JPS586251A - Wet type classifying method - Google Patents

Wet type classifying method

Info

Publication number
JPS586251A
JPS586251A JP56104178A JP10417881A JPS586251A JP S586251 A JPS586251 A JP S586251A JP 56104178 A JP56104178 A JP 56104178A JP 10417881 A JP10417881 A JP 10417881A JP S586251 A JPS586251 A JP S586251A
Authority
JP
Japan
Prior art keywords
classified
particles
powder
particle size
packed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP56104178A
Other languages
Japanese (ja)
Other versions
JPH0233423B2 (en
Inventor
Hiroshi Ishizuka
博 石塚
Masatoshi Wada
和田 正俊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ishizuka Research Institute Ltd
Original Assignee
Ishizuka Research Institute Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ishizuka Research Institute Ltd filed Critical Ishizuka Research Institute Ltd
Priority to JP56104178A priority Critical patent/JPS586251A/en
Publication of JPS586251A publication Critical patent/JPS586251A/en
Publication of JPH0233423B2 publication Critical patent/JPH0233423B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Separation Of Solids By Using Liquids Or Pneumatic Power (AREA)
  • Filtration Of Liquid (AREA)
  • Filtering Materials (AREA)

Abstract

PURPOSE:To classify powder in a wet type with high accuracy by introducing liquid dispersed with the powder to be classified into beds wherein >=3 layers of granular packings of constant grain sizes are packed at the closest packing under differential pressures. CONSTITUTION:Liquid contg. the powder 5 to be classified is introduced into beds 2 packed into >=3 layers at the closest packing between metal screens or meshed trays 3 of openings smaller than spherical bodies by using differential pressures. While the liquid is passed between the clearances of the packings by this process, the powder 5 is classified. In this way, it is possible to remove coarse particles larger than distribution widths as well as to screen the particles of the same grain sizes by shapes and to eliminate clogging easily by backflowing.

Description

【発明の詳細な説明】 本発明は湿式で粉体な高精度で分級する方法に関するも
のである。近年セラミクス等を精密に加工する技術が必
要とされてきているために、研磨に用いる砥粒が厳密な
粒度分布を有するように、高精度で分級することが望ま
れている。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for classifying wet powder with high precision. In recent years, there has been a need for techniques for precisely processing ceramics and the like, so it is desired to classify the abrasive grains with high precision so that they have a strict particle size distribution.

即ち研磨の加工速度を大きくするためには砥粒の粒度の
粗い方が加工能率が上がるが、粒度分布の幅が広いと研
磨面の仕上度は粗くなる。%に粒度幅を越える粗大粒子
が混入している時には、粗い粒子忙よってスクラッチが
発生し、仕上げ面が不良となる。従って精密加工に用い
る砥粒は特に粒度分布の幅が狭く、かつ粒度幅以上の粗
大粒子の混入がかいことが望まれる。
That is, in order to increase the processing speed of polishing, the coarser the grain size of the abrasive grains, the higher the processing efficiency, but if the width of the grain size distribution is wide, the finish of the polished surface will be rough. %, when coarse particles exceeding the particle size range are mixed in, scratches occur due to the coarse particles, resulting in a poor finished surface. Therefore, it is desirable that the abrasive grains used for precision machining have a particularly narrow particle size distribution and that coarse particles larger than the particle size range are mixed in.

