、三次元測定器にしろ、原点はロボッ
ト@または、m重器側で定めた点になっており、ワーク
の誤差を測定するのには不都合がある、座標のとり方に
ついても同様のことicrえる。
Regardless of whether it is a RoboSoto or a three-dimensional measuring device, the origin is a point determined by the robot or the heavy equipment, which is inconvenient for measuring errors in the workpiece. I can see the same thing.

ワークの寸法誤差を測定しやす−位置に原点をとり、測
定しやすい方向に座標をとることのできる装置が、複雑
で大形のワークには特に必要である。
Easy to measure dimensional errors in workpieces - A device that can set the origin at a position and take coordinates in a direction that is easy to measure is especially necessary for complex and large workpieces.

本発明の目的は測定対象のワークに原点をティーチし、
ワークに好適の座標軸をティー千すると、ワーク上の点
がすべて、上記原点と座標軸を基準として表示させるこ
とのできるロボットに依石検査方式を提供することにあ
る。
The purpose of the present invention is to teach the origin to the workpiece to be measured,
The object of the present invention is to provide a robot with a fixed inspection method that can display all points on the workpiece with reference to the origin and the coordinate axes when a suitable coordinate axis is set for the workpiece.

例えば1円筒を外部から測定する一合1両端面の中心を
結ぶ中心線をX軸とし、重力の方向をZ鵬とし、X、Z
K直角な方向をY軸として表示すると、各断面の中心の
ずれや半径の誤差が攻めやすL/−h。
For example, when measuring a cylinder from the outside, let the center line connecting the centers of both end faces be the X axis, and the direction of gravity be Z, then
If the direction perpendicular to K is displayed as the Y axis, the deviation of the center of each cross section and the error in the radius will be easily detected L/-h.

上記での測定を%ロボット先端に触手を特恵せてワーク
に接触すると同時に、上記のX、Y、Z座標で表示さ略
れば、最高点、最近点、最遠点等の座標を試行錯誤法で
簡単に求められる。
The above measurement is performed by placing the tentacle at the tip of the robot and touching the workpiece, and at the same time displaying the above X, Y, Z coordinates.In other words, the coordinates of the highest point, nearest point, farthest point, etc. easily required by law.

本発明を適用する非量産用ワークの一例を第1図に示す
An example of a workpiece for non-mass production to which the present invention is applied is shown in FIG.

第1図において%a、b、CI/′i母管と枝管の交点
で 湿曲線と呼ばれ、形状が複雑であるなめ、誤差があ
るd晦形曲線の形状が変わり、製品毎の品質にばらつき
を生じる。
In Figure 1, the intersection of %a, b, CI/'i main pipe and branch pipe is called the wet curve, and since the shape is complex, the shape of the d-shaped curve with errors changes, and the quality of each product changes. There will be variations in the results.

母管は、長さ5mもめる場合があり、真円に1すること
が困難でかつ、中心線妙:第2図のように弯曲する場合
が多力。すなわら第2図の(Y、Z)平面で母管を切断
すると第3図のように変形して因ることが多込。
The main tube may have a length of 5 m, making it difficult to form a perfect circle, and the center line may be curved as shown in Figure 2. In other words, if the main pipe is cut along the (Y, Z) plane in Figure 2, it will often be deformed as shown in Figure 3.

このようにとき、まずZ方向の最大変位1kZOW。In this case, first, the maximum displacement in the Z direction is 1 kZOW.

Y方向の最大変位myowを見出して、ハンV −等を
用−て修正し、中心Oからの半径の誤差がα5%以下に
なるようにする。
The maximum displacement myow in the Y direction is found and corrected using Han V etc. so that the error in the radius from the center O is α5% or less.

このような修正におAでは、中心0からの寸法がすぐ読
み取れる装#が必要であるが、従来の測定装置では、複
雑な計算と、最大変位の位置を見出すための高度の経験
を必要とし念。
For such corrections, A requires a device that can immediately read the dimensions from the center 0, but conventional measuring devices require complex calculations and a high degree of experience to find the position of maximum displacement. Just in case.

