JPS5862714A - Multioutput switching power supply device - Google Patents

Multioutput switching power supply device

Info

Publication number
JPS5862714A
JPS5862714A JP56161035A JP16103581A JPS5862714A JP S5862714 A JPS5862714 A JP S5862714A JP 56161035 A JP56161035 A JP 56161035A JP 16103581 A JP16103581 A JP 16103581A JP S5862714 A JPS5862714 A JP S5862714A
Authority
JP
Japan
Prior art keywords
voltage
output
transformer
switching
power supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56161035A
Other languages
Japanese (ja)
Inventor
Masami Joraku
常楽 雅美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP56161035A priority Critical patent/JPS5862714A/en
Publication of JPS5862714A publication Critical patent/JPS5862714A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)

Abstract

PURPOSE:To generate a highly accurate constant voltage with a small sized device, by converting a high input voltage into a low output voltage at a switching circuit and driving the 2nd switching circuit converting the voltage into a low voltage of multioutput. CONSTITUTION:An AC input voltage AC is rectified D0 and smoothed C0, and applied to a switching TR and a pulse transformer 17 to obtain a high frequency voltage at secondary windings 11, 12. The output of the secondary windings is rectified D1, smoothed C1, amplified AMP1 and compared PWM1 with a triangle wave from an oscillator OSC1 to control the pulse width of the output of a transformer DT, allowing to keep an output voltage V1 constant. A voltage V2 with decreased regulation in interlocking with the voltage V1 drives a switching circuit consisting of a pulse transformer 18 and a switching TR19. The output of secondary wingings 13-16 of the pulse transformer 18 is rectified to apply voltages V3-V6 to each circuit, and the voltage V3 is amplified AMP2, the TR19 is controlled with an oscillator OSC2 and a comparator PWM2 to keep the voltage V3 constant. Thus, accurate constant voltage can be obtained with a small-sized device.

Description

【発明の詳細な説明】 本発明はスイッチング□電源に係り、特に事務機器等へ
多数の出力電圧を供給するのに好適な電源装置に関する
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a switching power supply, and particularly to a power supply device suitable for supplying multiple output voltages to office equipment and the like.

従来、事務機器の電源には複数の出力電圧が要求され、
その中で5V、12V等高精度を必要とするものとモー
タ、ランプ等の負荷に供給する中程度の精度を要するも
のとがある。
Traditionally, power supplies for office equipment require multiple output voltages.
Among them, there are those that require high accuracy such as 5V and 12V, and those that require medium accuracy for supplying to loads such as motors and lamps.

