JPS5864022A - Plasma vapor phase growth device - Google Patents

Plasma vapor phase growth device

Info

Publication number
JPS5864022A
JPS5864022A JP56163626A JP16362681A JPS5864022A JP S5864022 A JPS5864022 A JP S5864022A JP 56163626 A JP56163626 A JP 56163626A JP 16362681 A JP16362681 A JP 16362681A JP S5864022 A JPS5864022 A JP S5864022A
Authority
JP
Japan
Prior art keywords
electrodes
reactive gas
reaction
substrates
reaction cylinder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP56163626A
Other languages
Japanese (ja)
Other versions
JPH0332210B2 (en
Inventor
Shunpei Yamazaki
舜平 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Energy Laboratory Co Ltd
Original Assignee
Semiconductor Energy Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Energy Laboratory Co Ltd filed Critical Semiconductor Energy Laboratory Co Ltd
Priority to JP56163626A priority Critical patent/JPS5864022A/en
Publication of JPS5864022A publication Critical patent/JPS5864022A/en
Publication of JPH0332210B2 publication Critical patent/JPH0332210B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02529Silicon carbide
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/505Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges
    • C23C16/509Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges using internal electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Plasma & Fusion (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Photovoltaic Devices (AREA)

Abstract

PURPOSE:To prevent adhesion of a reaction product to electrodes and generation of complication in a current of reactive gas (turbulent flow) at a plasma vapor phase growth device by a method wherein a horizontal type reaction cylinder is used, and a pair of electrodes is arranged outside. CONSTITUTION:Substrates 1 are held by square type quartz jigs, the jigs are settled in a separate chamber 29 of a reaction cylinder from an inlet 30, and the chamber is evacuated by a rotary pump 33 through a valve 32. Moreover a closing door 34 is opened, the jigs are introduced into the reaction cylinder by an automatic feeder, and a mixing plate 35 for mixer is also arranged. By closing the closing door 34, the substrates are arranged in space between electrodes 9, 10 interposing the intervals of 10-40mm. between them. A pair of the electrodes 9, 10 are arranged vertically or on both the sides of the reaction cylinder 25 as to apply electric field to the substrate vertically or in parallel, an electric furnace 5 is provided outside, and the substrates 1 are heated at 100-500 deg.C. Reactive gas is introduced into the reaction cylinder 25, a high frequency electric power is applied between the electrodes 9, 10, and presence of voids, etc. in the formed silicon carbide or in silicon is reduced utilizing the flight of reactive gas.

Description

【発明の詳細な説明】 本発明はプラズマ気相法において一度の反応で多量に基
板上に反応生成物を形成するプラズマ気相装置およびそ
の作製方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a plasma vapor phase apparatus that forms a large amount of reaction products on a substrate in a single reaction in a plasma vapor phase method, and a method for manufacturing the same.

本発明はかかる多量生産用に横型に配置され、に反応筒
(10〜300m1長さ1〜5m)を有し、かかる反応
筒の外側に一対の反応性気体をプラズマ化する電磁エネ
ルギ供給用の電極と該電極の外側にこの反応筒および電
極を囲んで加熱装置とを具備し、この反応筒内を前方向
に反応性気体を流し、この気体の流れにそって基板□を
配置せしめることを特徴としている。
The present invention is arranged horizontally for such mass production, and has a reaction tube (10 to 300 m x 1 to 5 m in length), and an electromagnetic energy supply for turning a pair of reactive gases into plasma on the outside of the reaction tube. An electrode and a heating device are provided on the outside of the electrode to surround the reaction tube and the electrode, and a reactive gas is caused to flow forward in the reaction tube, and the substrate □ is placed along the flow of the gas. It is a feature.

さらにかかる装置内に一対の電極によ多発生する電磁界
に垂直または平行に基板を配置し、これを複数段または
複数列配置して2〜20cm’の一基板例えばloom
”の基板を20段20列計400まいの被形成面上に一
度に被膜特に珪素、炭素または炭化珪素被膜を形成せし
めることを目的としている。
Further, in such a device, substrates are arranged perpendicularly or parallel to the electromagnetic field generated by a pair of electrodes, and these are arranged in multiple stages or in multiple rows to form one substrate of 2 to 20 cm, for example, a room.
The purpose of this method is to form a film, particularly a silicon, carbon, or silicon carbide film, on a total of 400 surfaces of 20 rows and 20 rows of substrates at one time.

(2) 本発明はさらに反応筒の前方向にプラズマをしや′へい
してかつ十分反応性気体同志またはこれらと水素または
へリュームの如きキャリアガスとを混合して層流(うt
ナース・−)をプラズマ化した反応筒内に導入するミキ
サを設けたことを特徴としている。
(2) The present invention furthermore suppresses the plasma in the front direction of the reaction tube and sufficiently mixes reactive gases or a carrier gas such as hydrogen or helium to form a laminar flow.
The reactor is characterized by the provision of a mixer that introduces the nurse (-) into the reaction cylinder that has been turned into plasma.

本発明は炭素−珪素結合を有する水素化物ま\ たけハロゲン化物(炭化珪化物気体)よりなる反応性気
体、イラン(S i n Lu1I n≧1)の如き珪
化物気体またはアセチレン等の炭化水素を用いて被形成
面上に非単結晶の炭化珪素、珪素または炭素を主成分と
する被膜を0.05〜0.5torrの反応筒圧力で1
00〜400”Oの温度で形成せしめるプラズマ気相法
に関する。
The present invention uses a reactive gas consisting of a hydride or a halide (carbohydrate silicide gas) having a carbon-silicon bond, a silicide gas such as ylang (Si n LuI n≧1), or a hydrocarbon such as acetylene. A film containing non-single-crystal silicon carbide, silicon, or carbon as a main component is formed on the surface to be formed using a reaction tube pressure of 0.05 to 0.5 torr.
The present invention relates to a plasma vapor phase method in which formation is performed at a temperature of 0.00 to 400"O.