本発明は以上のような問題を解消し、簡単に最大変位点
を見出すなめのものである。このため第1図の母管の両
瑞X、、X、を求心つかみ装置で固定し、一端の中心X
、を原点、X、X□′f:X軸として記憶し、それ以後
に測定されたすべての点を一ヒ記原点とX軸を基準に表
示できるようにする。
The present invention solves the above-mentioned problems and makes it easy to find the maximum displacement point. For this purpose, fix both ends X, ,
, is stored as the origin, X, X□'f: X axis, and all points measured thereafter can be displayed based on the origin and the X axis.

上8犯に示した機能を満足する装置の一実施例を第4図
に示す。
FIG. 4 shows an embodiment of a device that satisfies the functions shown in the above eight crimes.

第4図におりて、走行台2の位置はエンコーダ4により
測定される。この方向をX軸と呼びa検出値出値をX′
とする。、昇降台5υ位置は、エンコーダ7により測定
され、そり方向をZ′軸と呼び検出値I&:zと呼ぶ、
 ff1l後軸9の位Jは、エンコーダ11により測定
されその方向f:y’軸と呼び検出値をyと呼ぶ。触手
14v%J灰シまψと0で表=1′)される。
In FIG. 4, the position of the carriage 2 is measured by an encoder 4. This direction is called the X axis, and the output value of a detected value is X'
shall be. , the position of the lifting platform 5υ is measured by the encoder 7, and the warping direction is called the Z' axis and the detected value I&:z.
The position J of the ff1l rear axis 9 is measured by the encoder 11, and its direction is called f:y' axis, and the detected value is called y. Tentacle 14v%J gray stripe ψ and 0 table = 1').

φ、#はエンコーダ15.13で検出する。φ and # are detected by encoders 15 and 13.

上記X、y*zの1fαは、腕14の回転中心Pの位置
として換算されている。測定される位置は触手16の先
端見の座標を(X/、Y’、Z勺とするとX# ya 
zとの開に下記の開係がある。但しθはX軸に対して腕
14の成す角である。
1fα of the above X, y*z is converted as the position of the rotation center P of the arm 14. The measured position is X# ya, where the coordinates of the tip of the tentacle 16 are (X/, Y', Z
There are the following openings for opening with z. However, θ is the angle formed by the arm 14 with respect to the X axis.

上記(1)は、ロボットの触手Qの位置であるが、ワー
クの寸法誤差を知る冷めには、補正計算をして表示する
必要がある。
The above (1) is the position of the robot's tentacle Q, but in order to know the dimensional error of the workpiece, it is necessary to perform a correction calculation and display it.

上記の目的のなめ、測定されるワークの位置を(X、Z
、Z)で示すこととし、下記のような未定定数xa、y
a、Zaを(1)式に加えて、ワーク上に、原点を指定
したとき(原点ティーチと呼ぶ)Xa、Ya、za4r
自動的に計算され記憶されるようにする。すなわち(1
)を と与えておく。ここで、aおよびbは、ワーク上の座標
とロボットの座標のずれを補正する補正項である。
For the above purpose, the position of the workpiece to be measured is (X, Z
, Z), and the following undetermined constants xa, y
When adding a and Za to equation (1) and specifying the origin on the workpiece (called origin teaching), Xa, Ya, za4r
Automatically calculated and memorized. That is, (1
) is given. Here, a and b are correction terms for correcting the deviation between the coordinates on the workpiece and the coordinates of the robot.

原点ティーチのときには、ロボットの位置記憶のステッ
プ番号を0とし、そのとき触手を位置決めして、原点テ
ィーチモードでティーチングする。
At the time of origin teaching, the step number of the robot's position memory is set to 0, the tentacle is positioned at that time, and teaching is performed in the origin teaching mode.

第1図の各エンコーダの[X・+ 7e * z・、デ
・。
[X・+7e*z・, de・ of each encoder in FIG.

0、とはステップ1に記憶され、その値とR,rおよび
x−y−z=0により が計算され、xa、ya、zaが定数としてステップ番
号とは異なるエリアに記憶される。
0 is stored in step 1, and its value, R, r, and x-y-z=0 are calculated, and xa, ya, and za are stored as constants in an area different from the step number.

上記のフローチャートを第5図に示す。The above flowchart is shown in FIG.