第1図に従来の多出力スイッチング電源の一例(6出力
の例)を示す。交流入力電圧ACは整流器り。とコンデ
ンサC8により整流平滑した直流電圧゛に変換され、パ
ルストランスPTおよびトランジスタTRの直列回路に
印加される。トランジスタTRを高周波で艮イツチング
することによりパルストランスFTの2次側に高周波電
力を伝達し、その出力の1つはダイオードD、とコンデ
ンサC1により整流平滑さ□れ直流出力電圧v1 とな
る。出力電圧■1は増幅器AMPを経てフィードバック
され発振器O8Cの信号と比較増幅され・(ルス幅調整
器PWMによシトランジスタTRのスイツチングパルス
幅を制御して出力電圧■1 が一定になるように動作す
る。他の出力電圧■2〜v6も同様に高周波2次電圧が
整流平滑されて得られるが、上記の出力電圧v1  と
異なりフィードバックルーズの外にあるためトランスP
Tの巻線10〜16やダイオードD1 〜D6等のイン
ピダンスによる電圧降下が生じ、所望の出力電圧。の変
動率精度が得られない。そのため±51程度の高精度を
要求される出力の場合は、第1図におけるフィードバッ
クを有する単一出力電源1を出力電圧種別ごとに設けて
いたが構成が大規模となりスイッチング電源の特長であ
る小形化は望めない欠点を有する。また別な方法として
第1図において、フィードバックループ外の出力電圧V
、〜v6の後段に電圧調整器REG2〜REG6を設け
る必要がある。電圧調整器REGの各種の欠点について
第2〜4図を用いて説明する↑第2図はシリ−ストロツ
バ電源を示すが、トランジスタ2により電圧調整をした
電力がそのまま発熱となるため大形の放熱器を必要とし
小形化を困難にする。第3図−はチョッパ一方式の例を
示すが、出力電圧V。を制御するトランジスタ4は方形
波発振器3の周波数と出力電圧V。をフィードバックし
た信号を駆動回路5で比較増幅したパルス幅によりスイ
ッチングされ入力電圧■!を高周波の断続波にチョッピ
ングした後、チョーク6とコンデンサ7によるフィルタ
回路で平滑して直流出力電圧を得る。スイッチング動作
のため発熱は低減できるが回路規模が複雑となシ小形化
が困難である。第4図はマグアンプによる例を示すが、
第3図の例に加えて、マグアンプ8を構成する回路が増
加するため、多出力電源を小形かつ低価格に構成するこ
とはますます困難となる。
FIG. 1 shows an example of a conventional multi-output switching power supply (an example of 6 outputs). The AC input voltage AC is a rectifier. It is converted into a rectified and smoothed DC voltage by a capacitor C8 and applied to a series circuit of a pulse transformer PT and a transistor TR. By switching the transistor TR at a high frequency, high frequency power is transmitted to the secondary side of the pulse transformer FT, and one of its outputs is rectified and smoothed by a diode D and a capacitor C1 to become a DC output voltage v1. The output voltage (1) is fed back through the amplifier AMP, and compared and amplified with the signal from the oscillator O8C (the pulse width adjuster PWM controls the switching pulse width of the transistor TR so that the output voltage (1) remains constant The other output voltages 2 to v6 are similarly obtained by rectifying and smoothing the high-frequency secondary voltage, but unlike the output voltage v1 above, they are outside the feedback loop, so the transformer P
A voltage drop occurs due to the impedance of the windings 10 to 16 of T and the impedances of diodes D1 to D6, etc., resulting in the desired output voltage. fluctuation rate accuracy cannot be obtained. Therefore, in the case of an output that requires high precision of about ±51, a single output power supply 1 with feedback as shown in Fig. 1 was provided for each output voltage type, but the configuration was large-scale and the feature of a switching power supply was small. It has disadvantages that make it undesirable. As another method, in FIG. 1, the output voltage V outside the feedback loop is
, ~v6 must be provided with voltage regulators REG2 to REG6 at the subsequent stage. The various drawbacks of the voltage regulator REG will be explained using Figures 2 to 4. ↑ Figure 2 shows a serial strobber power supply, but since the power that has been voltage adjusted by transistor 2 directly generates heat, it requires large heat dissipation. It requires a container, which makes downsizing difficult. FIG. 3 shows an example of a chopper type, and the output voltage V. Transistor 4 controls the frequency of square wave oscillator 3 and the output voltage V. The signal fed back is compared and amplified by the drive circuit 5, and the pulse width is used to switch the input voltage ■! After chopping the signal into a high-frequency intermittent wave, the signal is smoothed by a filter circuit including a choke 6 and a capacitor 7 to obtain a DC output voltage. Due to the switching operation, heat generation can be reduced, but the circuit scale is complex and miniaturization is difficult. Figure 4 shows an example using a mag amp.
In addition to the example shown in FIG. 3, since the number of circuits forming the mag-amp 8 increases, it becomes increasingly difficult to construct a multi-output power supply in a compact and low-cost manner.