本発明はかかる反応性気体を窒素、アルゴンではなく、
特に水素、ヘリュームまたはその混合したキャリアガス
により希釈することによシ被形成面上に損傷の少ない、
膜厚の均一性にすぐれ泥波膜を形成せしめることを目的
としている0 本発明はさらにかかる反応性気体に1価の不純物である
B、 A’l、 Ga、 ■nを含む不純物気体例えば
ジボラ・萱にv価の不純物を含む不純物気体例えば7オ
スヒン(PH,)またはアルシン(A8Hj)を漸次添
加して被形成面を有する基板上に密接してP型層、さら
に工型層およびN型層をP工Nの順序にて積層形成せし
めることを目的としている。
In the present invention, the reactive gas is not nitrogen or argon,
In particular, by diluting with a carrier gas of hydrogen, helium or a mixture thereof, there is less damage to the surface to be formed.
It is an object of the present invention to form a mud-wave film with excellent uniformity in film thickness.・By gradually adding an impurity gas containing a V-valent impurity, such as 7-oshin (PH, ) or arsine (A8Hj) to the shell, a P-type layer is closely formed on the substrate having the surface to be formed, and then a process-type layer and an N-type layer are formed. The purpose is to form layers in the order of P-N.

従来非単結晶半導体として非晶質(以下単にAsという
)の珪素がプラズマ気相法で作られる代表的な例として
知られている。これは太陽電池等の光電変換装置への応
用が期待されている。しかしかかる装置を作ろうとした
シ、また可視光の発光素子を半単結晶半導体を用いて得
ようとする時、反応はペルジャー形式のたて型である。
Conventionally, amorphous (hereinafter simply referred to as As) silicon is known as a typical example of a non-single-crystal semiconductor produced by a plasma vapor phase method. This is expected to be applied to photoelectric conversion devices such as solar cells. However, when attempting to create such a device, or when attempting to obtain a visible light emitting device using a semi-single crystal semiconductor, the reaction occurs in a vertical Pelger type.

この際このペルジャー内に上下に平行電極を配置して、
この電極間に13.56MH2の周波数の電磁界を加え
てプラズマ放電せしめ、さらにこのペルジャー内に反応
性気体を導入して反応させていた。さらに被形成面を有
する基板は、この下側の電極上に配置せしめていた0し
かしかかる方法においては、電極の周囲が0.1〜10
torrという減渾下であるため、電極間かくを広げる
ことができず、そのため電極間かくも1〜4cm l、
かなかった。もしこれを10cm以上広げると、電極特
に陽極とペルジャー等とのLll−放電を始め、また電
極間の放電も不安定になってしまった。このため現実的
にはこの電極間に複数の基板を多段に重ねて配置し、一
度に数十まいの基板上に被膜を作製することは不可能で
あった。
At this time, parallel electrodes are placed above and below inside this Pelger,
An electromagnetic field with a frequency of 13.56 MH2 was applied between the electrodes to cause plasma discharge, and a reactive gas was introduced into the Pel jar to cause a reaction. Furthermore, the substrate having the surface to be formed is placed on the lower electrode. However, in such a method, the circumference of the electrode is 0.1 to 10.
Due to the reduced water pressure of torr, the distance between the electrodes cannot be widened, and therefore the distance between the electrodes is only 1 to 4 cm.
It didn't happen. If this was extended beyond 10 cm, Lll- discharge between the electrodes, especially the anode and the Pelger, etc. started, and the discharge between the electrodes also became unstable. Therefore, in reality, it has been impossible to arrange a plurality of substrates in multiple layers between these electrodes and to form a film on several tens of substrates at once.

さらにたて型ペルジャーにあっては、反応性気体の流れ
がばらつきやすく、いわゆる層流を有せしめることは不
可能であった。
Furthermore, in the case of a vertical Pel jar, the flow of the reactive gas tends to vary, making it impossible to create a so-called laminar flow.

本発明はかかるたて型ペルジャーの欠点を防いだ横型の
反応筒を用いることを特徴とする。
The present invention is characterized by the use of a horizontal reaction column which avoids the drawbacks of the vertical Pelger.

さらに一対をなす電極をこの反応筒の外側に配置せしめ
ることにより、電極に反応生成物がしめたりしたことを
他の特徴とする。
Another feature is that by arranging a pair of electrodes on the outside of the reaction tube, the electrodes are covered with reaction products.

さらに本発明は、この電極をステンレを等の耐熱性網状
とし、その外側より反応筒内の反応性気体および基板の
すべてを均一に加熱することを目的としている。
A further object of the present invention is to use a heat-resistant mesh-like electrode made of stainless steel or the like to uniformly heat all of the reactive gas and substrate inside the reaction tube from the outside.

かくすることにより、反応筒内には基板と基板ホルダー
のみとを有し、きわめて簡単な構造とすることができた
In this way, the reaction tube contained only the substrate and the substrate holder, resulting in an extremely simple structure.

