JPS5864045A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS5864045A
JPS5864045A JP16459181A JP16459181A JPS5864045A JP S5864045 A JPS5864045 A JP S5864045A JP 16459181 A JP16459181 A JP 16459181A JP 16459181 A JP16459181 A JP 16459181A JP S5864045 A JPS5864045 A JP S5864045A
Authority
JP
Japan
Prior art keywords
layer
crystalline
grown
insulating
semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16459181A
Other languages
Japanese (ja)
Inventor
Rokutaro Ogawa
禄太郎 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP16459181A priority Critical patent/JPS5864045A/en
Publication of JPS5864045A publication Critical patent/JPS5864045A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/762Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Local Oxidation Of Silicon (AREA)
  • Element Separation (AREA)

Abstract

PURPOSE:To uniformly prepare the crystallinity of an element forming region by epitaxially growing an insulating crystalline layer on a substrate and a semiconductor crystalline layer on the insulating layer, forming by etching an insular semiconductor crystalline layer and burying and growing an insulating crystalline layer in the etched and removed region. CONSTITUTION:The first insulating crystalline (EGI) layer 12 is grown in vapor phase on a silicon substrate 11. Then, an n<+> type silicon crystalline layer 13 and an n type silicon crystalline layer 14 are epitaxially grown. Further, a photoresist film mask 15 is formed on the upper surface of the layer 14, and silicon crystalline layers 13, 14 of an interelement isolating region are etched and removed by a plasma etching method. In this case, the EGI layer becomes a blocking layer, and the substrate 11 is not etched. Then, the mask 15 is removed, the second EGI layer 16 is grown in vapor phase, and the interelement isolating region is buried. Subsequently, the layer 16 grown from the layer 14 is polished and removed, a bipolar semiconductor element I3 is formed on the layer 14, windows are opened at an SiO2 film 17, thereby forming base, emitter and collector contacting regions and electrodes B, E, C.

Description

【発明の詳細な説明】 本発明は半III体装置の製造方法、特に素子間分離形
成方法の改善に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a semi-III device, and more particularly to an improvement in a method for forming isolation between devices.

半導体集積回路(IC)では個々の半導体素子を電気的
に絶縁分離するために素子間分離を必要としておシ、公
知の分離方式として半導体結晶基板上に反対導電型結晶
層をエピタキシャル成長して、1つの素子形成aSの四
方側面をPIF接合分離したり、あるいは四方側面には
酸化膜分離(絶縁分離)したりする方法が著名であるが
、これらの方法は、分離帯が広くて高集積化が麹かしく
・、また基板との間に寄生容量を生じるなどの問題点を
もっている。一方、SOS方式として絶縁体のf7ア 
゛イヤ基板上に結晶層をエピタキシャル成長する方法が
提唱されているが、サファイヤ基板が高価な上に、結晶
層の結晶性が良くないなどの理由で、特にバイポーラ染
工0では殆んど利用されていない状況である。
Semiconductor integrated circuits (ICs) require isolation between individual semiconductor elements in order to electrically insulate them, and a well-known isolation method involves epitaxially growing crystal layers of opposite conductivity on a semiconductor crystal substrate. Well-known methods include PIF junction isolation on the four sides of an aS with two elements formed, or oxide film isolation (insulation isolation) on the four sides, but these methods have wide isolation bands and are difficult to achieve high integration. It has problems such as being moldy and creating parasitic capacitance between it and the substrate. On the other hand, as an SOS method, the insulator f7
``A method of epitaxially growing a crystal layer on a sapphire substrate has been proposed, but it is rarely used, especially in bipolar dyeing, because the sapphire substrate is expensive and the crystallinity of the crystal layer is poor. The situation is that it is not.

その良め、シリコン基板などの半導体結晶基板上に!縁
結晶(K、G、工、EpiiaXLal erowth
 onInsulator )層を成長し、更にその上
にシリコンなどの半導体結晶層をエピタキシャル成長す
る方法が考案されておシ、EGI層としてはマグネシャ
スピネルCMgo・Ax20. )がその代表的なもの
で、シリコン基板との結晶整合性も良いことが知られて
いる。第1図はその従来例の断面構造図を示しており、
これはシリコン基板1面を選択的にエツチングした後、
その上KKGIMi12とシリコン結晶層3とをエピタ
キシャル成長し、KGIfi2で囲まfL次クりルtR
域の内外にそれぞれ半導体素子TI、T2を形成する方
法である。しかし、この方法はフェル領域を余り小さく
形成することが難しくて、高密度化が困難であり、又フ
ェル領域の内外の半導体素子T1とT2との特性が不均
一になる欠点があり、応用範囲が制限される。
Even better, on semiconductor crystal substrates such as silicon substrates! Edge Crystal (K, G, Engineering, EpiiaXLal erowth
A method has been devised in which a layer (onInsulator) is grown and then a semiconductor crystal layer of silicon or the like is epitaxially grown on it. ) is a typical example, and is known to have good crystal consistency with silicon substrates. Figure 1 shows a cross-sectional structural diagram of the conventional example.
This is done after selectively etching one side of the silicon substrate.
On top of that, KKGIMi12 and silicon crystal layer 3 are epitaxially grown and surrounded by KGIfi2.
In this method, semiconductor elements TI and T2 are formed inside and outside the area, respectively. However, this method has the drawback that it is difficult to form the felt region too small, making it difficult to achieve high density, and the characteristics of the semiconductor elements T1 and T2 inside and outside the felt region are non-uniform. is limited.

