JP3677861B2 - Granule sorting method and granule sorting apparatus using the same - Google Patents

Granule sorting method and granule sorting apparatus using the same Download PDF

Info

Publication number
JP3677861B2
JP3677861B2 JP08485396A JP8485396A JP3677861B2 JP 3677861 B2 JP3677861 B2 JP 3677861B2 JP 08485396 A JP08485396 A JP 08485396A JP 8485396 A JP8485396 A JP 8485396A JP 3677861 B2 JP3677861 B2 JP 3677861B2
Authority
JP
Japan
Prior art keywords
perforated plate
specific gravity
rice
particles
plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP08485396A
Other languages
Japanese (ja)
Other versions
JPH09271720A (en
Inventor
慶二 雜賀
Original Assignee
株式会社東洋精米機製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社東洋精米機製作所 filed Critical 株式会社東洋精米機製作所
Priority to JP08485396A priority Critical patent/JP3677861B2/en
Publication of JPH09271720A publication Critical patent/JPH09271720A/en
Application granted granted Critical
Publication of JP3677861B2 publication Critical patent/JP3677861B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、比重差の極めて小さい粒体の選別、例えば米粒群に混入されているガラス片など、従来では選別困難な混入異物の選別除去が可能な粒体の選別方法と、それを用いた粒体選別装置に関するものである。
【0002】
【従来の技術】
従来より、米粒等の粒体中に混入した異物を選別除去する手段として、種々の方法が用いられている。例えば米粒の場合では、i)アミ目によって選別する粒大選別、ii)比重差によって選別する比重選別、iii)色の違いによって選別する色彩選別、iv)電磁波の変動差で選別する金属選別が知られている。
【0003】
【発明が解決しようとする課題】
しかしながら、特に米粒中の混入異物の除去に着目した場合、上記の従来の選別方法ではどうしても除去できず、その除去に極めて困窮している異物として、自動車のウインドガラス片(以下これを単にガラス片と称す)が挙げられる。以下、本発明の説明に当たってその理解を促すため、米粒中のガラス片の除去を例に取って説明する。
米粒中にガラス片が混入する原因として、農村道路における交通事故が主たるものとして挙げられる。この交通事故によって自動車のウインドガラスが粉々に割れ、これが米の収穫時に混入するのである。このガラス片は、通常のガラスと異なり米粒と比重が同等か、若しくは小さいものとこれまで考えられており、従来のいずれの選別方法をもってしても除去できないと判断されていた。しかし本発明者の調査によると、この混入しているガラス片の多くは比重が約2.3であった。従って、このガラス片は米粒より比重が大きいにも係わらず、従来の比重選別方法で何故除去できないのかという点に、本発明者は着目した。
この原因を詳細に検討した結果、従来除去できなかったガラス片はその殆どが米粒よりも体積が小さく、かつ表面には多くの尖鋭な凹凸が存在し、しかも比重が米粒より大きいながらその差が小さい為、重量/表面積の値(重量÷表面積で求められる値)が米粒に極めて近似しているかそれ以下であり、一方の米粒は比重が約1.6で、大粒から小粒のものまであり、最小粒のもので長さ約5mm、幅約2.4mm、厚さ約1.7mmで、あたかもいびつなラグビーボール様の形状を有し、その表面は極めて滑らかであるという、これら粒体の性状の違いが主たる原因になっていることを突き止めた。
【0004】
以下、上記の選別除去方法のそれぞれにおいて、米粒中に混入するガラス片の除去を例に取り、その除去困難性を説明する。
i)粒大選別
米粒の粒大選別は、通常は一方向に所定間隔をおいてワイヤーを張った「縦目ふるい」を用い、米粒中に混入している異物を、そのワイヤー間から落下させるものである。そしてこのワイヤーの間隔は一例として、米粒が落下しないように1.7mmに設定されている。しかしながら、ガラス片は上述したように、表面には多くの尖鋭な凹凸が存在しているため、目測上で約1.5mm角程度であってもワイヤーに引っ掛かってしまう結果、容易に落下せず残ってしまう。
【0005】
ii)比重選別
従来の比重選別は、開孔方向が板面に対して斜め方向となる長孔が全面に開孔された多孔板を傾斜させて設置し、多孔板の長孔に対して下方向から上方向に風を通過させ、異物に比べてその比重が小さい米粒のみを浮上させて米粒と異物とを分離、選別するものである。
このような比重選別では、異物として比重が米粒よりも大幅に大きいもの、特に石(比重は約3.0)等を対象としているため、異物が風によって浮上しないことを前提としている。従って、米粒と比べて比重差の小さいガラス片は容易に浮上してしまい、除去することはできない。
【0006】
この点についてさらに説明を加えると、以下のとおりとなる。物体はその大きさ(寸法)が小さくなるほど、単位体積当たりの表面積は増大する。これは、物体の体積が大きさの3乗に比例するのに対して、その表面積は大きさの2乗に比例するためである。従って小さい物体ほど、体積/表面積の値(体積÷表面積で求められる値)は小さくなる。そして物体が受ける浮力は、媒質が同じであれば単位表面積当たり一定であるので、一般に比重が等しければ小さい粒体ほど浮上しやすくなる。