次に入力電圧の範囲によるパルストランスPTの構造の
差を説明する。第5図は通常、入力電圧が150V以下
の場合のパルストランス構造例を示す。ボビン9に1茨
巻線10をボビン幅W9一杯に巻線し、その上に2次巻
線11〜16を同様にボビン幅一杯に巻線する。しかし
、入力電圧が150 V以上、1%[ヨーロッパで使用
される電源においては第6図に示す例のように、絶縁耐
圧の規格の点でボビン9の1次巻線10と2次巻線との
沿面距離W91として6ミリ以上設けることが義務ずけ
られているため、1次巻線の幅W10は2次巻線の巻幅
W9よシ著しく狭くなる。その結果、1次巻線10と2
次巻線11〜16の磁気結合は悪化し、変動率精度の低
下を招く。また、第5図の場合においても、2次巻線に
図示の例のように6出力を必要とする場合は1次巻線l
Oより距離の離れた2次巻線16,15.14等は、2
次巻線11と比較して明らかに磁気結合は悪くなるため
出力電圧変動率を±10−の精度に収めることは困難で
ある大きな欠点を有する。そのため第6図に示すトラン
スを用いる場合は、±101の変動率を得るにも、2次
側に電圧調整器REGを接続する必要があるため小形か
つ低価格O多出力電源を得ることは困難な欠点を有して
いた。
Next, differences in the structure of the pulse transformer PT depending on the input voltage range will be explained. FIG. 5 typically shows an example of a pulse transformer structure when the input voltage is 150V or less. One thorn winding 10 is wound on the bobbin 9 to fill the bobbin width W9, and secondary windings 11 to 16 are similarly wound thereon to fill the bobbin width W9. However, when the input voltage is 150 V or more, the voltage is 1% [in power supplies used in Europe, the primary winding 10 and the secondary winding of the bobbin 9 are Since it is mandatory to provide a creepage distance W91 of 6 mm or more with respect to the primary winding, the width W10 of the primary winding is significantly narrower than the winding width W9 of the secondary winding. As a result, the primary windings 10 and 2
The magnetic coupling between the secondary windings 11 to 16 deteriorates, leading to a decrease in the accuracy of the fluctuation rate. Also, in the case of Fig. 5, if the secondary winding requires 6 outputs as in the example shown, the primary winding l
The secondary windings 16, 15, 14, etc. that are distant from O are 2
Since the magnetic coupling is obviously worse than that of the next winding 11, it has a major drawback in that it is difficult to keep the output voltage fluctuation rate within ±10-. Therefore, when using the transformer shown in Figure 6, in order to obtain a fluctuation rate of ±101, it is necessary to connect the voltage regulator REG to the secondary side, making it difficult to obtain a small and low-cost O multi-output power supply. It had some drawbacks.

本発明の目的は、上記した従来技術の欠点をなくし、簡
単な回路構成で高精度の電圧変動率を得ることができる
多出力スイッチング電源装置を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a multi-output switching power supply device that eliminates the drawbacks of the prior art described above and can obtain a highly accurate voltage fluctuation rate with a simple circuit configuration.

本発明の特徴は高入力電圧を低出力電圧に変換するスイ
ッチング電源と、前記低出力電圧を入力として多出力の
低電圧に変換する第2のスイッチング電源とに分割する
ことによシ、トランスにおける磁気結合を向上させ変動
率の高精度化を得ることにある。
A feature of the present invention is that the power supply is divided into a switching power supply that converts a high input voltage to a low output voltage, and a second switching power supply that converts the low output voltage into a low voltage with multiple outputs. The purpose is to improve magnetic coupling and obtain higher precision in fluctuation rate.