本発明はこのような欠点を解消させることを目的として
おり、その特徴は半導体結晶基板上に第1のPGI層を
エピタキシャル成長しJ’にその131層上に半導体結
晶層をエピタキシャル成長する工程と、該半導体結晶層
を選択的にエツチング除去して、島状の半導体結晶領域
を形成し、エツチング除去領域に第2のEGI層を埋没
成長させる工程やが含まれる半導体装置の製造方法であ
り、以下図面を参照して実施例により詳細に説明する。
The present invention aims to eliminate such drawbacks, and its features include a step of epitaxially growing a first PGI layer on a semiconductor crystal substrate and then epitaxially growing a semiconductor crystal layer on the 131st layer J'; This method of manufacturing a semiconductor device includes the steps of selectively etching away a semiconductor crystal layer to form an island-shaped semiconductor crystal region, and growing a second EGI layer buried in the etching removed region, as shown in the drawings below. This will be explained in more detail with reference to Examples.

第2図ないし第7図は本発明にか\る製造工程順断面図
を示しており、先づ第2図に示すようにシリコン基板1
1上に膜厚1[μm〕の第1のv’aI層1・2を気相
エピタキシャル成長させる。EGI層・12をマグネシ
ャスピネルとすると、成長温闘を1000[’c]程度
として、成長炉に塩化アルミニクム(A]、01g)ガ
スと塩化マグネシウム(MgO1□)ガスとをキャリヤ
ガスと共に送りこみ、両者のモル比を適度に制御してシ
リコン基板11上にrL長させる。
FIGS. 2 to 7 show sequential cross-sectional views of the manufacturing process according to the present invention. First, as shown in FIG.
First v'aI layers 1 and 2 having a film thickness of 1 [μm] are grown on the film 1 by vapor phase epitaxial growth. When the EGI layer 12 is made of magnetic spinel, the growth temperature is set to about 1000['c], and aluminum chloride (A], 01g) gas and magnesium chloride (MgO1□) gas are fed into the growth reactor together with a carrier gas. , by appropriately controlling the molar ratio of the two to form a length rL on the silicon substrate 11.

次いで、第3図に示すようにシリコン気相成長装置によ
りモノシラン(81H4)およびアルシン(A2B))
を原料として、KG工胎12上にn十型シリコン結晶層
13をエピタキシャル成長し、次にアルシンの混入量を
変えてn型シリコン結晶層14をエピタキシャル成長す
る。n+型シリコン結晶層130膜厚は1[、un)程
度、濃1jit 101(1019ts−”で、n型シ
リコン結晶層14の膜厚は2〔μm〕前後、II&は1
01′−1011+、、−11とする。
Next, as shown in FIG. 3, monosilane (81H4) and arsine (A2B)) were grown using a silicon vapor phase growth apparatus.
Using as a raw material, an n-type silicon crystal layer 13 is epitaxially grown on the KG substrate 12, and then an n-type silicon crystal layer 14 is epitaxially grown by varying the amount of arsine mixed therein. The thickness of the n+ type silicon crystal layer 130 is about 1 [, un), and the thickness of the n type silicon crystal layer 14 is about 2 [μm], and the thickness of II& is 1
01'-1011+, -11.

次いで1184図に示すようにその上面にフォトレジス
ト膜マスク15(又は窒化シリコン膜マスクでもよ−い
)を形成し、フレオン(ay4)と酸素との混合ガスを
エツチング削としてプラズマエツチング法によって素子
間分離域のシリコン結晶層13゜14をエツチング除去
する。この際に、101層はエツチングされないのでエ
ツチング阻止11 トカリ、シリコン基板11#′iエ
ツチングされることがない。
Next, as shown in FIG. 1184, a photoresist film mask 15 (or a silicon nitride film mask may also be used) is formed on the upper surface, and a mixed gas of freon (AY4) and oxygen is used for etching to remove the gaps between the elements by plasma etching. The silicon crystal layers 13 and 14 in the separation region are removed by etching. At this time, since the layer 101 is not etched, the etching prevention layer 11 and the silicon substrate 11#'i are not etched.