さらに本発明はプラズマ化する電磁゛エネルギのパワー
を大きくすると、このパワーによシプラズマ化されたス
ビーシスか被形成面をスパッタし、このスパッタ(損傷
)によシすでに形成されている半導体または絶縁体の一
部が再び外ζ1 部に放出されたシ、また形成されている構造を電気的な
癲4 性を有するいわゆるアモルファス(Asという)
、5〜100Aの大きさの微f+’J品性を有するセミ
アモルファス(半非晶質、以下SASという)または5
〜20OAの大きさのマイクロポリクリスタル(微多結
晶、以下pcという)の如き非単結晶ではなく、スパッ
ターされた電気的に欠陥だらけのアモルファス構造にな
ってしまう。かかる構造をなくすため、基板は互いに1
0〜40mm代表的には20−25mm離間しプラズマ
反応に200〜500Wという高いエネルギが必要な場
合であっても、被形成面上にはこのスピーシスの実質的
なプラズマエネルギを得る距離を基板間の距離で制御し
、実質的に20〜50Wという弱いパワーで被膜化せし
めると同等の特性を有せしめたことを特徴とする。
Furthermore, the present invention is characterized in that when the power of the electromagnetic energy for turning into plasma is increased, the sputtering surface that has been turned into plasma is sputtered by this power, and the semiconductor or insulator that has already been formed is spattered by this sputtering (damage). A part of the ζ1 is released to the outside again, and the formed structure becomes a so-called amorphous (As) which has electrical properties.
, semi-amorphous (semi-amorphous, hereinafter referred to as SAS) or 5
Instead of a non-single crystal such as a micro polycrystal (hereinafter referred to as PC) with a size of ~20 OA, the result is an amorphous structure full of sputtered electrical defects. In order to eliminate this structure, the substrates are
Even if the plasma reaction requires a high energy of 200 to 500 W with a separation distance of 0 to 40 mm, typically 20 to 25 mm, the distance between the substrates to obtain the substantial plasma energy of this spacing must be set on the surface to be formed. It is characterized in that it has the same characteristics when controlled at a distance of 100 W and is formed into a film with a substantially weak power of 20 to 50 W.

このため本発明においては、その出発物質である反応性
気体に炭化珪素(SixOl−KO<x<1)を作ろう
とした場合、炭素−珪素結合を有する材料を用いた。す
なわち炭素−珪素結合を有する水素化物またはハロゲン
化物例えばテトラメチルシラン(si (+4) (単
にTMSという)、テトラエチルシラン(E!i (0
,鳴)、S Lx (C!)C1pXC’1m (14
X4犯Si、(ロ)lF9.、xH,(1=x≦3)等
の反応性気体を用いて反応生成物中に5i−C結合を得
やすくしている0また珪素を主成分とする被膜を得よう
とする時は、5inHzsc(n21)のシラン、S 
i F、またはこれらの混合気体を用いた0炭素を得よ
うとする時はアセチンしくq、mtたけエチレン(O鳥
を主として用いた。こうすることによシ、珪素(”’ 
i)、炭化珪素(SiXO醜0<X(1)または炭素(
C)(これらを合わせると5iKO+<(04xコ1)
と示すことができるため、以下炭化珪素という時は5i
x(3z−4(0<xコ1)と意味するものとする〕を
作製する。
Therefore, in the present invention, when silicon carbide (SixOl-KO<x<1) is to be produced as a reactive gas as a starting material, a material having a carbon-silicon bond is used. That is, hydrides or halides having a carbon-silicon bond, such as tetramethylsilane (si (+4) (simply referred to as TMS), tetraethylsilane (E!i (0
, sound), S Lx (C!)C1pXC'1m (14
X4 criminal Si, (b)lF9. , xH, (1=x≦3) and other reactive gases are used to make it easier to obtain 5i-C bonds in the reaction product.0Also, when trying to obtain a film containing silicon as the main component, 5inHzsc (n21) silane, S
When trying to obtain 0 carbon using i F or a mixture of these gases, acetin, mt and ethylene (O) were mainly used.
i), silicon carbide (SiXOugly0<X(1)) or carbon (
C) (If you put these together, 5iKO+<(04xko1)
Therefore, when referring to silicon carbide below, 5i
x (supposed to mean 3z-4 (0<xko1)) is produced.

さらにここに1価またはV価の不純物を添加して被形成
面よりP型、1型(真性またはオートドーピング等を含
む人為的に不純物を添加しない実質的に真性)さらにN
型の半導体または半絶縁体を作製した。  − さらにかかる反応性気体を用いると、反応筒を1気圧以
下特に0.01〜10 t Or r、代表的には0、
3〜(L 6i;orrの圧力下にて50W以下の電磁
エネルギにおいても、例えば0.1〜loOMHz %
に13.56MHz 、または1〜4GH2特K 2.
45GHzにおいて被膜を形成することが可能である0
即ち低エネルギプラズマOVD装置とすることができた
Furthermore, a monovalent or V-valent impurity is added to the formation surface to form P type, 1 type (intrinsic or substantially intrinsic without artificially adding impurities including autodoping, etc.), and N
A type of semiconductor or semi-insulator was fabricated. - Furthermore, when such a reactive gas is used, the reaction tube is heated to a pressure of 1 atm or less, particularly 0.01 to 10 tOrr, typically 0,
Even at an electromagnetic energy of 50 W or less under a pressure of 3 to (L 6i; orr), for example, 0.1 to loOMHz %
13.56MHz, or 1-4GH2 special K 2.
It is possible to form a film at 45 GHz.
In other words, a low energy plasma OVD device could be achieved.