一方、物体が媒質内を浮上するか否かは、受ける浮力が物体の重量よりも大きいか否かで決まる。すなわち、上述した重量/表面積の値の大小は、比重の大小に係わらず同じ媒質内での浮きやすさを表している。
ここで、これを前記米粒とガラス片の場合に照らして考えると、「第1に除去対象となるガラス片は米粒よりも体積が小さいこと」、「第2に米粒の表面は滑面であるのに対してガラス片の表面には多くの尖鋭な凹凸が存在していること」により、ガラス片の体積/表面積の値は、米粒より一層小さくなる。従って、両者の比重差がこれら性状の違いによって相殺されることになり、結果としてガラス片の重量/表面積の値が米粒のそれと極めて近似するかそれ以下となり、場合によっては米粒よりも浮上しやすいということも起こりうるのである。
【0007】
iii)色彩選別
色彩選別は、その表面の色によって異物を判定、除去するものであり、ガラス片は言うまでもなく米粒と類似した色彩を有しているので、当然ながら選別除去することはできない。
【0008】
iv)金属選別
ガラス片は金属異物と異なり絶縁体であり、当然金属選別によって除去することはできない。
【0009】
以上に説明したように、従来の選別除去方法では、特に米粒中に混入しているガラス片を確実に除去することは到底不可能であった。
【0010】
【課題を解決するための手段】
このような現況のもとで本発明者は鋭意研究を行い、上記4つの選別方法に加えて、新たに「体積選別」という考え方に至り、結果として米粒中のガラス片に代表される比重差の小さい異物を、効率よく選別できる粒体の選別方法とそれを用いた粒体選別装置を案出した。
このような本発明のうち粒体の選別方法については、開孔方向が板面に対して斜め方向となる多数の長孔が開孔され、前記長孔の開孔方向と同じ方向で、水平方向に対して7°〜14°の方向に傾斜させて設けた多孔板を;当該多孔板の傾斜方向と同一方向で、水平方向に対して40°〜90°の方向に、6mm〜12mmの振幅で毎分350回〜650回の往復運動をさせ、かつ多孔板の長孔に対してその下から上に空気流を通過させながら;米粒中に米粒より僅かに比重が大きくかつ体積が小さい上に表面に多くの尖鋭な凹凸が存在するガラス片が混入した粒体群を、前記多孔板上にその傾斜上方から多孔板面積の1m2当たり毎時5.5m3以下の流量で流下させることで実現できる。
【0012】
また多孔板の長孔を通過させる空気流量を、空転時に多孔板面積の1m2 当たり毎分30m3 〜45m3 の範囲とする粒体の選別方法としてもよい。なおこの空気流量の条件では、特に米粒の選別方法として適したものとなる。
【0013】
また別の粒体の選別方法は、上記のいずれかの粒体の選別方法と、粒体と異物の大きさの差によって異物を除去する選別方法とを併用することによって実現できる。この場合でも、多孔板の長孔を通過する空気流量を、空転時に多孔板面積の1m2 当たり毎分30m3 〜45m3 の範囲とすると、特に米粒の選別方法として適したものとなる。
【0014】
さらに本発明の粒体選別装置については、開孔方向が板面に対して斜め方向となる多数の長孔が開孔され、前記長孔の開孔方向と同一方向で、水平方向に対して7°〜14°の方向に傾斜させて設けた多孔板と;多孔板をその傾斜方向と同じ方向で、水平方向に対して40°〜90°の方向に、6mm〜12mmの振幅で往復運動させる駆動手段と;多孔板への粒体群、つまり米粒中に米粒より僅かに比重が大きくかつ体積が小さい上に表面に多くの尖鋭な凹凸が存在するガラス片が混入した粒体群の流下量を、多孔板面積の1m2当たり毎時5.5m3以下に制御する流量制御手段と;多孔板の長孔に対してその下から上に空気流を通過させる送風手段と;を備えることで実現できる。
【0016】
また送風手段から多孔板の長孔に対して、空転時に多孔板面積の1m2 当たり毎分30m3 〜45m3 の空気流を通過させてもよい。なおこの空気流量の条件では、特に米粒に適した粒体選別装置となる。
【0017】
【作用】
次に本発明の作用について説明する。本発明においては、▲1▼空気が通り抜ける多孔板の長孔の開孔方向、▲2▼多孔板の傾斜角度、▲3▼多孔板が往復運動する方向、▲4▼多孔板の往復運動の振幅と回数、▲5▼多孔板上に流下される粒体群の流量、のそれぞれを所定の範囲に設定することによって、始めて米粒中のガラス片のように比重差が小さい異物を確実に選別除去できる。ここで、上記課題を解決するための手段の項で説明したように、本発明は「体積選別」という考え方に則ったものであるが、ここでは米粒中のガラス片の除去という点を例に取り、この「体積選別」の考え方によって、ガラス片のような米粒との比重差の小さい異物が選別される作用について、以下に詳細に説明する。
【0018】
本発明の対象となるガラス片は比重が約2.3で、米粒の約1.6と比べて比重差が小さく、かつその殆どが米粒よりも体積が小さい上に表面には多くの尖鋭な凹凸が存在しているので、従来の比重選別では、確実に除去することはできない。これはすでに説明したように、従来の比重選別方法が石等の異物を対象としており、風によって米粒のみを浮上させることで異物を下層部に沈下させることを前提条件としている為である。すなわち、除去対象となる石等の異物は、比重が米粒に対して大幅に大きいためにその重量/表面積の値が大きく、風によって容易に浮上しない為である。
従ってガラス片の場合には、米粒に比べて体積が小さく、しかもその表面に多くの尖鋭な凹凸が存在している為に表面積が大きく、その比重が米粒に近いことからも、その重量/表面積の値が米粒と近似し、風による単位重量当たりの浮力が米粒と同等になってしまうので、従来の比重選別では米粒と一緒に浮上してしまって除去することはできない。
【0019】
これについては、改めて説明するまでもなく前述のii)比重選別のところで説明したとおり、体積/表面積の値からは、一般に比重が等しければ小さい粒体ほど浮上しやすいということが導かれ、加えて重量/表面積の値からは、比重の大小に係わらず同じ媒質内での浮きやすさが導かれるという点から理解できる。
【0020】
これに対して本発明は、主に振動(小刻みな往復運動)によって粒体群中で異物を下に沈下させて除去することを特徴としている。すなわち本発明では、多孔板の傾斜上方から例えば米粒群を流下させ、米粒群が傾斜下方端から流下してしまうまでに、米粒群中におけるガラス片の沈下を、風の作用に殆ど依存することなく行わしめるものである。一般に、大豆と胡麻等の大小の粒体を容器内で混合して上下に振動(小刻みな往復運動)を加えると、小さい胡麻が下層に、大きい大豆が上層に分離する。これは往復運動という媒介手段を用い、大粒の大豆の隙間から小粒の胡麻を落下させる、言わば体積差による分離であり、本発明の「体積分離」の原理である。