以下、本発明の一実施例を第9図によシ説明する。第9
図において、交流入力電圧ACを直流電圧に変換してス
イッチングトランジスタ’l’R,パル央寸ランス17
へ印加するダイオードDo1 コンデンサC8、トラン
ス17の2次巻線11および12、第1のフィードバッ
クループ、を形成する増幅器AMPI、発振器08CI
、パルス幅調整器PWMI、駆動トランスDTI、低電
圧v2を印加される第2のパルストランス18とスイッ
チングトランジスタ19、トランス18の2次巻線1a
〜16、第2のフィードバックループを形成する増幅器
AMP2、発振器08C2、パルス幅調整器PWM2か
ら構成される装置 ・第9図における動作は、まず入力電圧ACとして22
0vが印加されると整流平滑された高直流零圧がトラン
ス17の1次巻線10とトランジスタTRの直列回路に
印加される。発振器08CIの周波数に応じてトランジ
スタTRによりスイッチングされた高周波電力は2次巻
線11および12に伝達され、ダイオードD、 、 D
、とコンデンサC,、C2によシ各々整流平滑されて低
直流電圧V、 、 V2を得る。出力電圧■1は増幅器
AMPlを峠てパルス幅調整器PWMIにおいて発振器
08C1からの三角波と比較して出力電圧■1 が一定
となるようなパルス幅の駆動信号をトランスDT1を介
してスイッチングトランジスタTRに与えるように動作
し定電圧化される。出力電圧v1 の変動率はフィード
バックループ内のため±5%以内の高精度が得られる。
An embodiment of the present invention will be described below with reference to FIG. 9th
In the figure, the alternating current input voltage AC is converted into a direct current voltage, and the switching transistor 'l'R and the pin lance 17 are connected.
Diode Do1 applied to capacitor C8, secondary windings 11 and 12 of transformer 17, amplifier AMPI forming the first feedback loop, oscillator 08CI
, a pulse width regulator PWMI, a drive transformer DTI, a second pulse transformer 18 to which low voltage v2 is applied, a switching transistor 19, and a secondary winding 1a of the transformer 18.
~16.A device consisting of an amplifier AMP2, an oscillator 08C2, and a pulse width adjuster PWM2 forming a second feedback loop.The operation in FIG.
When 0V is applied, a rectified and smoothed high DC zero voltage is applied to the series circuit of the primary winding 10 of the transformer 17 and the transistor TR. The high frequency power switched by the transistor TR according to the frequency of the oscillator 08CI is transmitted to the secondary windings 11 and 12, and the diodes D, , D
, and are rectified and smoothed by capacitors C, , C2 to obtain low DC voltages V, , V2. The output voltage ■1 passes through the amplifier AMPL, and the pulse width adjuster PWMI outputs a drive signal with a pulse width that makes the output voltage ■1 constant compared to the triangular wave from the oscillator 08C1 to the switching transistor TR via the transformer DT1. It operates to give a constant voltage. Since the fluctuation rate of the output voltage v1 is within the feedback loop, high accuracy within ±5% can be obtained.

他方の出力電圧■2はトランス17の構造が第6図にお
ける2次巻線11.12のみのため磁気結合は良好に保
たれ変動率±10チは容易に実現できる。
As for the other output voltage (2), since the structure of the transformer 17 is only the secondary windings 11 and 12 in FIG. 6, the magnetic coupling is maintained well and a fluctuation rate of ±10 degrees can be easily realized.

次に、低直流電圧■2が印加された第2のトランス18
の1次巻線103〜106は発振器osc2の周波数に
応じて駆動されるスイッチングトランジスタ19が高周
波電力を2次巻線13〜16に伝達する。出力電圧■3
は第2のフィードバックループで前述と同様な動作によ
り定電圧化され±5チ以内の高精度の変動率が得られる
Next, the second transformer 18 to which the low DC voltage ■2 is applied
The primary windings 103-106 are driven by a switching transistor 19 driven according to the frequency of the oscillator osc2, and a switching transistor 19 transmits high-frequency power to the secondary windings 13-16. Output voltage ■3
is made into a constant voltage in the second feedback loop by the same operation as described above, and a highly accurate fluctuation rate within ±5 inches is obtained.

更にパルストランス18の構造は低電圧の1次−2次の
組合せのため第7図に示すような1次巻線と2次巻線と
を交互に巻重ねたサンドインチ巻線および第8図に示す
ような1次と2次を交互に並べて巻線するバイファイラ
巻線を採用することが可能となり、絶縁耐圧の特性も無
理なく満足し、磁気結合を理想的に密に結合させること
を実現でき、±5〜±10チの変動率精度が容易に得ら
れる。
Furthermore, the structure of the pulse transformer 18 is a sand inch winding in which the primary winding and the secondary winding are alternately wound as shown in FIG. 7 and a sand inch winding as shown in FIG. It is now possible to use a bifilar winding in which the primary and secondary windings are alternately arranged, as shown in Figure 2, which satisfies the dielectric strength characteristics without difficulty, and achieves ideally close magnetic coupling. It is possible to easily obtain a fluctuation rate accuracy of ±5 to ±10 inches.