従来からある砥粒の分級法としては乾式ではふるいを用
いる方法、湿式では水篩法が最も一般的に用いられてき
た。ふるいを用いる方法は、ふるいの−の目開きにバラ
ツキがあることと、砥粒の形状の不規則性等が原因とな
って、分級されたものの粒度を写真法によって測定する
とその粒度分布幅が広く、かつ大きい方へずれるという
欠点がある。形状の細長いものが混入している場合には
これを形状選別機である程度分別することが可能である
が、粒径の小さい粒子になると不可能である。ふるいを
長期間使用しているうちには目づまりを生じ能率が低下
するが、一度生じた目づまりは回復が不可能である。又
厳密な分級を要求される砥粒の場合にはLo−Tapふ
るい振とう器を用いるが、能力が小さい。
As conventional methods for classifying abrasive grains, the most commonly used dry method is a method using a sieve, and the wet method is a water sieve method. When using a method using a sieve, the width of the particle size distribution cannot be determined when the particle size of the classified material is measured using a photographic method due to variations in the opening of the sieve and irregularities in the shape of the abrasive grains. It has the disadvantage of being wide and shifting toward the larger side. If particles with elongated shapes are mixed in, it is possible to sort them to some extent using a shape sorter, but this is not possible when the particles are small in size. When a sieve is used for a long period of time, it becomes clogged and efficiency decreases, but once the sieve is clogged, it cannot be recovered. In addition, in the case of abrasive grains that require strict classification, a Lo-Tap sieve shaker is used, but its capacity is small.

一方、水WtJ法は液体、主として水中で砥粒の沈降す
る速度が粒径によって異な−ることを利用する方法であ
るが、流体の流速や、温度また水以外の液体を用いる場
合にはその液の粘度、比重等の物性値を厳密に制御する
必要があり、そのためには煩雑、複雑な手段を用いなけ
ればならない。又、水篩法は液体中で沈降する最終速度
の等しい粒子を集めるので、形状には関係なく、細長い
粒子もそれと等しい最終速度の球に等しいものとして分
級される。従って得られ、る粒子の形状が不均一である
という欠点がある゛。又、目的とする粒度幅以下の微小
粒子は同じ操作の繰り返し等によ?て除去することがで
きるが、粒度幅以上の粗大粒子を除去することは困難で
あってこの粗大粒子が含まれるということは精密加工の
研磨材としての品質を悪くする鍾大の欠点となる。
On the other hand, the water WtJ method is a method that takes advantage of the fact that the settling speed of abrasive grains in a liquid, mainly water, differs depending on the particle size. It is necessary to strictly control physical properties such as the viscosity and specific gravity of the liquid, and for this purpose, complicated and complicated means must be used. Also, since the water sieve method collects particles with the same final velocity as they settle in the liquid, elongated particles are classified as being equivalent to spheres with the same final velocity, regardless of shape. Therefore, there is a drawback that the shape of the particles obtained is non-uniform. Also, is it necessary to repeat the same operation for microparticles that are smaller than the target particle size range? However, it is difficult to remove coarse particles larger than the particle size range, and the presence of these coarse particles is a drawback of the abrasive material that deteriorates its quality as an abrasive material for precision machining.

又水篩法は単位断面積および時間当りの処理能力が小さ
いので大量処理には複数の装置を並列して操業する必要
があり、大きな床面積を要するので、建設コストが嵩む
Furthermore, since the water sieve method has a small processing capacity per unit cross-sectional area and time, it is necessary to operate a plurality of devices in parallel for large-scale processing, which requires a large floor area and increases construction costs.

本発明は上記乾式によるふるい法と湿式の水篩法との欠
点を改良した湿式分級方法に関するものであり、特に分
布幅以上の粗大粒子を除去することができるという利点
を有し、又、分級と同時に同じ粒径の粒子に関しては形
状選別もでき、目づまりも逆流により簡単に解消できる
という利点を有する方法を提供するものである。
The present invention relates to a wet classification method that improves the drawbacks of the dry sieving method and the wet water sieving method, and has the advantage of being able to remove coarse particles that are larger than the distribution width. At the same time, the present invention provides a method that has the advantage that it is possible to sort out the shapes of particles of the same particle size, and that clogging can be easily cleared by backflow.

次に本発明を添付の図面によって説明する。図1は本発
明の方法を模式的に示した1例であり、図2は充填層を
複数段重ねて使用した例を示す。図3、図4は本方法に
よって分級する前の粒子と、分級した後の粒子を写真法
によって測定した粒度分布を比較したものである。
The invention will now be explained with reference to the accompanying drawings. FIG. 1 is an example schematically showing the method of the present invention, and FIG. 2 shows an example in which a plurality of packed layers are stacked and used. FIGS. 3 and 4 compare the particle size distributions of particles before being classified by this method and particles after being classified using a photographic method.