【0021】
このように本発明では、傾斜設置した多孔板上で米粒群に往復運動による振動を与え、多孔板の傾斜上方から供給された米粒群が傾斜下方端から流下するまでに、主に振動によってこのガラス片を下層部に沈下させる。これには上記▲2▼の多孔板の傾斜角度を7°〜14°の範囲に、▲3▼の多孔板が往復運動する方向を水平方向に対して40°〜90°の範囲に、▲4▼の多孔板の往復運動の振幅を6mm〜12mmの範囲でその回数を毎分350回〜650回に、▲5▼の多孔板上を流れる粒体群の流量を多孔板面積の1m2 当たり毎時5.5m3 以下の流量に、それぞれ設定しなければならない。この条件の一つでも外れてしまうと、米粒群が傾斜下方端から流下するまでにガラス片が米粒群の下層部に沈下しきれず、ガラス片が米粒とともに多孔板から流下してしまう。ここに上記▲2▼〜▲5▼の数値範囲の臨界的意義が存在する。
「体積選別」では、米粒群中に存在するガラス片が下層部に沈下するには比較的長時間を要し、上記▲5▼のような範囲の条件設定によれば、米粒群の流量は従来の比重選別の約25%と程度となるが、米粒群が傾斜下方向端から流下するまでに確実にガラス片を沈下させることができる。従って本発明では、一見すると従来の比重選別に対してその処理能力が劣るように思われるが、従来は一回の比重選別によって十分除去しきれない為、2〜3台の比重選別機を設置しなければならず、またそれでも僅かしか効果が無かったところ、本発明によれば1台の設置で事足りるので、生産性向上やコスト低減に寄与できる。
また、本発明の基本的な原理は上述したような「体積選別」という新しい概念によるものであり、従来の比重選別とは逆に、大きいガラス片ほど下層部に沈下しにくく、その選別も困難になってくる。このため、本発明では「体積選別」と従属的に「比重選別」の機能も持たせている。しかし本発明の選別方法と粒体と異物の大きさの差によって異物を除去する選別方法とを併用することは一層望ましい。
【0022】
さらに本発明では、多孔板の長孔に対してその下から上に通過する空気流は、主に前記ガラス片の沈下作用と、多孔板の傾斜上方へのガラス片の移動の促進に寄与している。すなわち、第1にこの空気流が米粒群の下から上に吹き抜けることにより、米粒間に適当な隙間が形成されて米粒群内におけるガラス片の沈下を促進し、第2に、上記▲3▼と▲4▼の斜め上下方向の往復運動の力との相乗作用により、沈下したガラス片を多孔板の傾斜上方へと移動させるように作用する。ガラス片が多孔板の傾斜上方へと移動すると、ガラス片のみを、多孔板の傾斜上方端から取り出すことができる。従って空気流の存在は、振動(小刻みな往復運動)による体積選別に、僅かながら風力による比重選別という機能を付加し、これら2つの相乗効果を発揮することに役立っている。
以上より、空気流は多孔板に対してその傾斜上方に向いて吹き抜けることが望ましく、この点から前記▲1▼について、長孔は多孔板の板面に対してその開孔方向を斜め上下方向としなければならない。
【0023】
また、多孔板上を流下する米粒群の厚みが部分的に厚くなると、その部分では米粒群が多孔板の傾斜下方端から流下するまでの間にガラス片が下部に沈下しきれないし、また厚くなった部分では、その重圧ゆえに空気流が効率よく吹き抜けず米粒群の下から偏在風として強く吹き抜ける結果、下部に沈下したガラス片を上部へと吹き上げてしまう。従って、米粒群の流下層厚を均一にすることが重要である。この為には、米粒群を多孔板上に供給する際に、米粒群を拡散させて広域に流下させればよい。
【0024】
そして、多孔板の長孔を通過する空気流量を、空転時に多孔板の面積の1m2 当たり30m3 〜45m3 の範囲とすると、通過する空気によってガラス片が浮上せず、かつ上述した▲3▼と▲4▼の斜め上下方向の振動の力との相乗作用がより効率よく働く。そしてこの空気流量範囲は、特に粒体が米粒の場合に適している。
ここで、多孔板に開孔される長孔の大きさや開孔密度は特に限定されないが、これは、長孔は米粒が通過しない大きさで開孔することが当然の前提条件であり、しかも米粒群は多孔板の広域に亙って流下されることから、長孔の大きさや開孔密度、並びに米粒群の流下条件はほぼ一定と見なされるので、前述の空気流の作用を得るには、多孔板の面積に対して単位時間当たりどれだけの空気流が通過するかのみを限定すれば事足りる為である。
【0025】
このような作用により、供給された米粒群は、以下のようにしてガラス片と分離される。
多孔板の傾斜上方からガラス片が混入した米粒群を流下させると、従属的に働く空気流の作用によって米粒間に隙間を作りながら、主に多孔板の往復運動による「体積選別」の作用により、米粒より体積の小さいガラス片が沈下し、ガラス片を含む下層と米粒のみによる上層の2層構造が形成される。ここで、多孔板に開孔した長孔は多孔板の傾斜上方、すなわち多孔板の板面に対して斜め方向に向いて開孔しているので、米粒を傾斜上方に搬送しようとする力が働くが、多孔板が傾斜状態で設置されているため、米粒を傾斜上方に搬送しようとする力と重力とが均衡し、米粒群は一定の厚みの層となっておよそその場で止まる。しかしながら新たに米粒群が供給され続けるので、往復運動によってガラス片のみが沈下しながら、ガラス片が除去された米粒のみがあたかも表層雪崩のように傾斜下方に向かって流下し、多孔板の傾斜下方端より取り出される。
これに対して米粒群中に含まれるガラス片は、多孔板の斜め上下方向の往復運動による力と、多孔板の傾斜方向と同一方向に吹き抜ける空気流との相乗作用により、米粒群の下層に沈みながら傾斜上方へと移動し、多孔板の傾斜上方端より取り出される。
【0026】
【実施例】
続いて、本発明の粒体の選別方法を実現するための具体的実施例として、本発明の粒体選別装置の詳細を、図面に基づいて説明する。
図1は、本発明の粒体選別装置1の全体構造図を表している。図例のものは、スリット状で開孔方向DH が板面に対して斜め方向となる多数の長孔3が開孔されるとともに、大比重粒排出口5が上端に設けられ、水平方向LH に対してなす角度θP が、前記長孔3の開孔方向DH と同一方向で7°〜14°の範囲となるよう傾斜させて設けた多孔板7と;多孔板7を支持バネ板(図示せず)によって支持し、多孔板7の傾斜方向と同一方向で、水平方向LH に対してなす角度θV が40°〜90°の範囲となる方向DV に、6mm〜12mmの振幅で往復運動させる駆動手段9と;多孔板7への粒体群の流下量を、多孔板面積の1m2 当たり毎時5.5m3 以下に制御する流量制御手段11と;多孔板7の長孔3に対してその下から上に空気流を通過させる送風手段13と;多孔板7の傾斜上方の上部適所に設けられた、多孔板7上に粒体群を拡散して流下させるための拡散供給手段15と;を備えた粒体選別装置1を表している。