上記のx−y−z=oの位tJiは、母管の一端の中心
とする。さらに母管の他端の中心(基準点と呼ぶ)をテ
ィーチすることにより、母管の中心線をX軸として、ワ
ークの寸法を求めることができる。
The above x-y-z=o position tJi is the center of one end of the main tube. Furthermore, by teaching the center of the other end of the main tube (referred to as the reference point), the dimensions of the workpiece can be determined using the center line of the main tube as the X axis.

すなわち、母管の他端の中心におけるエンコーダの値(
X+ e L + Zl 1 9’l +  θl )
とRorおよびX−(x、 −x、 )+(r−4−R
cos9. )cosθr  (r+Rcosψ、)c
osθ、、ならびに式(3)及びy−z−oを(2)に
代入し、aおよ、びbを求める。基準点をティーチする
に先立って可能なかぎり、走行台と母管の中心線は平行
になるようIlmするのがの上筒しす。
That is, the encoder value at the center of the other end of the main tube (
X+ e L + Zl 1 9'l + θl)
and Ror and X−(x, −x, )+(r−4−R
cos9. )cosθr (r+Rcosψ,)c
osθ, and equations (3) and yzo are substituted into (2) to obtain a and b. Before teaching the reference point, the upper tube should be adjusted so that the center lines of the carriage and the main tube are parallel to each other as much as possible.

このように、原点と基準点をティーチしておけば、ワー
クの位置をすべて上記母管の中心線をX軸として測定す
るなめυ準備が完了したことになる。
By teaching the origin and the reference point in this way, preparations for measuring all the positions of the workpiece with the center line of the main tube as the X axis are completed.

上記070−チヤートは第6図に示す。The above 070-chart is shown in FIG.

ステップ3以後は、ワーク上の位置を触手で指示して、
ティーチしてbけば、(2)により(X、Y。
After step 3, use the tentacle to indicate the position on the workpiece.
If you teach b, (X, Y.

2)のtiボ次々に記憶される。2) are stored one after another.

必要なワーク上の位置のテイーナ後、READモードに
して、ワークの位置を読み出す、このと#、ワークの位
置は(X、Y、Z)で表示される。
After retaining the required position on the workpiece, enter the READ mode and read the position of the workpiece.The position of the workpiece is then displayed as (X, Y, Z).

なお、触手を接触センナとし、各ステップの位置(xi
 、yi 、 zi 、デj−,−1)から接触センサ
の方向に動かしてワークを接触させ、その時の位置を・
(X、Y、Z)で記憶させるようにすることができる。
Note that the tentacles are used as contact sensors, and the position of each step (xi
, yi , zi , dej-, -1), move the workpiece in the direction of the contact sensor and make contact, and the position at that time is
(X, Y, Z) can be stored.

このようにすれば、従来のロボットボ、各ステップの位
置(Xi、、71.Zi、ψ:lL、#i、)の点で、
ステップの順に作業をして−くのと全く同じ原理で接触
センサを使用して、ワークの自動検査をしてbくことが
できる。
In this way, in terms of the position of each step (Xi,, 71.Zi, ψ:lL, #i,) of the conventional robot,
A contact sensor can be used to automatically inspect a workpiece using exactly the same principle as working in the order of steps.

さらに、上記の夾施例の説明におりては、ロボットは(
X * V −Z e ? * ’ )の直角座標系の
5軸構造であったが、関節形構造でも、軸数を4軸にし
ても本発明を適用することができる。またロボットの位
置を記憶するときには、必ずしも(X。
Furthermore, in the explanation of the above example, the robot (
X*V-Ze? *') Although the structure is a five-axis rectangular coordinate system, the present invention can also be applied to an articulated structure with four axes. Also, when memorizing the robot's position, it is not necessary to use (X).

Y、Z)でなく、(X m 7 * z+ F * ’
 )で記憶し、表示する直前に式(5)を用りて計算し
くY、Y。
Y, Z) but (X m 7 * z + F * '
), and calculate Y and Y using equation (5) just before displaying.

Z)で表わしても良い。また表示される座標も(X、Y
、Z)の直交座標のみでなく円筒座標、極座標を用すて
表示しても本発明の本質から逸脱するものでないことは
明らかである。
It may also be expressed as Z). Also, the displayed coordinates (X, Y
, Z) may be expressed using not only orthogonal coordinates but also cylindrical coordinates and polar coordinates without departing from the essence of the present invention.