さらに50〜500Wという高エネルギプラズマ雰囲気
とすると、形成された炭化珪素は微結晶化し、その結果
P型またはN型において、ホウ素またはリンを0.1〜
5チ(ここでは(&H1またはPH,)/(炭化物気体
または炭化珪化物気体十珪化物気体)の比をパーセント
で示、す)添加した場合、低エネルギでは電気伝導度は
10〜10(ユcm)Iであつ九−ものが10〜10(
二am)と約千倍にまで高めることができた。
Further, when a high energy plasma atmosphere of 50 to 500 W is applied, the formed silicon carbide becomes microcrystalline, and as a result, in P type or N type, boron or phosphorus is added to 0.1 to
When adding 5 CH (here, the ratio of (&H1 or PH,)/(carbide gas or carbide silicide gas to decsilide gas) is added, the electrical conductivity is 10 to 10 (U) at low energy. cm) I is 9-things are 10-10 (
2 am) and was able to increase it approximately 1,000 times.

さらにこの高エネルギ法を用いて得られた炭化珪素は5
〜20OAの大きさの微結晶構造を有するいわゆるSA
S構造を有せしめることができたOかかるSASにおい
て、そのPまたはN型の不純(9) 物のアクセプタまたはドナーとなるイオン化率を97〜
100%を有し、添加した不純物のすべてを活性化する
ことができた。
Furthermore, silicon carbide obtained using this high energy method has 5
The so-called SA with a microcrystalline structure with a size of ~20OA
In such a SAS that was able to have an S structure, the ionization rate of the P or N type impurity (9), which becomes an acceptor or donor, is set to 97 to 97.
100%, and all of the added impurities could be activated.

以下に図面に従って本発明のプラズマ気相法を説明する
〇 第1図は本発明を用いたプラズマ(3VD装置の英ジグ
にて保持され、図面では7段、2列計1まいの構成をさ
せている。基板およびジグは反応筒の前方の別室−に入
口CO)より予め設置され、パルプ(32)ロータリー
ポンプ(3のにより一真空びきがなされる。さらに開閉
とびら(34)を開けて、反応筒内に自Mり装置により
導入され、さらにミキサー用混合板(35)も同時配置
される0これらは反応筒、別室ともに真空状態において
なされ、反応筒内に酸素(空気)が少しでも混入しない
ように努めた。さらに開閉とびら(3荀を閉じたことに
より、図面の如く電極(9人(10)の(10) 間に基板が配置された。
The plasma vapor phase method of the present invention will be explained below with reference to the drawings. Figure 1 shows the plasma using the present invention (held in a British jig of a 3VD device, and shown in the drawing as having a configuration of 7 stages and 2 rows, 1 in total). The substrate and the jig are placed in advance in a separate room in front of the reaction tube through the inlet CO), and a vacuum is created by the pulp (32) rotary pump (3). , is introduced into the reaction tube by a self-merging device, and a mixer mixing plate (35) is also placed at the same time.Both the reaction tube and a separate chamber are placed in a vacuum state, so that even the slightest amount of oxygen (air) is allowed to enter the reaction tube. Efforts were made to prevent contamination.Furthermore, by closing the opening/closing doors (3), the substrate was placed between the electrodes (9 (10) and (10)) as shown in the drawing.

各基板は10〜40mm代表的には20〜25mmの間
かくをおいて配列されており、このジグによる反応性気
体は反応筒(ハ)の前方にミキサ(8)を投波形成面は
基板の下面または互いに裏面を重ね合わせて垂直に配置
された側面である。図面において上部を上方とする場合
は基板の上面は被形成面とがらないよシにおおわれてい
る。これは反応性気体の分解、反応により反応生成物が
均一に付着、被膜化せしめるとともに、この被膜形成の
際反応管壁よυ遊離したフレイク(細片)等がひしよう
して重力により上面に多数落下し、これがピンホールの
発生を誘発してしまうためである。また図面が反応系を
上方よシ示したものとすると、基板(1)は互いに裏面
を合わせて垂直に配置させている。かくの如く重力を利
用してフレイクを下部に除去することは、量産歩留シを
考慮する時きわめて重要である。さらにこの基板(1)
を折入させた反応筒(ハ)には、この基板に垂直または
平行に電磁エネルギの電界が加わるように一対の電極(
?)、(10)を上下または左右に配置して設けた。こ
の電極の外側に電気炉、(5)が設けられておシ、基板
(1)が’100〜500’O代表的には300Cに加
熱されている。
The substrates are arranged at intervals of 10 to 40 mm, typically 20 to 25 mm, and the reactive gas produced by this jig is sent to the mixer (8) in front of the reaction tube (c) so that the formation surface is the substrate. The underside or the vertically arranged sides with their backsides superimposed on each other. In the drawings, when the upper side is upward, the upper surface of the substrate is covered to prevent the formation surface from becoming sharp. This is due to the decomposition and reaction of reactive gases, which cause the reaction products to adhere uniformly and form a film, and when this film is formed, flakes, etc., which are released from the reaction tube wall, are forced to the top surface due to gravity. This is because a large number of them fall, which induces the generation of pinholes. Further, if the drawing shows the reaction system from above, the substrates (1) are arranged vertically with their back surfaces facing each other. Using gravity to remove flakes to the bottom in this way is extremely important when considering mass production yield. Furthermore, this board (1)
A pair of electrodes (c) are inserted into the reaction tube (c) into which an electric field of electromagnetic energy is applied perpendicularly or parallel to the substrate.
? ), (10) were arranged vertically or horizontally. An electric furnace (5) is provided outside the electrode, and the substrate (1) is heated to 100-500°C, typically 300C.