図、特に図1において、この分級装置のふるいに相当す
る部分は三層以上の最密充填された球体(1)で構成さ
れる。この充填層(2)は上下2枚の球体の直径より小
さい目開きの平らな金網又は目皿(3)の間に配置され
ており、該金網又は目皿は適当な締付手段たとえばゴム
パツキンとワッシャー(4)によって締めつけられて充
填層を押え、各球体が自由に振動して球間隔が変動する
のを防止する。この充填層の上から、分級すべき粉体(
5)を含有する液体を上方から下方へ圧力差を用いて導
入して、充填材の間隙を通過させる間に粉体な分級する
In the figures, especially in FIG. 1, the portion corresponding to the sieve of this classification device is composed of three or more layers of close-packed spheres (1). This packed layer (2) is arranged between a flat wire mesh or a perforated plate (3) with an opening smaller than the diameter of the two upper and lower spheres, and the wire mesh or perforated plate is secured by a suitable tightening means such as a rubber gasket. The washer (4) is tightened to hold down the packed layer and prevent each sphere from freely vibrating and changing the distance between the spheres. From above this packed bed, the powder to be classified (
A liquid containing 5) is introduced from above to below using a pressure difference, and is classified into powder while passing through the gap between the fillers.

矢印は液体の流れの方向を示す。充填層を通過できる粒
子の径は充填材の直径の15.5%以、下であり、本方
法によって分布幅以上の粗大粒子の通過は確実に阻止さ
れる。また同程度の大きさであれば細長い形状の粒子は
充填層を通過できずに除去されるのでふるい法で分級し
た粒子の形状選別も同時に行なわれることとなる。分級
な続けるうちに充填層中に粉体がはさまって目づまりを
おこすことがあるが、この場合は流体のみを逆流させて
除去する。又、目づまりが多い場合には充填層を分解し
て除去することができるので、繰り返し使用することが
でき、従来のふるいのような目づまりによる能力低下、
更には使用不能になるなどの欠点がない。又液体の圧力
差によって粒子を導入するので、分級に要する時間は非
常に短かくてすむので工業的規模に拡大することは容易
である。
Arrows indicate the direction of liquid flow. The diameter of particles that can pass through the packed bed is 15.5% or less of the diameter of the filler, and this method reliably prevents coarse particles larger than the distribution width from passing through. Further, if the particles are of the same size, elongated particles cannot pass through the packed bed and are removed, so the shape of the particles classified by the sieving method is also carried out at the same time. As the classification continues, powder may get caught in the packed bed and cause clogging, but in this case, only the fluid is allowed to flow backwards to remove it. In addition, if there is a lot of clogging, the packed bed can be disassembled and removed, so it can be used repeatedly.
Furthermore, there is no disadvantage such as unusability. Furthermore, since the particles are introduced by the pressure difference of the liquid, the time required for classification is very short and it is easy to expand the method to an industrial scale.

本発明を利用する方法として図2に示すように充填層を
、間隔をとって上方から粒径の大きい順に複数段重ねて
使用することもできる。矢印1mlの方向の液流に従り
て第1段の充填層を通過した粒子すなわち粒子径が31
11段の充填層を構成する球体の径の1 &51%以下
の粒子のうち、第2段の充填層を構成する球体の径の1
5.5−以下の粒径の粒子は同様に液流によって強制的
に次の段へ送られる。
As a method of utilizing the present invention, as shown in FIG. 2, a plurality of packed beds may be stacked at intervals in descending order of particle size from above. Particles that have passed through the first stage packed bed following the liquid flow in the direction of the arrow 1ml, that is, the particle size is 31
Of the particles that are 1 &51% of the diameter of the spheres constituting the 11th stage packed bed, 1% of the diameter of the spheres constituting the 2nd stage packed bed
Particles with a particle size of 5.5- or less are likewise forced by the liquid stream to the next stage.