【0027】
以下図2、図3も参照しながらさらに詳細に説明すると、多孔板7は筐体17に所定角度で傾斜させて取り付けられている。そして駆動手段9は、電動機19とカム軸プーリー21を備え、両者がベルト等の伝達手段23によって連結されている。カム軸プーリー21にはカム25が設けられ、このカム25のカムフォロワ27が前記筐体17に連結されている。一方、送風手段13については、空転時に多孔板面積の1m2 当たり毎分30m3 〜45m3 の空気流を通過させる能力を有する一般的なファン29が使用され、前記ベルト等の伝達手段23によって連結され、一台の電動機19によって筐体17、すなわち多孔板7の往復運動と送風の為の動力が賄われている。しかし、このような駆動手段9ではなく、筐体17を固定式にして多孔板7のみを往復運動させてもよい。また送風手段13についても、図例のように多孔板7の下方から空気流を送り込む排風式のものとは別に、多孔板7の上方適所より、吸気によって空気流を送り込むものでもよい。
多孔板7は図2に示すように、ほぼ全面に亙ってスリット状の長孔3が開孔され、米粒等の小比重粒の排出口31を開放した立壁33によって、その三方が囲まれた構造となっている。一方、上端には主にガラス片等の大比重粒の排出口5が設けられ、シャッター板35の開閉動作によって大比重粒が排出可能となっている。
【0028】
多孔板7の傾斜上方の適所には、流量制御手段11と拡散供給手段15との組み合わせによる原料供給口37が設けられ、米粒等の粒体群を適度に広域に拡散させながら、図2の斜線で表している流下域dに流下させるようになっている。これは前述の作用の項で説明したように、粒体群の流下層厚を均一にするためのものであり、図示する流下域dは、粒体群を多孔板7の傾斜上下方向にも拡散して流下させる例を表している。しかしながらこの流下域は、種々の拡散形態によって形成すればよく、本例に何ら限定されるものではない。
【0029】
この拡散供給手段15は図3に示すように、多孔板7の上面に臨んで開口した逆ロート状のガイド部材39の内部に、粗い金網41を馬の背様の形状に上下2段に設けた構造である。そして、ガイド部材39の上部には、ロート状の原料受け部材43が設けられ、流量制御手段11から、多孔板面積の1m2 当たり毎時5.5m3 以下の粒体群が供給される。こうして原料受け部材43に供給された粒体群は、2つの金網41,41の目を通過して下に落ちたり、また網目に弾かれて横に滑り落ちたりしながら、ガイド部材39の幅方向全域またはその前後方向にも広がって、多孔板7上に流下する。この拡散供給手段15は、このように多孔板7の上に粒体群を拡散させて流下させる機能を有するものである為、本例以外にも種々の構造を取り得るものである。
【0030】
流量制御手段11は、前述のように多孔板7に流下する粒体群の流量を、多孔板面積の1m2 当たり毎時5.5m3 以下に制御するものであり、本実施例に限らず、拡散供給手段15の前工程であればどの位置に設けてもよく、公知の流量弁等を用いるとよい。この流量の制御は、例えば多孔板7の面積が0.34m2 の場合であって、これを米粒群に適用する場合、次の計算による流量を設定すればよい。5.5(制御流量:m3 /時)×0.78(米粒の見掛け比重)×0.34(多孔板7の面積:m2 )=1.45(流量:トン/時)。すなわち、毎時1.45トン以下の流量に制御すればよく、この流量を越えると選別率は低下する。また比重差の小さいものほどより流量を少なくすればよい。
【0031】
このような粒体選別装置1においては、前述したように多孔板7の長孔に対して、最適の風量をモニターできることが最も望ましい。しかしながら本装置の構造上、その運転稼動中の測定は不可能であるので、空転時の状態で図4に示すような方法で測定しながら設定した。図示するように、原料供給口37を取り外して多孔板7の下より送風手段13によって送風し、その風を逃がさないよう筒状のビニールシート47の下端を、テープ49によって多孔板7の立壁33と仮に封じたガード板51に接着し、多孔板7の長孔3より吹き出る空気を全てビニールシート47の上端に設けた排気筒53を通過させ、風速計55によってその通過空気量を測定した。この時には、排気筒53の断面積が小さすぎて背圧がかかりすぎたりその逆にならないよう、風速が毎秒5m〜8mの範囲になるように排気筒53の内径を調整した。その結果、粒体が米粒である場合は、空転時に多孔板面積の1m2 当たり、毎分30m3 〜45m3 の空気流量が適量であることが測定された。
【0032】
このような本発明では、上記の各条件設定範囲において以下の傾向により条件を決定するとよい。(1)粒体の表面が滑らかであるほど、多孔板7の傾斜θP を小さくする。(2)粒体が大きいほど、多孔板7の振幅(往復運動距離)を長くする。(3)多孔板7の振幅が短いほど、毎分当たりの往復運動回数を多くする。(4)多孔板7の毎分当たりの往復運動回数が多いほど、或いは粒体の比重が小さいほど、多孔板7の長孔3を通過する単位時間当たり空気流量を少なくする。
【0033】
以下に本装置の作用を、ガラス片が米粒中に混入した場合を例として、図1〜図3を参照しつつさらに詳細に説明する。なお多孔板7は前記の0.34m2 の面積のものを用いている。先ず、本選別装置1を空転させた上、上記米粒群を流量制御手段11より拡散供給手段15に連続して供給すると、粗い網を山形にした金網41,41によって、米粒群は拡散されてパラパラと多孔板7上の流下域dに広域に、且つ均等に落下する。ここで多孔板7の、DV 方向で示される斜め上下の往復運動と、多孔板7に開孔している無数の長孔3から小比重粒の排出口31とは逆方向の斜め上方向に向かって吹いている空気流の作用により、多孔板7の流下域dの位置に落下した米粒群は、先ず大比重粒の排出口5の方向に移行し、厚さが約1cm程度の層になって先端(図の左端)より充満しながら徐々に下方(図の右方向)へと層状に拡がり、多孔板7の全面を充満し終わると、小比重粒の排出口31より溢れ出して多孔板7の外部に流下し、それ以降は米粒群の供給が続く限り、米粒群は流下域dから小比重粒の排出口31へとその流動状態が続く。しかしこの流動状態は、決して厚さ1cmの層の全てが傾斜下方向に流動するのではなく、その上層部は傾斜下方(図の右方)に流れる一方、下層部は逆に傾斜上方(図の左方向)へと徐々に移動する。