反応性気体はキャリアガス例えばヘリュームヲ01.1
、lI価の不純物であるジボランを04より、■価の不
純物であるフォスヒンを(IQよシ、■価の添加物であ
る珪化物気体のシランを0Qより導入した。
The reactive gas is a carrier gas such as helium.
, diborane, an impurity with a value of 1, was introduced from 04, phoshine, an impurity with a value of 1, was introduced from 0Q, and silane, a silicide gas, an additive with a value of 1, was introduced from 0Q.

また炭素−珪素結合を有する反応性気体TMS(ホ)を
用いると、初期状態で液体であるためステンレス容器(
ハ)に保存される。この容器は電子恒温層(ハ)により
所定の温度に制御されている。
In addition, when using reactive gas TMS (e) having carbon-silicon bonds, it is liquid in the initial state, so it cannot be used in a stainless steel container.
C). This container is controlled at a predetermined temperature by an electronic constant temperature layer (c).

このTMSは沸点が25°Cであり、ロータリーポンプ
0■をパルプα力をへて排気させ、反応筒内を0.01
〜1qtOrr特に0.o2〜Q、’4tOrrに保持
させた。こうすることによシ、1気圧より低い圧力によ
り結果として特に加熱しなくてもTMSを気化させるこ
とができる。この気化したTMSを100チの濃度で流
量計を介して反応筒に導入することは、従来の如く容器
Q1)をバブルして反応性気体を放出するやり方に比較
して、その流j量制御が精度よく可能であり、技術上重
要である。
This TMS has a boiling point of 25°C, and the rotary pump 0■ is evacuated through the pulp α force, and the inside of the reaction column is 0.01
~1qtOrr especially 0. o2~Q, was maintained at '4tOrr. By doing this, TMS can be vaporized at a pressure lower than 1 atmosphere, and as a result, without special heating. Introducing this vaporized TMS at a concentration of 100 cm into the reaction tube via a flow meter makes it easier to control the flow rate than the conventional method of bubbling the container Q1) to release reactive gas. is possible with high precision and is technically important.

実用上流量計がつまった場合、図面においてαηよりヘ
リュームを導入した。
In practice, when a flowmeter becomes clogged, helium is introduced from αη in the drawing.

これらの反応性気体はキャリアガスであるヘリュームを
所定の割合で混合し【反応筒(ハ)に導入した。電磁エ
ネルギは電極(9)(−10)の間に加えノ 例えば高周波(13,56MH2)を加えて、これによ
り被形成面上に蓄積された被膜をふみ固めるような方向
の電界を加えている。こうすることにより電界により動
かされる反応性気体の飛しようを利用して、形成された
炭化珪素または珪素中にボイド等の存在を少くせしめた
。さらにこのプラズマ放電においては、反応性気体が混
合室(8)をへて混合された後励起室(ハ)において分
解または反応をおこさしめ、反応生成物を基板上に形成
する空部反応を主として用いた。電磁エネルギは電源(
4)より直流高周波を主として用いた。もちろんマイク
ロ波(1〜4GHz)を特に励起室(ハ)に供給して用
いてもよい。このようにして被形成面上に炭化珪素被膜
を形成した。例えば基板温度300’O,高周波エネル
ギの出力25w1シランまたはTMS  5occ/分
、キャリアガスとしてのHe 250’Dcc/分とし
た。(反応性気体/He戸5において160A/分の被
膜成長速度を得ることができた。
These reactive gases were mixed with helium, which is a carrier gas, at a predetermined ratio and introduced into the reaction column (c). Electromagnetic energy is applied between the electrodes (9) and (-10), for example, by applying high frequency (13,56 MH2), thereby applying an electric field in a direction that solidifies the film accumulated on the surface to be formed. . By doing this, the presence of voids etc. in the formed silicon carbide or silicon was reduced by utilizing the flight of the reactive gas moved by the electric field. Furthermore, in this plasma discharge, after the reactive gas passes through the mixing chamber (8) and is mixed, it is decomposed or reacted in the excitation chamber (c), and a reaction product is formed on the substrate. Using. Electromagnetic energy is a power source (
4) DC high frequency was mainly used. Of course, microwaves (1 to 4 GHz) may also be used, particularly by supplying them to the excitation chamber (c). In this way, a silicon carbide film was formed on the surface to be formed. For example, the substrate temperature was 300'O, the high frequency energy output was 25w1 silane or TMS 5occ/min, and the carrier gas was He 250'Dcc/min. (A film growth rate of 160 A/min could be obtained in the reactive gas/He door 5.

さらにこの被膜形成には、P工N接合、PN接合、P工
IFIN接合等をその必要な厚さに必要な反応生成物を
積層して形成させた。
Furthermore, in order to form this film, a P/N junction, a PN junction, a P/IFIN junction, etc. were formed by laminating the necessary reaction products to the required thickness.