各充填層間にたまりた粒子は適当な手段で取り出すこと
がで、きる。図2においては送入口(6)から矢印すの
方向く水を送入して、壜出口(7)から取り出す。又、
目づまりが生じた時には、送入口(8)から矢印1o1
の方向に水を送入して逆流させることによって解消でき
る。このような多段による分級法によれば充填層の球体
の選択に従って従来よりも粒度分布幅の狭い粉体に分級
することができる。以上の点からみて、本発明方法によ
れば分級の精度が非常に向上することとなる。
Particles accumulated between each packed layer can be removed by appropriate means. In FIG. 2, water is introduced from the inlet (6) in the direction of the arrow and taken out from the bottle outlet (7). or,
When a blockage occurs, use the arrow 1o1 from the inlet port (8).
This can be solved by supplying water in the direction of and causing it to flow backwards. According to such a multi-stage classification method, powders can be classified into powders having a narrower particle size distribution width than conventional ones according to the selection of spheres in the packed bed. In view of the above points, the method of the present invention greatly improves the accuracy of classification.

本件発明を実施するために用いられる充填材の球体とし
ては寸法が一定の真球であることが望ましいこと、又、
各種サイズのものが製作されているという点でも、ガラ
ス球や鋼球が充填材として適している。
It is desirable that the sphere of the filler used to carry out the present invention be a true sphere with constant dimensions;
Glass balls and steel balls are also suitable as fillers because they are manufactured in various sizes.

ところでJISK規定されたふるいは0開きの比が石°
の割合で順に小さくなってゆくが、最小は呼び寸法57
μまでしかない。そこで球体としてJISに規定された
ふるいの0開きに相当するサイズ、例えば呼び寸法25
0#〜57sの球体を各々多段の充填層として用い、そ
れより直径の小さな球体の分級を行なうと元の球体シリ
ーズのほぼ15.5%の径を有する粒度幅の狭い球体シ
リーズに分級される。得られた各々の球体嬌別の多段の
充填層として用い、さらに直径の小さな球体を分級する
という操作を順次繰り返して充填層を構成する球体の粒
径なそろえていけばふるいの規格のない細かい方へさら
に延長して0開きの比がWの充填層を作成することがで
きる。従って本方法によって0開+ 4 きの比かガの充填層を作成しておけば数ミクロンの粒子
をも姓の比で区別することができ、従来の分級方法に比
べて細かい粒子でも著しく狭い範囲に分級することが可
能となる。
By the way, the sieve specified by JISK has a ratio of 0 openings.
The ratio decreases in order, but the smallest is nominal size 57
There are only up to μ. Therefore, the size of the sphere corresponds to the 0 opening of the sieve specified in JIS, for example, the nominal size 25.
When spheres of 0# to 57s are used as a multi-stage packed bed and the spheres with a smaller diameter are classified, they are classified into a series of spheres with a narrow particle size range having a diameter approximately 15.5% of the original sphere series. . Using each of the obtained spheres as a multi-stage packed bed, and then classifying the spheres with smaller diameters, the process of sequentially repeating the process until the particle diameters of the spheres constituting the packed bed are uniform allows for fine particles that do not have a sieving standard. By further extending in the direction, a packed layer with a zero opening ratio of W can be created. Therefore, by using this method to create a packed bed with a ratio of 0 + 4, it is possible to distinguish particles of several microns by the ratio, and even fine particles can be significantly narrowed compared to conventional classification methods. It becomes possible to classify into ranges.

次に実施例について説明する。Next, an example will be described.