【0034】
それは多孔板7のDV で示す斜め上下方向の往復運動と、多数の長孔3から吹き出る空気流が大比重粒の排出口5の方向に吹き出しているからである。そして下層部は大比重粒の排出口5の方向へ移行するが、その間に米粒群中の小比重の米粒は浮上し、それまでとは逆方向の、小比重粒の排出口31の方へと流れていく。そしてこの流動過程で、DV で示す斜め上下方向の往復運動によって多孔板7の上を流動する米粒群のうち、米粒より僅かに比重が大きくかつ体積が小さいガラス片は、前述した大豆と胡麻の場合と同様に、米粒群の下層部へと徐々に沈下していく。この時には前述したように、多孔板7の多数の長孔3から吹き出る空気流の一部が、米粒群の層を下から上へ吹き抜けることで米粒間に隙間を形成し、米粒との摩擦を減らしてガラス片のスムーズな沈下を促進している。このようにガラス片は、米粒群の層中を往復運動の振動による体積選別作用を受けて徐々に沈下していくが、その沈下速度は極めて遅い。しかし、本発明では多孔板7の上を流れる米粒群の流量が、多孔板面積の1m2 当たり毎時5.5m3 以下と少なく、米粒群の移動速度が遅いので、振動による体積選別作用により、沈下速度の遅いガラス片でも小比重粒の排出口31に達するまでに米粒群の下層部に沈下し終わることになる。そして米粒群の下層部まで沈下すると、多数の長孔3より吹き出る空気流と往復運動によって、ガラス片は下層部を大比重粒の排出口5の方向へと徐々に送られる。この時、多孔板7の多数の長孔3より吹きつける空気流量は、多孔板7面積の1m2 当り毎分30m3 〜45m3 と、従来より大幅に少ない量であるので、例えば米粒群中に含まれる小体積でかつ表面積の大きいガラス片でも、上方に吹き上げられてしまうことはない。
【0035】
また、多孔板7の上に流下して来る米粒群は、拡散供給手段15の作用により、パラパラと拡散して多孔板7の流下域dの広域にほぼ均等に流下するので、部分的に必要以上に厚くなる過厚層は形成されない。従って、多孔板7の往復運動によって間歇的に生じるところの、米粒群と多孔板7との僅かの隙間を流れる空気流を妨げることもないし、また過厚層部分に当たることによる空気流の偏在により、米粒群の上方にガラス片が吹き上げられることもない。
すなわちこのガラス片の吹き上げは、米粒群の層が部分的に過厚層となるとその部分に重圧がかかり、多孔板7が往復運動していても過厚層の下部が多孔板7と密着したままになる結果、その部分まで米粒群の下層部を流れてきた空気流がその進行を封じられることになるので、空気流が一挙にその位置で米粒群の下から上に吹き上げ、米粒群の下層部に沈下したガラス片をも、米粒群の上層部へと吹き上げてしまうことによって発生する。
従って、拡散供給手段15からの供給はこの過厚層の発生を防止し、米粒群の下層部に沈下したガラス片を、上層部に浮き上がらせることなくそのままの状態で移動させるよう作用する。こうしてスムーズに傾斜上方へと移動したガラス片は、やがて大比重粒の排出口5(図の左端)に達し、多孔板7の各所から移動してくるガラス片や石粒(石粒は比重が大きいので、容易に選別されている)とともにその付近に滞留する。そして、ある程度量の大比重粒が溜った時にシャッター35を引いて大比重粒の排出口5を開放し、異物を外部に排出させる。勿論、シャッター35は開放状態のままにしておき、異物を滞留させなくてもよい。
【0036】
そして本発明では、米粒群より大粒の異物を選別する粒大選別を併用することもできるので、より完全に異物を除去することができる。また、本発明は主に体積の差によって選別するので、米粒の選別だけでなく他のあらゆる粒体の選別に対応できることは勿論のことである。
【0037】
【発明の効果】
本発明によれば、主に上記作用の項で説明したところにより、以下の優れた効果がもたらされる。
本発明の粒体の選別方法は、粒体中に混入している異物の選別除去に当たり、従来のいずれの方法にも該当しない全く新しい概念、すなわち体積選別という考え方によって始めて実現したものである。従って、極めて簡単な方法および装置構造により、従来選別除去が不可能と言われていた例えば米粒中のガラス片や、軽石のような小比重の石粒等、極めて比重差が小さくかつ粒大選別でも除去できない体積の小さい異物を、効率よく選別除去することができる。特に米粒に適用した場合、異物の混入を極めて恐れる食品業界にとっては、そのもたらす効果は計り知れないほど絶大である。
【図面の簡単な説明】
【図1】本発明を実現するための粒体選別装置の構造例を表す説明図
【図2】本発明の粒体選別装置に用いる多孔板の構造例を表す説明図
【図3】本発明の粒体選別装置に用いる拡散供給手段の構造例を表す説明図
【図4】本発明の粒体選別装置において多孔板に通過する空気流量の測定方法を表す説明図
【符号の説明】
1 粒体選別装置 35 シャッター板
3 長孔 37 原料供給口
5 大比重粒排出口 39 ガイド部材
7 多孔板 41 金網
9 駆動手段 43 原料受け部材
11 流量制御手段 47 ビニールシート
13 送風手段 49 テープ
15 拡散供給手段 51 ガード板
17 筐体 53 排気筒
19 電動機 55 風速計
21 カム軸プーリー
23 伝達手段
25 カム
27 カムフォロワ
29 ファン
31 小比重粒の排出口
33 立壁
[0001]
BACKGROUND OF THE INVENTION
The present invention is a method of selecting a granule capable of selecting and removing contaminants that have been difficult to select conventionally, such as glass particles mixed in a group of rice grains, such as a selection of particles having a very small specific gravity difference. The present invention relates to a particle sorting apparatus.