このようにして被形成面上に被膜を形成させてしまった
後、反応性気体を反応筒内よシ十分パージした後、開閉
とびら(34)を開け、ミキサ用混合板(3分、ジグ(
3)上の基板を別室−に自動引出し管によシ反応筒およ
び別室をともに真空(0,O1’torr以下)にして
移動させた。さらに開閉とびら(3荀を閉じた後、別室
に(31)よりパルプを開けて空気を充填しl目′とし
た後、外部にジ夛および被膜の形成された基板をとり出
した0 以上の実施例よシ明らかな如く、本発明は反応性気体を
ミキサ(8)にて混合した後、排気口(6)に層状(ミ
クロにはプラズマ化された状態ではランダム運動をして
いた)に流し、この流れに平行に基板を配置して被形成
面上にその膜厚が+5%以内のバラツキで0.1〜3μ
の厚さに被膜を形成せしめたことを特徴としている。
After a film has been formed on the surface to be formed in this way, the reactive gas is sufficiently purged from the inside of the reaction cylinder, the opening/closing door (34) is opened, and the mixing plate for the mixer (3 minutes, jig (
3) The above substrate was moved to a separate room using an automatic extraction tube, with both the reaction tube and the separate room being vacuumed (below 0.01'torr). Furthermore, after closing the opening/closing door (3), the pulp was opened in a separate room (31) and air was filled into the first part, and the board on which the film and film had been formed was taken out. As is clear from the embodiment of the present invention, the reactive gas is mixed in the mixer (8), and then the reactive gas is mixed in the exhaust port (6) in a layered manner (microscopically, it was in random motion when it was turned into plasma). The substrate is placed parallel to this flow, and the film thickness on the surface to be formed is 0.1 to 3μ with a variation within +5%.
It is characterized by having a coating formed to a thickness of .

さらにこの際プラズマをグロー放電法を利用しておこさ
せるが、その電極を反応筒の外側に配置せしめ、多量の
基板に均一にプラズマがおこるようにしたことを特徴と
している。
Further, at this time, plasma is generated using a glow discharge method, and a feature is that the electrode is placed outside the reaction tube so that plasma can be generated uniformly over a large number of substrates.

また被膜の形成に際し、図面の如く7段2列ではなく、
20段20列の如く反応筒を長くする場合、0.4to
rrではなくさらに0.2.0.1.0、05torr
とよシ低圧にすることが、その膜質の均−性特に最前列
と最後列との均一性を得しめる上、に重要である。
Also, when forming the coating, instead of 7 stages and 2 rows as shown in the drawing,
When making the reaction tube long such as 20 stages and 20 rows, 0.4 to
0.2.0.1.0, 05torr instead of rr
It is important to maintain a low pressure in order to obtain uniformity of the film quality, especially between the front row and the rear row.

またこの反応筒内に酸素等の制御できない酸化物気体の
混入を防ぐため、別室を設け、この別室を介して大気中
での作(と結合せしめたことは、得られた被膜の特性の
再現性を得るのにきわめて重要であった。
In addition, in order to prevent uncontrollable oxide gases such as oxygen from entering the reaction column, a separate chamber was provided, and the process was combined with the atmosphere through this separate chamber to reproduce the properties of the obtained film. It was extremely important for gaining sex.

第2図は第1図の図面における排気口(6)方向平方向
に配置したもので、この場合一度に導入で、基板の配置
数が(A)の1/2になる。第2図(0)も第2図(B
)と同様に(A)ノl/2であるが、(B)、(0)は
形成された被膜中にフレークが混入する可能性が(A)
、(D)に比べて少く、より膜質の上質な被膜を作るこ
とができた。
In FIG. 2, the substrates are arranged horizontally in the direction of the exhaust port (6) in FIG. Figure 2 (0) and Figure 2 (B
) as well as (A), but in (B) and (0) there is a possibility that flakes may be mixed into the formed film (A)
, compared to (D), it was possible to make a higher quality film with a smaller amount.

第2図(D)は電極、基板ともに垂直にしたものテロ 
ルQ Jl(t Qaq t(JIAJlttAeLi
t&ll。
Figure 2 (D) is a terrorist attack in which both the electrode and substrate are vertical.
LeQ Jl(t Qaq t(JIAJlttAeLi
t&ll.

本発明格装置およびわ五を用いて基板上にP工N接合を
有する光電変換装置を設けた。
A photoelectric conversion device having a P-N junction was provided on a substrate using the device and Wago of the present invention.

すなわち第2図(A)にそのたて断面図を示しているが
、基板例えば金属電極を形成するステンレスまたはその
他金属基板上にP型炭化珪素(ハ)(S i XC1−
A O(’ X(1)  (30)を設け、さらにこの
上面にITO%酸化スズ等の金属酸化物または窒化物の
透明導電膜(32)を形成させたものである。このPI
N構造を有する半導体(31)は被形成面よシ第1図に
おいてTMSとジポランをBLH/TMs −0,3〜
2チとして添加した。するとそのエネルギノ(ンド巾は
2.0−2.5eVを有し、シランにジボランを1%以
上添加した如くにバンド巾は小さくならなかった0かく
の如くにしてP型層(38)を300〜800Aの厚さ
に形成した後、真性または実質的に真性の珪素またはこ
の珪素中に厚さ方向に、TMSを添加して、基板側より
上方にエネルギ巾を漸増せしめた。真性または実質的真
性の半導体としての炭化珪素を0.3〜1μの厚さに作
った。これは第1図において、TMSを導入するととも
にシランをO→よシ導入し、SIVTMS−閲〜0.5
に変化させることにより、”gをL 6eVより1.9
θVKまで変化させることができる。
That is, as shown in FIG. 2(A), a vertical cross-sectional view is shown in which P-type silicon carbide (C) (S i XC1-
A O('
The semiconductor (31) having an N structure is formed by combining TMS and Diporan with BLH/TMs -0,3~ in Figure 1 from the surface on which it is formed.
It was added as 2 pieces. Then, the energy band width was 2.0-2.5 eV, and the band width did not become smaller like when diborane was added to silane by 1% or more. In this way, the P-type layer (38) was After forming to a thickness of ~800 A, TMS was added to the intrinsic or substantially intrinsic silicon or into the silicon in the thickness direction to gradually increase the energy range upward from the substrate side. Silicon carbide as an intrinsic semiconductor was made to a thickness of 0.3 to 1 μm.As shown in Fig. 1, TMS was introduced and silane was introduced from O to 0.5 μm.
By changing ``g to L 6eV to 1.9
It can be changed up to θVK.