実施例を 内径8mのガラス管内に呼び寸法8B#の網を管の長手
方向に対して直角に張りてゴムパツキンとワッシャーと
で固定し、その上に149/1254(呼び寸法149
#のふるいを通過し125#のふるい上に残るもの)の
ガラス球を載せ、下から何回かたたくことによって最密
充填層とした。ガラス球の充填層は約10〜11段であ
りだ。充填層の上面を、下面と同様に呼び寸法88jの
網で押えて固定した。
In this example, a mesh with a nominal size of 8B# is stretched perpendicularly to the longitudinal direction of the tube in a glass tube with an inner diameter of 8 m, and is fixed with a rubber gasket and a washer.
A glass ball (one that passed through a #125 sieve and remained on a #125 sieve) was placed on top and tapped several times from below to form a close-packed layer. The packed bed of glass bulbs is about 10 to 11 stages. The upper surface of the packed bed was pressed and fixed with a net having a nominal size of 88j in the same manner as the lower surface.

ガラス管の下端を吸引フラスコに接続し、−さらに吸引
フラスコを真空ポンプに接続して吸引しながら、水篩法
によって分級された20/Bojのダイヤモンド粉1g
をxoowj以上の水に混ぜ℃よく攪拌した混合液を充
填層の上から注いだ。管内を通過する水の流速は約8 
d/rn i n、−であった。本方法によって分級す
る前の試料であるダイヤモンド粉、及び分級した後に回
収したダイヤモンド粉の粒度分布を拡大写真試験方法に
よって測定し、結果を図3に示した。図3の横軸は二軸
平均径をミクロン単位で示したものであり、縦軸は粒子
の個数な慢で示したものである。
Connect the lower end of the glass tube to a suction flask, then connect the suction flask to a vacuum pump and while suctioning, add 1 g of 20/Boj diamond powder classified by the water sieve method.
was mixed with water at a temperature of more than 100 °C and thoroughly stirred, and the mixture was poured over the packed bed. The flow rate of water passing through the pipe is approximately 8
d/rn i n, -. The particle size distribution of the diamond powder sample before being classified by this method and the diamond powder recovered after classification was measured by an enlarged photo test method, and the results are shown in FIG. 3. The horizontal axis of FIG. 3 shows the biaxial average diameter in microns, and the vertical axis shows the number of particles in units of microns.

水篩法で分級しただけのダイヤモンド粉試料の粒径は図
3中の実線に示されるように17.5μから57sまで
幅広く分布している。一方充填層の上に残りた粒子(一
点鎖線)と充填層を通過した粒子(破線)とは粒度分布
が明らかに異なり、特に後者は17.5声から50sま
での狭い粒度分布の範囲にあり、中でも大きい粒径の粒
子が完全に除かれていることがわかる。
The particle size of the diamond powder sample that was only classified using the water sieve method is widely distributed from 17.5μ to 57s, as shown by the solid line in FIG. On the other hand, the particle size distribution of the particles remaining on the packed bed (dotted chain line) and the particles that passed through the packed bed (dashed line) are clearly different, and the latter has a narrow particle size distribution range from 17.5 to 50 s. It can be seen that particles with a large particle size are completely removed.

実施例2 中間に水の送入口及び分級粒子取出し口を有する内径8
■のガラス管内に、実施例tと同方法によって送入口、
取出口をはさんで上下にガラス球充填層を2段設定した
。上方の第1段の充填層に用いたガラス球は425/3
84μ、第2段の充填層に用いたガラス球は58475
50sであり、層の厚さは各々約13〜14段であった
。ガラス管の下端を吸引フラスコに接続して真空ポンプ
で吸引しながら65157pの電子成m篩でふるったダ
イヤモンド粉1gを5001st以上の水に混ぜてよく
攪拌した混合液を第1段の充填層の上方から注入した。
Example 2 Inner diameter 8 with water inlet and classified particle outlet in the middle
In the glass tube of (2), an inlet port was installed using the same method as in Example t.
Two layers of glass bulb packed layers were set up above and below the outlet. The glass bulbs used for the upper first stage packed layer were 425/3.
84μ, the glass bulb used for the second stage filling layer is 58475
50s, and the layer thickness was about 13-14 layers each. Connect the lower end of the glass tube to a suction flask, and while suctioning with a vacuum pump, mix 1 g of diamond powder sifted through a 65157p electronic sieve with 5001st or higher water, stir well, and add the mixture to the first stage packed bed. Injected from above.