[0002]
[Prior art]
Conventionally, various methods have been used as means for selectively removing foreign matters mixed in grains such as rice grains. For example, in the case of rice grains, i) grain size selection based on netting, ii) specific gravity selection based on specific gravity difference, iii) color selection based on color difference, and iv) metal selection based on electromagnetic wave fluctuation difference. Are known.
[0003]
[Problems to be solved by the invention]
However, especially when focusing on the removal of contaminants in rice grains, it cannot be removed by the above conventional sorting method. For example). Hereinafter, in order to promote understanding of the present invention, the removal of glass pieces in rice grains will be described as an example.
The main cause of glass fragments in rice grains is traffic accidents on rural roads. This car accident breaks the windshield of the car and breaks it into the rice when it is harvested. Unlike conventional glass, this glass piece has been considered to have a specific gravity equal to or smaller than that of rice grains, and it has been determined that it cannot be removed by any conventional sorting method. However, according to the investigation by the present inventor, most of the mixed glass pieces have a specific gravity of about 2.3. Therefore, the present inventor paid attention to why this glass piece cannot be removed by the conventional specific gravity sorting method even though the specific gravity is larger than that of rice grains.
As a result of detailed examination of this cause, most of the glass pieces that could not be removed conventionally have a volume smaller than that of rice grains, and there are many sharp irregularities on the surface, and the specific gravity is larger than that of rice grains, but the difference is large. Because of its small size, the value of weight / surface area (value divided by weight divided by surface area) is very close to or less than that of rice grains, and one rice grain has a specific gravity of about 1.6, from large grains to small grains, The smallest particles are about 5 mm long, about 2.4 mm wide, and about 1.7 mm thick. They have a rugby ball-like shape, and the surface is extremely smooth. I found out that the difference was the main cause.
[0004]
Hereinafter, in each of the above-described sorting and removing methods, removal of glass pieces mixed in rice grains is taken as an example, and the difficulty of removal will be described.
i) Grain size selection
The grain size selection of rice grains is usually performed by using a “longitudinal sieve” in which wires are stretched at a predetermined interval in one direction, and foreign matters mixed in the rice grains are dropped from between the wires. And the space | interval of this wire is set as 1.7 mm so that a rice grain may not fall as an example. However, as described above, since the glass piece has many sharp irregularities on the surface, even if it is about 1.5 mm square on the surface, it will be caught on the wire and will not fall easily. It will remain.
[0005]
ii) Specific gravity sorting
Conventional specific gravity sorting is performed by inclining a perforated plate with a long hole opened in the entire surface, with the opening direction being oblique to the plate surface, and from below to above the long hole of the perforated plate. The rice is allowed to pass through, and only the rice grains having a specific gravity smaller than that of the foreign substances are floated to separate and sort the rice grains and the foreign substances.
Such specific gravity sorting is based on the assumption that foreign matter does not float due to wind because it is intended for foreign matter whose specific gravity is significantly greater than that of rice grains, particularly stone (specific gravity is about 3.0). Therefore, a glass piece having a smaller specific gravity difference than rice grains easily floats and cannot be removed.
[0006]
Further explanation of this point is as follows. As the size (dimension) of an object decreases, the surface area per unit volume increases. This is because the volume of the object is proportional to the cube of the size, whereas the surface area is proportional to the square of the size. Therefore, the smaller the volume, the smaller the volume / surface area value (the value obtained by volume / surface area). Since the buoyancy received by the object is constant per unit surface area if the medium is the same, in general, the smaller the particle body, the easier it is to float.
On the other hand, whether or not an object floats in the medium depends on whether or not the buoyancy received is greater than the weight of the object. That is, the above-mentioned value of the weight / surface area value represents the ease of floating in the same medium regardless of the specific gravity.
Here, considering this in the case of the rice grains and glass pieces, “firstly, the glass pieces to be removed have a smaller volume than the rice grains”, “secondly, the surface of the rice grains is smooth. On the other hand, since the surface of the glass piece has many sharp irregularities, the value of the volume / surface area of the glass piece becomes smaller than that of rice grains. Therefore, the difference in specific gravity between the two is offset by the difference in properties, and as a result, the weight / surface area value of the glass piece is very close to or less than that of rice grains, and in some cases, it tends to float more than rice grains. That can happen.