第10図は第2のトランス18の他の実施例構造を示す
もので、1次側電圧v2 と2次側電圧■3〜v6の比
が大きくない場合、第7図のように1次巻線101〜1
06を直列にしないで並列に接続することによシ1次巻
線101〜106の高周波抵抗を低減することができる
ため、更に出力電圧■3〜v6の変動率の高精度化が可
能となる。
FIG. 10 shows another embodiment of the structure of the second transformer 18. If the ratio between the primary side voltage v2 and the secondary side voltages ■3 to v6 is not large, the primary winding as shown in FIG. Line 101-1
By connecting 06 in parallel instead of in series, the high frequency resistance of the primary windings 101 to 106 can be reduced, making it possible to further improve the accuracy of the fluctuation rate of the output voltages 3 to v6. .

本発明によれば、2次巻線出力数の少ない高入力電圧の
第1のトランスと、2次巻線出力数の多い低入力電圧の
第2のトランスとに分割して定電圧フィードバックルー
プを形成することにより簡素な構成で±5チおよび±1
01の高精度な変動率の複数直流定電圧出力が得られる
ので、多出力スイッチング電源装置の小形化、低価格化
に効果がある。
According to the present invention, a constant voltage feedback loop is formed by dividing the transformer into a first transformer with a high input voltage and a small number of secondary winding outputs and a second transformer with a low input voltage and a large number of secondary winding outputs. ±5 inches and ±1 with a simple configuration
Since multiple DC constant voltage outputs with a highly accurate variation rate of 0.01 can be obtained, the multi-output switching power supply device can be made smaller and lower in price.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の多出力電源のブロック図、第2図はシリ
−ストロツバ電源のブロック図、第3図はチョッパ電源
のブロック図、第4図はマグアンプ電源のブロック図、
第5図は従来のトランスの巻線構造図、第6図は従来の
他のトランスの巻線構造図、第7図は本発明の1実施例
に用いるトランスの構造図、第8図は第2の実施例のト
ランス構造図、第9図は本発明による電源装置の1実施
例を示す図、第10図は第3の実施例のトランス構造図
である。 17・・・ifのパルストランス、18・・・第2のパ
ル   6ストランス、PWMl・・・第1のパルス幅
調整器、PWM2・・・第20共ルス幅調整器、10,
101〜106・・・1次巻線、11〜16・・・2次
巻線。 代理人 弁理士 高橋明夫 第1 図 第2図       第30 第4図          第50
Figure 1 is a block diagram of a conventional multi-output power supply, Figure 2 is a block diagram of a series power supply, Figure 3 is a block diagram of a chopper power supply, Figure 4 is a block diagram of a mag-amp power supply,
5 is a diagram of the winding structure of a conventional transformer, FIG. 6 is a diagram of the winding structure of another conventional transformer, FIG. 7 is a diagram of the structure of a transformer used in an embodiment of the present invention, and FIG. FIG. 9 is a diagram showing one embodiment of the power supply device according to the present invention, and FIG. 10 is a diagram showing the transformer structure of the third embodiment. 17... if pulse transformer, 18... second pulse 6 pulse transformer, PWM1... first pulse width regulator, PWM2... 20th pulse width regulator, 10,
101-106...Primary winding, 11-16...Secondary winding. Agent Patent Attorney Akio Takahashi Figure 1 Figure 2 Figure 30 Figure 4 Figure 50

Claims (1)