次いで、御5図に示すように7オトレジスト膜マスク1
5を除去した後第2のKGI層16を気相エピタキシャ
ル成長させて、上記のエツチング除去した素子間分離域
を埋没させる。この場合、素子周分1111i域の巾は
2[μm]程度が妥当で、その程度にすればEGI層の
結晶性が良い。しかし、本発明による分離形成方法では
、第2の801層16は絶縁度さえ良ければ、結晶性は
悪くても素子特性に影響がないので、巾は多少変動して
もかまわない。
Next, as shown in Figure 5, 7 photoresist film masks 1
After removing the second KGI layer 16, a second KGI layer 16 is grown by vapor phase epitaxial growth to bury the element isolation region removed by etching. In this case, the appropriate width of the element circumferential region 1111i is about 2 [μm], and the EGI layer has good crystallinity if this width is set to about 2 [μm]. However, in the separation formation method according to the present invention, as long as the insulation of the second 801 layer 16 is good, even if the crystallinity is poor, it will not affect the device characteristics, so the width may vary somewhat.

次いで、第6図に示すように化学研磨によ一す、n型シ
リコン結晶層14より上面に成長したKGI層16を研
磨して除去する。化学研磨はアルミナ(A1203)微
粒子を混入させたアルカリ系溶液(例えば’rxzoy
1voo−rxzoN社製)をEfl下Lナしら回転研
磨する方法である。
Next, as shown in FIG. 6, the KGI layer 16 grown on the upper surface of the n-type silicon crystal layer 14 is polished and removed by chemical polishing. Chemical polishing uses an alkaline solution mixed with alumina (A1203) fine particles (e.g. 'rxzoy').
1voo-rxzoN) is rotary polished under Efl.

このようにして、露出させたn型シリコン結晶層14に
例えばバイポーラ型半導体素子T3をそれぞれ公知の技
法にて形成する。素子形成には、本発明では表面の二酸
化シリコン(8102)膜17を予め化学気相t?、長
(CvD)法で被着させる方法が望ましい。それは、表
面の平坦化に都合がよいからで、以降は8102膜17
を窓あけしてベース、エミッタ、コレクタコンタクト領
域とそれらの電極B、E、Qを形成する。
In this way, a bipolar semiconductor element T3, for example, is formed on the exposed n-type silicon crystal layer 14 using a known technique. For device formation, in the present invention, the silicon dioxide (8102) film 17 on the surface is preliminarily exposed to chemical vapor phase t? , long (CvD) method is preferred. This is because it is convenient for flattening the surface, and from now on, the 8102 film 17
Windows are opened to form base, emitter, and collector contact regions and their electrodes B, E, and Q.

以上は一実施例であるが、このようにして素子形成fR
域を分離形成すれば、それぞれの領域の結晶性は二様に
均一となり、各領域に形成した半導体素子の特性にバラ
ツキは見られない。且つ、素子形成領域を可能なかぎり
小型化することができて、集積度を向上させる効果もあ
り、ICの高性能化に極めて役立つものである。
The above is an example, and in this way the element is formed fR.
If the regions are formed separately, the crystallinity of each region becomes uniform in two ways, and no variation is observed in the characteristics of the semiconductor element formed in each region. In addition, the element formation area can be made as small as possible, which has the effect of improving the degree of integration, and is extremely useful for improving the performance of ICs.

歯、上記Finpn型バイポーラ素子の形成法で説明し
たが、pn’p型バイポーラ素子その他の素子形成にも
適用できることは言うまでもない。
Although the method for forming the Finpn type bipolar element has been described above, it goes without saying that the present invention can also be applied to forming a pn'p type bipolar element and other elements.

【図面の簡単な説明】[Brief explanation of drawings]

1111図は従来の素子間分離構造の断面図、第2図な
いし第7図は本発明Kか\る製造法の工程順図である。 図中、1,1lFi半導体結晶基板(シリコン基板)、
2,12.16はFiGI層、13゜’14#′iシリ
コン結晶層を示す。 第1図 第2図 第3図 に 第4図 第5図 第6図 第7図 [
FIG. 1111 is a sectional view of a conventional element isolation structure, and FIGS. 2 to 7 are process steps of the manufacturing method according to the present invention. In the figure, 1,1lFi semiconductor crystal substrate (silicon substrate),
2, 12 and 16 are FiGI layers and 13°'14#'i silicon crystal layers. Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 [