[0007]
iii) Color selection
In the color sorting, foreign matter is determined and removed based on the color of the surface. Needless to say, the glass piece has a color similar to that of rice grains, and therefore cannot be sorted and removed.
[0008]
iv) Metal sorting
Glass pieces are insulators, unlike metal foreign objects, and naturally cannot be removed by metal sorting.
[0009]
As described above, with the conventional sorting and removing method, it has been impossible to surely remove the glass pieces mixed in the rice grains.
[0010]
[Means for Solving the Problems]
Under such circumstances, the present inventor conducted intensive research and led to the concept of “volume selection” in addition to the above four selection methods, resulting in a difference in specific gravity represented by glass pieces in rice grains. Have devised a grain sorting method and a grain sorting apparatus using the same.
In such a method of selecting particles in the present invention, a number of elongated holes whose opening direction is oblique to the plate surface are opened, In the same direction as the opening direction of the long hole, 7 ° to 14 ° with respect to the horizontal direction direction Perforated plate provided in a slanted direction; 350 to 650 reciprocations per minute with an amplitude of 6 mm to 12 mm in a direction of 40 ° to 90 ° with respect to the horizontal direction in the same direction as the tilting direction of the perforated plate While moving and passing an air flow from the bottom to the top of the long hole of the perforated plate; the rice grain has a slightly higher specific gravity and smaller volume than the rice grain, and there are many sharp irregularities on the surface 1 g of the area of the porous plate from above the inclination on the porous plate 2 5.5m per hour Three This can be realized by flowing down at the following flow rate.
[0012]
In addition, the flow rate of air passing through the long hole of the perforated plate is set to 1 m of the perforated plate area during idling. 2 30m per minute Three ~ 45m Three It is good also as the selection method of the granule used as the range of this. This air flow rate condition is particularly suitable as a method for selecting rice grains.
[0013]
In addition, another method for selecting particles can be realized by using one of the above-described methods for selecting particles and a method for selecting particles according to the size difference between the particles and the particles. Even in this case, the flow rate of air passing through the long holes of the perforated plate is set to 1 m of the perforated plate area during idling. 2 30m per minute Three ~ 45m Three If it is within the range, it is particularly suitable as a method for selecting rice grains.
[0014]
Furthermore, for the grain sorting apparatus of the present invention, a number of long holes whose opening direction is oblique to the plate surface are opened, In the same direction as the opening direction of the long hole, with respect to the horizontal direction 7 ° -14 ° direction A perforated plate provided to be inclined to the surface; the same And a driving means for reciprocating with an amplitude of 6 mm to 12 mm in a direction of 40 ° to 90 ° with respect to the horizontal direction; a group of particles to the perforated plate, that is, a specific gravity slightly larger than the rice grain in the rice grain; The flow rate of the particle group mixed with glass pieces having a small volume and having many sharp irregularities on the surface is defined as 1 m of the perforated plate area. 2 5.5m per hour Three This can be realized by including a flow rate control means to be controlled below; and a blowing means for allowing an air flow to pass from the bottom to the top of the long hole of the perforated plate.
[0016]
Also, the area of the perforated plate is 1 m at the time of idling from the blower means to the long hole of the perforated plate 2 30m per minute Three ~ 45m Three May be passed through. Under this air flow rate condition, the grain sorting device is particularly suitable for rice grains.
[0017]
[Action]
Next, the operation of the present invention will be described. In the present invention, (1) the opening direction of the long hole of the perforated plate through which air passes, (2) the inclination angle of the perforated plate, (3) the direction in which the perforated plate reciprocates, and (4) the reciprocating motion of the perforated plate. By setting the amplitude and frequency, and (5) the flow rate of the particles flowing down on the perforated plate within a predetermined range, it is only possible to reliably select foreign substances with a small specific gravity difference such as glass pieces in rice grains for the first time. Can be removed. Here, as explained in the section of the means for solving the above-mentioned problems, the present invention is based on the concept of “volume selection”, but here, the point of removal of glass pieces in rice grains is taken as an example. In the following, the operation of selecting foreign substances having a small specific gravity difference from rice grains such as glass pieces by the concept of “volume selection” will be described in detail.
[0018]
The glass piece which is the subject of the present invention has a specific gravity of about 2.3, a specific gravity difference is smaller than that of about 1.6 of rice grains, and most of the volume is smaller than that of rice grains, and the surface has many sharp edges. Since unevenness exists, it cannot be reliably removed by conventional specific gravity sorting. This is because, as already described, the conventional specific gravity sorting method targets foreign substances such as stones, and presupposes that the foreign substances are submerged in the lower layer by floating only the rice grains by the wind. That is, the foreign matter such as stones to be removed has a large specific gravity relative to the rice grains, and thus has a large weight / surface area value and does not easily float by the wind.
Therefore, in the case of a glass piece, the surface area is large because the volume is smaller than that of rice grains and there are many sharp irregularities on the surface, and the specific gravity is close to that of rice grains. Since the buoyancy per unit weight by the wind is equivalent to that of rice grains, the value of the sapphire floats together with the rice grains and cannot be removed by conventional specific gravity sorting.
[0019]
About this, as described in the above-mentioned ii) specific gravity selection without needing to explain it again, the volume / surface area value generally leads to the fact that smaller particles are more likely to float if the specific gravity is equal. It can be understood from the value of the weight / surface area that the ease of floating in the same medium can be derived regardless of the specific gravity.
[0020]
On the other hand, the present invention is characterized in that foreign matter is sunk down and removed in the particle group mainly by vibration (small reciprocating motion). That is, in the present invention, for example, when the rice grain group flows down from the upper part of the perforated plate and the rice grain group flows down from the lower end of the inclination, the subsidence of the glass pieces in the rice grain group almost depends on the action of the wind. It is something that will be done. In general, when large and small grains such as soybean and sesame are mixed in a container and shaken up and down (small reciprocating motion), small sesame is separated into a lower layer and large soybean is separated into an upper layer. This is a separation by volume difference, using a mediating means called reciprocating motion to drop small grains of sesame from the gaps between large grains of soybeans, which is the principle of “volume separation” of the present invention.