例えば太陽電池等の光電変換装置においてはこの真性半
導体09)を0.4〜1μに形成、させ、EgをP層(
2,OeV以上特に2.1−2.5eV ) (3B)
 −1層(1,5〜2.08V) (39) −N層(
2,OeV以上特に2.3〜3.3eV)αO)となる
ようK(ハ)上にさらに上1面に再度TMSを主成分と
して’PH,を0.5〜5モルチ添加し、N型のS i
 X O,、(30)を50〜20OAの厚さに形成さ
せた。
For example, in a photoelectric conversion device such as a solar cell, this intrinsic semiconductor 09) is formed to a thickness of 0.4 to 1μ, and the Eg is formed as a P layer (
2, OeV or more, especially 2.1-2.5eV) (3B)
-1 layer (1.5~2.08V) (39) -N layer (
Add 0.5 to 5 molt of 'PH, with TMS as the main component again to the top surface of K (C) so that αO) is 2, OeV or more (especially 2.3 to 3.3 eV), and N-type S i
X O,, (30) was formed to a thickness of 50-20 OA.

また第2図(B)はガラス基板(4’7)上に光の入射
用の透明導電膜α2)を形成させたものである。
Further, FIG. 2(B) shows a structure in which a transparent conductive film α2) for light incidence is formed on a glass substrate (4'7).

これはガラス上に工TOを1.000〜200OAの厚
さに、さらにネサ(SnO)を200〜500A形成す
る多4膜でもよい0かかる構造にすると、光をN層(4
ので不純物によシ吸収されることがないため、そのすべ
てを1層に導入でき、さらにこの(39)のせまいKg
K対しそれをはさむP層(38)N層αO)特に入射光
側のP層(3B)を広い1!Xgを有し、この間に発、
生ずる空乏層により電子拳ホールの対電極(42)α3
)方向への分離をさせることフ ができた。その結果A M ’l (−100mw/c
 Jにおいて10〜12q6の変換効率を1cm”のセ
ルで得ることができた。
This can be done by forming a multilayer film of 1.000 to 200 OA thick on glass and a 200 to 500 Å thick NESA layer (SnO) on the glass.
Therefore, since they are not absorbed by impurities, all of them can be introduced into one layer, and furthermore, this (39) narrow kg
In particular, the P layer (3B) on the incident light side is wide 1! Xg, and during this period,
The counter electrode (42) α3 of the electron fist hole is created by the depletion layer
) direction. As a result, A M'l (-100mw/c
In J, a conversion efficiency of 10-12q6 could be obtained in a 1 cm'' cell.

もちろんこの光電変換装置を作製するに際し第1図の装
置を別室を一体化して3段KNねて作υ、第1段で2層
を、さらに別室に移して2段目(中段)に移し1、反応
筒にて1層を、さらに上段を別室をへて移しN層を作製
する横型反応系を3段重ね合わせる方式をとってもよい
Of course, when manufacturing this photoelectric conversion device, the device shown in Fig. 1 was fabricated by integrating the separate rooms into a 3-stage KN stack, moving the 2 layers in the first stage to another room, and then transferring them to the second stage (middle stage). Alternatively, a horizontal reaction system in which one layer is formed in a reaction tube and the upper layer is transferred through a separate chamber to produce an N layer may be stacked in three stages.

またP、層と1層とを同一反応筒で形成し、N層を他の
反応筒とする2段重ねの装置としてもよい。     
   (至) かくすることによ!り、P層  工、Nのそれぞれの不
純物制御を独立に精密に向上させることができた。
Alternatively, a two-tiered device may be used in which the P layer and the first layer are formed in the same reaction tube, and the N layer is formed in another reaction tube.
(To) This is how it is! In addition, we were able to independently and precisely improve impurity control for the P layer and N.

以上の説明よシ明らかな如く、本発明は同一反応筒を用
いて光電変換装置または発光素子′のみならず、電界効
果半導体装置、フォトセンサアレー等の各種の半導体装
督を作製する上にきわめて重要な製造装置および製造方
法を提供したものであシ、これによシ従来たて型のプラ
ズマ0VD装置にて10cm’を4まい作ると同じ時間
で、100〜500まいの基板上に非単結晶半導体膜を
作ることができ、きわめて多量生産向きである。さらに
本発明の如き電極構造または基板の配置をすることによ
り、PIN構造を有する光電変換装置において10%の
変換効率を得ることができ、その膜質においてもきわめ
てすぐれた′ものであった。
As is clear from the above description, the present invention is extremely useful for manufacturing not only photoelectric conversion devices or light emitting devices, but also various semiconductor devices such as field effect semiconductor devices and photosensor arrays using the same reaction tube. The company provided important manufacturing equipment and a manufacturing method, which allows for the production of non-uniform substrates on 100 to 500 substrates in the same amount of time as it would take to make 4 strips of 10 cm with a conventional vertical plasma 0VD device. It can produce crystalline semiconductor films and is suitable for extremely high-volume production. Furthermore, by arranging the electrode structure or substrate as in the present invention, a conversion efficiency of 10% could be obtained in a photoelectric conversion device having a PIN structure, and the film quality was also extremely excellent.