【特許請求の範囲】[Claims] 1.1つの入力巻線と1つ以上の出力巻線を有する第1
のトランス、該トランスの入力をオン−オフする第1の
スイッチング回路よ構成る第1の電圧変換装置と、1つ
の入力巻線と2つ以上の出力巻線を有する第2のトラン
ス、該トランスの入力をオン−オフする第2のスイッチ
ング回路、該出力の1つをフィードバックして該第2の
スイッチング回路のスイッチング時間を調整する回路よ
り成る第2の電圧変換装置において、第1の電圧変換装
置の出力を第2の電圧変換装置の入力とするように構成
したことを特徴とする多出力スイッチング電源装置。 2、特許請求の範囲第1項において、前記第1のトラン
スの出力巻線の出力の1つをフィードバックして前記第
1のスイッチング回路のスイッチング時間を調整する回
路を設けたことを特徴とする多出力スイッチング電源装
置。
1. A first having one input winding and one or more output windings
a first voltage conversion device comprising a first switching circuit that turns on and off an input of the transformer; a second transformer having one input winding and two or more output windings; the transformer; A second voltage conversion device comprising a second switching circuit that turns on and off an input of the first voltage converter, and a circuit that feeds back one of the outputs to adjust the switching time of the second switching circuit. A multi-output switching power supply device characterized in that the output of the device is configured to be input to a second voltage conversion device. 2. Claim 1 is characterized in that a circuit is provided for feeding back one of the outputs of the output winding of the first transformer to adjust the switching time of the first switching circuit. Multi-output switching power supply.
JP56161035A 1981-10-12 1981-10-12 Multioutput switching power supply device Pending JPS5862714A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56161035A JPS5862714A (en) 1981-10-12 1981-10-12 Multioutput switching power supply device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56161035A JPS5862714A (en) 1981-10-12 1981-10-12 Multioutput switching power supply device

Publications (1)

Publication Number Publication Date
JPS5862714A true JPS5862714A (en) 1983-04-14

Family

ID=15727352

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56161035A Pending JPS5862714A (en) 1981-10-12 1981-10-12 Multioutput switching power supply device

Country Status (1)

Country Link
JP (1) JPS5862714A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59188376A (en) * 1983-04-11 1984-10-25 Hitachi Lighting Ltd Switching regulator
JPS63314142A (en) * 1987-03-10 1988-12-22 Nippon Signal Co Ltd:The Constant-voltage power equipment
JPH0186480U (en) * 1987-11-26 1989-06-08
KR100657682B1 (en) 2005-08-05 2006-12-14 주식회사 대우일렉트로닉스 Apparatus for controlling power in smps
CN103534914A (en) * 2012-05-18 2014-01-22 三菱电机株式会社 Power supply device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59188376A (en) * 1983-04-11 1984-10-25 Hitachi Lighting Ltd Switching regulator
JPS63314142A (en) * 1987-03-10 1988-12-22 Nippon Signal Co Ltd:The Constant-voltage power equipment
JPH0186480U (en) * 1987-11-26 1989-06-08
KR100657682B1 (en) 2005-08-05 2006-12-14 주식회사 대우일렉트로닉스 Apparatus for controlling power in smps
CN103534914A (en) * 2012-05-18 2014-01-22 三菱电机株式会社 Power supply device
KR101467129B1 (en) * 2012-05-18 2014-11-28 미쓰비시덴키 가부시키가이샤 Power supply device
US8922052B2 (en) 2012-05-18 2014-12-30 Mitsubishi Electric Corporation Power supply device

Similar Documents

Publication Publication Date Title
US6307761B1 (en) Single stage high power-factor converter
US4628426A (en) Dual output DC-DC converter with independently controllable output voltages
US5555494A (en) Magnetically integrated full wave DC to DC converter
JP2792536B2 (en) Resonant DC-DC converter
US4126891A (en) Switching regulator with feedback system for regulating output current
JPH028549B2 (en)
JPH04299070A (en) Switching regulator
US4176392A (en) Series induction/parallel inverter power stage and power staging method for DC-DC power converter
JPS5862714A (en) Multioutput switching power supply device
JPS6323563A (en) Power supply unit
JP2653712B2 (en) Switching regulator
JPS6236463B2 (en)
JPS63245261A (en) Detection of current
JPS631830B2 (en)
JPH07118917B2 (en) Power supply device for image forming apparatus
JPH07337012A (en) Multi-output switching power supply circuit
JPS6233831B2 (en)
JPH0640472Y2 (en) Switching power supply
JPH08317640A (en) Output-voltage detection circuit for switching power-supply apparatus
JPH09252577A (en) Multioutput dc stabilized power unit
JPH0793819B2 (en) Constant current supply circuit
JPH0421359A (en) Switching regulator
JPH0258865B2 (en)
JPH02228257A (en) Dc-dc converter
JPH02101960A (en) Power source equipment