管内を通過する水の流速は約201Ij/min、−で
あつた。本法で分級する前のダイヤモンド粉、及び分級
した後の各段のダイヤモンド粉の粒度分布を、測定し、
結果を図4に示した。65157pの電子成型ふるいで
ふるっただけのダイヤモンド粉は図4の実線で示される
ように42μから7Sμまで幅広(分布しているが、本
法による分級後の第1段の上に残りた粒子(一点鎖m>
、第1段と第2段の中間から得られた粒子(二点鎖線)
、第2段の下から得られた粒子(破線)の粒度分布はピ
ークが順にずれており、よく分級されていることがわか
る。特に第1段と第2段の間から回収された粒子は57
#から69μまでの狭い範囲に分布しており、又、第2
段を通過した粒子も45#から65s までの狭い範囲
に分布していることがわかる。中でも大きい粒子径の粒
子が除去されているのがわかる。
The flow rate of water passing through the tube was approximately 201 Ij/min. Measure the particle size distribution of the diamond powder before classification by this method and the diamond powder at each stage after classification,
The results are shown in Figure 4. As shown by the solid line in Figure 4, the diamond powder simply sifted with a 65157p electronically shaped sieve has a wide distribution (distribution) from 42μ to 7Sμ, but the particles remaining on the first stage after classification by this method ( One-point chain m>
, particles obtained from the middle of the first and second stages (double-dashed line)
In the particle size distribution of the particles obtained from the bottom of the second stage (dashed line), the peaks are shifted in order, indicating that they are well classified. In particular, the particles recovered from between the first and second stages were 57
It is distributed in a narrow range from # to 69μ, and the second
It can be seen that the particles that passed through the stage are also distributed in a narrow range from 45# to 65s. It can be seen that particles with a particularly large particle size are removed.

【図面の簡単な説明】[Brief explanation of the drawing]

図1は本件発明を模式的に示した1例であり、図2は充
填層を複数段重ねて使用した例を示す。 図3および図4は、分級試料および分級後の粉体の粒度
分布曲線を示す。 特許出願人  株式会社石塚研究所 図4 支渥伊12の奈が1区科に金姐支り8瑠」えろの
赴肢今手続補正書(方式) %式% 工 事件の表示  昭和56年特許願第1041’78
号2 発明の名称  湿式分級方法 3 補正をする者 事件との関係  特許出願人 4 補正命令の日付 昭和56年11月5日(発送日 
昭和56年11月24日) 5補正の対象 図 面 6 補正の内容 別紙の通り
FIG. 1 is an example schematically showing the present invention, and FIG. 2 shows an example in which a plurality of packed layers are stacked one on top of the other. 3 and 4 show the particle size distribution curves of the classified sample and the powder after classification. Patent Applicant Ishizuka Research Institute Co., Ltd. Figure 4 Shibuchi I 12 No Na is 1st Ward Department Kinji Support 8 Ru "Ero's Assignment Now Procedural Amendment (Method) % Expression % Engineering Incident Indication 1988 Patent Application No. 1041'78
No. 2 Title of the invention Wet classification method 3 Relationship with the case of the person making the amendment Patent applicant 4 Date of amendment order November 5, 1980 (shipment date
(November 24, 1981) 5. Subject of amendment Figure 6. Contents of amendment As shown in the attached sheet

Claims (1)

【特許請求の範囲】 +1)  一定粒度の球状充填材を三層以上の最密充填
層とし、該充填層の一方から、分級すべき粉体な分散せ
しめた液体を圧力差を用いて通過せしめることを特徴と
する粉体の湿式分級方法。 (2)球体の粒度が異なる第1項記載の充填層を複数段
、粒度の大きい順に間隔をとって重ねて使用する第1項
記載の湿式分級方法。
[Claims] +1) Three or more close-packed layers of spherical fillers with a constant particle size are formed, and a dispersed liquid such as powder to be classified is passed through one of the packed layers using a pressure difference. A wet classification method for powder, which is characterized by the following. (2) The wet classification method according to item 1, wherein a plurality of packed beds according to item 1 having different particle sizes of spheres are stacked at intervals in descending order of particle size.
JP56104178A 1981-07-03 1981-07-03 Wet type classifying method Granted JPS586251A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56104178A JPS586251A (en) 1981-07-03 1981-07-03 Wet type classifying method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56104178A JPS586251A (en) 1981-07-03 1981-07-03 Wet type classifying method