本発明においては、炭化珪素(SixOHOイX≦1)
を中心として記した。しかし反応性気体をゲル(ホ) マンを用いると、5ixGe+=□(0≦xり1)を得
ることができ、第1のP工N構造を珪素と炭化珪素によ
り、さらに第2のP工N構造を珪素と珪化ゲルマニュー
ムによ!llP■NP工N構造いわゆるタンデム構造を
得ることも可能である。
In the present invention, silicon carbide (SixOHO≦1)
It was mainly written down. However, if gel(ho)man is used as the reactive gas, 5ixGe+=□(0≦xri1) can be obtained, and the first P-N structure is replaced with silicon and silicon carbide, and then the second P-Ge+ is formed with silicon and silicon carbide. N structure made of silicon and germanium silicide! It is also possible to obtain a so-called tandem structure.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明のプラズマ気相製置である。 第2図は第1図の一部を示す0 第3図は第1図の装置を用い本発明のプラズマ気相法に
よって得られた光電変換装置のたて断面図を示す0 1丁、1;出(1人 峯2如 43 漉3邑
FIG. 1 shows the plasma vapor phase deposition of the present invention. FIG. 2 shows a part of FIG. 10 FIG. 3 shows a vertical cross-sectional view of a photoelectric conversion device obtained by the plasma vapor phase method of the present invention using the apparatus shown in FIG. ;Out(1 personmine 2yo 43 漉3eup

Claims (1)

【特許請求の範囲】 1、反応筒の外側に一対をなす反応性気体をプラズマ化
する電磁エネルギ供給用電極と該電極の外側に前記反応
筒を囲んで加熱装置とを具備し1.前記反応筒内を前方
向に向って流れる反応性気体と該反応性気体の流れにそ
って被形成面を有する基板を配置せしめ得ることを用件
とするプラズマ気相装置0 2、特許請求の範囲第1項において一1基板の被形成面
には互いに1〜4cm離間して平行に複数段または複数
列配置されたことを特徴とするプラズマ気相装置。 3、特許請求の範囲第1項において、反応筒の前方向力
・スミキサ−をプラズマをしやへいして設けたことを特
徴とするプラズマ気相装置。
[Scope of Claims] 1. A pair of electromagnetic energy supplying electrodes for turning a reactive gas into plasma are provided on the outside of the reaction tube, and a heating device is provided outside of the electrodes to surround the reaction tube.1. The plasma vapor phase apparatus 02 is characterized in that a reactive gas flows forward in the reaction cylinder and a substrate having a surface to be formed can be arranged along the flow of the reactive gas. A plasma vapor phase apparatus according to the first aspect of the present invention, characterized in that a plurality of stages or rows are arranged in parallel at a distance of 1 to 4 cm from each other on the formation surface of the substrate. 3. A plasma vapor phase apparatus according to claim 1, characterized in that a forward force of the reaction tube and a mixer are provided to suppress the plasma.
JP56163626A 1981-10-14 1981-10-14 Plasma vapor phase growth device Granted JPS5864022A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56163626A JPS5864022A (en) 1981-10-14 1981-10-14 Plasma vapor phase growth device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56163626A JPS5864022A (en) 1981-10-14 1981-10-14 Plasma vapor phase growth device

Publications (2)

Publication Number Publication Date
JPS5864022A true JPS5864022A (en) 1983-04-16
JPH0332210B2 JPH0332210B2 (en) 1991-05-10

Family

ID=15777501

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56163626A Granted JPS5864022A (en) 1981-10-14 1981-10-14 Plasma vapor phase growth device

Country Status (1)

Country Link
JP (1) JPS5864022A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5979236B2 (en) 2012-09-25 2016-08-24 Nok株式会社 Coating agent composition

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5580368U (en) * 1978-11-30 1980-06-03
JPS55169855U (en) * 1979-05-24 1980-12-05

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5580368U (en) * 1978-11-30 1980-06-03
JPS55169855U (en) * 1979-05-24 1980-12-05

Also Published As

Publication number Publication date
JPH0332210B2 (en) 1991-05-10

Similar Documents

Publication Publication Date Title
JPS5892217A (en) Manufacture of semiconductor device
US4543267A (en) Method of making a non-single-crystalline semi-conductor layer on a substrate
JPS5892218A (en) Manufacture of semiconductor device
US4735822A (en) Method for producing an electronic device having a multi-layer structure
JPS58169980A (en) Manufacture of photo voltaic element
JPH0370367B2 (en)
JP2000012465A (en) Formation of silicon film and manufacture of solar battery
JPS5864022A (en) Plasma vapor phase growth device
US20060219170A1 (en) Pore cathode for the mass production of photovoltaic devices having increased conversion efficiency
JPH02119126A (en) Manufacture of semiconductor device
JPH08195348A (en) Semiconductor device manufacturing equipment
JP2626701B2 (en) MIS type field effect semiconductor device
JPS5864023A (en) Plasma vapor phase growth
JPS5952833A (en) Plasma vapor reactor
JP2802747B2 (en) Plasma processing method
JP2805611B2 (en) Coating method
JPH0620038B2 (en) Plasma gas phase reactor
JPS5952834A (en) Plasma vapor reactor
JPH0732141B2 (en) Carbon film production method
JPS62219970A (en) Manufacture of thin film semiconductor element
JP2977686B2 (en) Method for manufacturing photovoltaic device and apparatus for manufacturing the same
JPS6030182A (en) Manufacture of amorphous photovoltaic element
JPH05144754A (en) Film forming apparatus
JPH0563223A (en) Manufacture of non-single-crystal tandem-type solar battery and manufacturing apparatus used therefor
JPH0673348B2 (en) Cleaning method for plasma processing apparatus