Claims (1)

【特許請求の範囲】[Claims] 半導体結晶基板上に第1の絶縁結晶層をエピタキシャル
成長し、更に該絶縁結晶層上に半導体結晶層をエピタキ
シャル成長する工程と、該半導体結晶層を選択的にエツ
チング除去して、島状の半導体結晶領域を形成し、エツ
チング除去饋*に第2の絶縁結晶層を埋没成長させる工
程とが含まれてなることを特徴とする半導体装置の製造
方法。
A step of epitaxially growing a first insulating crystal layer on a semiconductor crystal substrate, further epitaxially growing a semiconductor crystal layer on the insulating crystal layer, and selectively etching away the semiconductor crystal layer to form an island-shaped semiconductor crystal region. A method for manufacturing a semiconductor device, comprising the steps of: forming a second insulating crystal layer, and growing a second insulating crystal layer in a buried manner during the etching removal process.
JP16459181A 1981-10-14 1981-10-14 Manufacture of semiconductor device Pending JPS5864045A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16459181A JPS5864045A (en) 1981-10-14 1981-10-14 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16459181A JPS5864045A (en) 1981-10-14 1981-10-14 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPS5864045A true JPS5864045A (en) 1983-04-16

Family

ID=15796085

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16459181A Pending JPS5864045A (en) 1981-10-14 1981-10-14 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS5864045A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6072243A (en) * 1983-09-28 1985-04-24 Matsushita Electric Ind Co Ltd Semiconductor ic device
US4916086A (en) * 1987-06-18 1990-04-10 Kabushiki Kaisha Toshiba Method of manufacturing a semiconductor device having rounded trench corners
US5036021A (en) * 1987-10-19 1991-07-30 Fujitsu Limited Method of producing a semiconductor device with total dielectric isolation
US5294559A (en) * 1990-07-30 1994-03-15 Texas Instruments Incorporated Method of forming a vertical transistor
US5561076A (en) * 1992-04-02 1996-10-01 Nec Corporation Method of fabricating an isolation region for a semiconductor device using liquid phase deposition
US5994199A (en) * 1993-07-12 1999-11-30 Nec Corporation Method for fabricating semiconductor device on SOI substrate

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6072243A (en) * 1983-09-28 1985-04-24 Matsushita Electric Ind Co Ltd Semiconductor ic device
US4916086A (en) * 1987-06-18 1990-04-10 Kabushiki Kaisha Toshiba Method of manufacturing a semiconductor device having rounded trench corners
US5036021A (en) * 1987-10-19 1991-07-30 Fujitsu Limited Method of producing a semiconductor device with total dielectric isolation
US5294559A (en) * 1990-07-30 1994-03-15 Texas Instruments Incorporated Method of forming a vertical transistor
US5561076A (en) * 1992-04-02 1996-10-01 Nec Corporation Method of fabricating an isolation region for a semiconductor device using liquid phase deposition
US5994199A (en) * 1993-07-12 1999-11-30 Nec Corporation Method for fabricating semiconductor device on SOI substrate

Similar Documents

Publication Publication Date Title
US4948456A (en) Confined lateral selective epitaxial growth
JP2554831B2 (en) Semiconductor processing method for forming a substrate isolation trench
US4507158A (en) Trench isolated transistors in semiconductor films
US4615762A (en) Method for thinning silicon
EP0317124A2 (en) Silicon on insulator semiconductor components containing thin synthetic diamond films
US3400309A (en) Monolithic silicon device containing dielectrically isolatng film of silicon carbide
JPH06252016A (en) Method for forming zero-defect semiconductor layer
JPH01503026A (en) Method for manufacturing thin monocrystalline silicon islands on insulators
US4891092A (en) Method for making a silicon-on-insulator substrate
US4704186A (en) Recessed oxide method for making a silicon-on-insulator substrate
JPS5864045A (en) Manufacture of semiconductor device
JP3953563B2 (en) Isolation oxide formation method for silicon-on-insulator technology
US4696095A (en) Process for isolation using self-aligned diffusion process
JPS59232437A (en) Manufacture of semiconductor device
JPS61289642A (en) Manufacture of semiconductor integrated circuit device
JPS6021540A (en) Manufacture of semiconductor device
JPS5931865B2 (en) semiconductor equipment
JPH05121321A (en) Silicon crystal growth method
KR0146626B1 (en) Method for forming the separating film of semiconductor device
JPS58159348A (en) Separation of semiconductor device
JP3206944B2 (en) Semiconductor device
JPS61285754A (en) Manufacture of semiconductor device
JPH01143231A (en) Manufacture of semiconductor device
JPS641934B2 (en)
JPS6234146B2 (en)