Publications (2)

Publication Number Publication Date
JPS586251A true JPS586251A (en) 1983-01-13
JPH0233423B2 JPH0233423B2 (en) 1990-07-27

Family

ID=14373755

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56104178A Granted JPS586251A (en) 1981-07-03 1981-07-03 Wet type classifying method

Country Status (1)

Country Link
JP (1) JPS586251A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6035262A (en) * 1983-05-16 1985-02-23 パッカ−ド・インストルメント・カンパニ−・インコ−ポレ−テッド Method of decomposing and measuring atp and decomposing and concentrating cell
JP2015010025A (en) * 2013-07-01 2015-01-19 宇部マテリアルズ株式会社 Alkaline earth metal compound fine particle dispersion and method for producing the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4320061Y1 (en) * 1965-07-03 1968-08-22
JPS5494172A (en) * 1977-12-22 1979-07-25 Chemap Ag Filter medium

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4320061Y1 (en) * 1965-07-03 1968-08-22
JPS5494172A (en) * 1977-12-22 1979-07-25 Chemap Ag Filter medium

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6035262A (en) * 1983-05-16 1985-02-23 パッカ−ド・インストルメント・カンパニ−・インコ−ポレ−テッド Method of decomposing and measuring atp and decomposing and concentrating cell
JP2015010025A (en) * 2013-07-01 2015-01-19 宇部マテリアルズ株式会社 Alkaline earth metal compound fine particle dispersion and method for producing the same

Also Published As

Publication number Publication date
JPH0233423B2 (en) 1990-07-27

Similar Documents

Publication Publication Date Title
EA011527B1 (en) Tubular screen separator
TWI600473B (en) Screen plate for screening plants for mechanical classification of polysilicon
CN108686956A (en) A kind of powder granule sorting unit and method for separating
JPS586251A (en) Wet type classifying method
US3506119A (en) Method and apparatus for classifying by gravity a granular material mixture
CN206492603U (en) Desliming type liquid-solid fluid bed coarse slime size overflow cleaned coal grading plant
Smith et al. Spouting of mixed particle‐size beds
CN1037668A (en) Gravity concentrator
US4519244A (en) Casecadeograph and method of use
US3240336A (en) Process and apparatus for hydraulically sorting a mixture containing fine particulate material
CN209109569U (en) A kind of device of silicon aluminium calcium composite deoxidant high efficiency screening
Oshitani et al. Evaluation of fluidized particle flow by measurement of apparent buoyancy
US509818A (en) Minerals
RU2771771C1 (en) Hydraulic classifier for separation of suspension particles by their size
JP3677861B2 (en) Granule sorting method and granule sorting apparatus using the same
Hawkes et al. Packing Structure, Obstruction Factors, Flow Laminarity and Permeability in Chromosorb and Bead Packings
Zhu et al. Hydrodynamic Characteristics of a Powder‐Particle Spouted Bed with Powder Entrained in Spouting Gas
Tesařik et al. Grading of chromatographic supporst and packings according to particle size by the fluid method
GB2108871A (en) Apparatus for classifying catalyst particles and catalytic process employing catalyst particles thus classified
US11772016B2 (en) Date seed powder for water filtration treatment
CA1209095A (en) Process for classifying catalyst particles
JP2989018B2 (en) Continuous wet type countercurrent classifier
US2976996A (en) Apparatus and method for wet screening
US3639557A (en) Process and device for filtering melts of fiber-forming high molecular weight polymers
RU2008097C1 (en) Thickener-gravel separator