本発明によればワーク中にはじめに、原点と基準点をテ
ィーチすることにより、ワーク中に座標軸と座標軸上の
原点を与えることができ、このためワーク上のすべての
点を座標軸を基準として表示することができ、寸法検査
に最も重要な最大変位位置を簡単に知ることができる。
According to the present invention, by first teaching the origin and reference point during the work, the coordinate axes and the origin on the coordinate axes can be given during the work, and therefore all points on the work are displayed with the coordinate axes as the reference. The maximum displacement position, which is most important for dimensional inspection, can be easily determined.

ので作業現場の検査装置として好適である。Therefore, it is suitable as an inspection device at work sites.

さらに、本発明の+M能を、従来の産業用ロボットに付
加すれば、ワーク形状を一定にすることの困難な非量産
のワークを測定し、−足のffg41内に入ったことを
確認することができるので、非量産ワークの品質の向上
がはかられ、また自動化が促進される、 な≧触手としては接触式のものの他に、非接触式のもの
も使用可能である。
Furthermore, by adding the +M function of the present invention to a conventional industrial robot, it is possible to measure non-mass-produced workpieces in which it is difficult to keep the workpiece shape constant, and to confirm that the workpiece is within the -leg ffg41. As a result, the quality of non-mass-produced workpieces can be improved, and automation can be promoted. In addition to contact type tentacles, non-contact type tentacles can also be used.

【図面の簡単な説明】 第1図は、本発明の説明に用ηたワーク例、第2図は、
1@1図の中心線の変形を示すM、第3図は、第1図の
断面の一例である。第4図は、本発明の一実施例%第5
図は、原点のティーチの念めのフロ−9ヤード、@6図
は、基準点のティーチのためのフローチャートである。 2.5.9はロボットの軸、14は手首、16は触手で
ある。 第1瓢 第4図 才5図
[Brief explanation of the drawings] Figure 1 shows an example of a workpiece used to explain the present invention, and Figure 2 shows an example of a workpiece used to explain the present invention.
1@M showing the deformation of the center line in FIG. 1, FIG. 3 is an example of the cross section of FIG. 1. Figure 4 shows one embodiment of the present invention.
The figure is a flowchart for teaching the origin point - 9 yards, and the figure @6 is a flowchart for teaching the reference point. 2.5.9 is the axis of the robot, 14 is the wrist, and 16 is the tentacle. 1st gourd 4th figure 5th figure

Claims (1)

【特許請求の範囲】 本体5軸と手首に少くとも1111を有し、前記手首先
端に触手を備え、且2該触手先増の位置を表示する機能
を有するロボットの動作範囲の中の1点を原点とし、他
の1点を基準点とすることにより、該原点と該基準点を
通る直線を座標軸となし。 該原点と該基準点とtあらかじめ記憶させ、その後に位
置決めされた点は、該原点を原点とし、該座σ軸を基準
の座標として、記録できるようにしたロボット(fC依
す検査方式。
[Claims] One point in the operating range of a robot that has at least 1111 on the 5 axes of the main body and the wrist, has a tentacle at the tip of the wrist, and has a function of displaying the additional position of the tentacle tip. By setting the origin as the origin and one other point as the reference point, the straight line passing through the origin and the reference point becomes the coordinate axis. The origin and the reference point are memorized in advance, and the subsequently positioned points can be recorded using the origin as the origin and the σ-axis as the reference coordinate (inspection method based on fC).
JP10443881A 1981-07-06 1981-07-06 Inspecting system using robot Pending JPS586406A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10443881A JPS586406A (en) 1981-07-06 1981-07-06 Inspecting system using robot

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10443881A JPS586406A (en) 1981-07-06 1981-07-06 Inspecting system using robot

Publications (1)

Publication Number Publication Date
JPS586406A true JPS586406A (en) 1983-01-14

Family

ID=14380662

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10443881A Pending JPS586406A (en) 1981-07-06 1981-07-06 Inspecting system using robot

Country Status (1)

Country Link
JP (1) JPS586406A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59180418A (en) * 1983-03-30 1984-10-13 ワイラ−・アクチエンゲゼルシヤフト・ヴアセルヴア−ゲン・ウント・メスヴエルツオイグ Measuring arm of multiple coordinate measuring device
JPS61105412A (en) * 1984-10-29 1986-05-23 Mitsutoyo Mfg Co Ltd Multidimensional measuring machine
JPS61105411A (en) * 1984-10-29 1986-05-23 Mitsutoyo Mfg Co Ltd Measuring method of multidimensional measuring machine
JPS61105413A (en) * 1984-10-29 1986-05-23 Mitsutoyo Mfg Co Ltd Multidimensional measuring machine
JPS62265517A (en) * 1986-05-13 1987-11-18 Mitsubishi Electric Corp Position detecting device for moving body
EP0334890A1 (en) * 1986-12-10 1989-10-04 McDONALD, Gregory James Coordinate measuring system
JPH01282413A (en) * 1988-05-09 1989-11-14 Hitachi Cable Ltd Position shift measuring apparatus
US8352212B2 (en) 2009-11-18 2013-01-08 Hexagon Metrology, Inc. Manipulable aid for dimensional metrology

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59180418A (en) * 1983-03-30 1984-10-13 ワイラ−・アクチエンゲゼルシヤフト・ヴアセルヴア−ゲン・ウント・メスヴエルツオイグ Measuring arm of multiple coordinate measuring device
JPS61105412A (en) * 1984-10-29 1986-05-23 Mitsutoyo Mfg Co Ltd Multidimensional measuring machine
JPS61105411A (en) * 1984-10-29 1986-05-23 Mitsutoyo Mfg Co Ltd Measuring method of multidimensional measuring machine
JPS61105413A (en) * 1984-10-29 1986-05-23 Mitsutoyo Mfg Co Ltd Multidimensional measuring machine
JPS62265517A (en) * 1986-05-13 1987-11-18 Mitsubishi Electric Corp Position detecting device for moving body
EP0334890A1 (en) * 1986-12-10 1989-10-04 McDONALD, Gregory James Coordinate measuring system
JPH01282413A (en) * 1988-05-09 1989-11-14 Hitachi Cable Ltd Position shift measuring apparatus
US8352212B2 (en) 2009-11-18 2013-01-08 Hexagon Metrology, Inc. Manipulable aid for dimensional metrology

Similar Documents

Publication Publication Date Title
US6941192B2 (en) Robot machining tool position and orientation calibration
US11072078B2 (en) Method for measuring pose of robotic end tool
JP4504818B2 (en) Workpiece inspection method
Hayat et al. Identification of Denavit-Hartenberg parameters of an industrial robot
JP2002509034A (en) Calibration and compensation of robotic gauging systems
JPH02128101A (en) Specimen for coordinate measuring device
KR101797122B1 (en) Method for Measurement And Compensation of Error on Portable 3D Coordinate Measurement Machine
JPS586406A (en) Inspecting system using robot
JPS6332306A (en) Non-contact three-dimensional automatic dimension measuring method
CN106141810B (en) The ensuring method of cylindrical workpiece embedded SMA actuators wall thickness under robot manipulation
KR102093556B1 (en) Geometric error measuring method and computer readable record medium having program recorded for executing same
Furutani et al. Kinematical calibration of articulated CMM using multiple simple artifacts
JPS638904A (en) Robot calibrating device
JPH01141307A (en) Method and device for measuring volume
Aamir et al. Identification of Denavit-Hartenberg Parameters of an Industrial Robot
JP2661118B2 (en) Conversion method of object coordinates and visual coordinates using image processing device
JPH0731536B2 (en) Teaching data correction robot
JPH01153907A (en) Visual sensor attitude correction system utilizing image processor
JPH01207610A (en) Measuring method for reference position of vehicle body component
JPH06273103A (en) Method for measuring outside diameter of cylindrical object
KR100225883B1 (en) Method and measuring jig for tuning tcp of laser vision sensor mounted in articulated robot
JPH03142356A (en) Ultrasonic flaw detector
JPH045328B2 (en)
Guo et al. Study on calibration technology of portable coordinate measuring machines
JPS62272111A (en) Position and posture detecting method for robot hand