[0021]
As described above, in the present invention, vibrations are imparted to the rice grains by reciprocating motion on the perforated plate installed at an inclination, and the rice grains supplied from above the perforated plate flow down from the lower end of the inclination, mainly by vibration. A piece of glass is allowed to sink to the lower layer. For this purpose, the inclination angle of the porous plate (2) is in the range of 7 ° to 14 °, the direction in which the porous plate (3) reciprocates is in the range of 40 ° to 90 ° with respect to the horizontal direction, 4) The amplitude of the reciprocating motion of the perforated plate in the range of 6 mm to 12 mm is set to 350 to 650 times per minute, and the flow rate of the particles flowing on the perforated plate of (5) is set to 1 m of the perforated plate area. 2 5.5m per hour Three Each of the following flow rates must be set. If even one of the conditions is not met, the glass pieces cannot sink to the lower layer of the rice grain group before the rice grain group flows down from the lower end of the slope, and the glass piece flows down from the perforated plate together with the rice grain. Here, there is a critical significance in the numerical range of (2) to (5) above.
In “volume selection”, it takes a relatively long time for the glass pieces existing in the rice grain group to sink to the lower layer, and according to the condition setting in the above range (5), the flow rate of the rice grain group is Although it is about 25% of the conventional specific gravity sorting, the glass pieces can be surely sunk before the rice grain group flows down from the end in the inclined downward direction. Therefore, in the present invention, it seems that the processing capacity is inferior to the conventional specific gravity sorting at first glance, but in the past, since it could not be removed sufficiently by one specific gravity selection, two or three specific gravity sorters were installed. However, since the present invention has only a small effect, it is sufficient to install only one unit according to the present invention, which can contribute to productivity improvement and cost reduction.
The basic principle of the present invention is based on the new concept of “volume sorting” as described above. Contrary to conventional specific gravity sorting, larger glass pieces are less likely to sink to the lower layer, making sorting difficult. It becomes. Therefore, in the present invention, a function of “specific gravity selection” is provided as a subordinate to “volume selection”. However, it is more desirable to use the sorting method of the present invention in combination with the sorting method that removes foreign matter according to the difference in size between the particles and the foreign matter.
[0022]
Further, in the present invention, the air flow passing from the bottom to the top of the long hole of the perforated plate mainly contributes to the sinking action of the glass piece and the promotion of the movement of the glass piece above the perforated plate. ing. That is, first, the air flow blows upward from the bottom of the rice grain group, thereby forming an appropriate gap between the rice grains to promote the settlement of the glass pieces in the rice grain group, and secondly, the above (3) By the synergistic action of the reciprocating force in the diagonally up and down direction of (4), the sinked glass piece acts to move upward the inclination of the perforated plate. When the glass piece moves upward in the inclined direction of the perforated plate, only the glass piece can be taken out from the inclined upper end of the perforated plate. Therefore, the presence of the air flow is useful for adding a function of specific gravity selection by wind power to volume selection by vibration (small reciprocating motion) and exerting these two synergistic effects.
In view of the above, it is desirable that the air flow blows upwardly with respect to the perforated plate. From this point, regarding the above-mentioned (1), the long hole is inclined upward and downward with respect to the plate surface of the perforated plate. And shall be.
[0023]
In addition, when the thickness of the rice grain group flowing down on the perforated plate is partially increased, the glass piece cannot sink to the lower part until the rice grain group flows down from the inclined lower end of the perforated plate at that part, and it is thicker. In the part that has become, the air flow does not blow through efficiently due to the heavy pressure, and as a result, the glass pieces that have settled in the lower part are blown up to the upper part. Therefore, it is important to make the flow bed thickness of the rice grain group uniform. For this purpose, when the rice grain group is supplied onto the perforated plate, the rice grain group may be diffused and flowed down to a wide area.
[0024]
And the air flow rate passing through the long hole of the perforated plate is set to 1 m of the area of the perforated plate during idling. 2 30m per Three ~ 45m Three If it is in the range, the glass piece does not float by the passing air, and the synergistic action of the vibration force in the diagonally up and down directions (3) and (4) described above works more efficiently. This air flow range is particularly suitable when the grains are rice grains.
Here, the size and density of the long holes to be opened in the perforated plate are not particularly limited, but this is a natural prerequisite that the long holes are opened in such a size that the rice grains do not pass through. Since the rice grain group flows down over a wide area of the perforated plate, the size of the long holes, the density of open holes, and the flow condition of the rice grain group are considered to be almost constant. This is because it is sufficient to limit only how much air flow per unit time passes with respect to the area of the perforated plate.
[0025]
By such an effect | action, the supplied rice grain group is isolate | separated from a glass piece as follows.
When the rice grains mixed with glass pieces flow down from the top of the perforated plate, the gap between the rice grains is created by the action of the subordinate air flow, while the volume selection by the reciprocating motion of the perforated plate. A glass piece having a volume smaller than that of the rice grain sinks, and a two-layer structure of a lower layer including the glass piece and an upper layer made of only the rice grain is formed. Here, since the long hole opened in the perforated plate is opened upward in the inclined direction of the perforated plate, that is, in the oblique direction with respect to the plate surface of the perforated plate, the force for conveying the rice grains upward is inclined. Although it works, since the perforated plate is installed in an inclined state, the force for conveying the rice grains upward and the gravity are balanced, and the rice grains become a layer of a certain thickness and stop almost on the spot. However, as new rice grains continue to be supplied, only the glass pieces sink due to the reciprocating motion, and only the rice grains from which the glass pieces have been removed flow downward as if they were a surface avalanche, and below the perforated plate. It is taken out from the end.
On the other hand, the glass piece contained in the rice grain group is formed in the lower layer of the rice grain group by a synergistic effect of the force due to the reciprocating motion of the perforated plate in the diagonally up and down direction and the air flow blown in the same direction as the inclined direction of the perforated plate. While sinking, it moves upward and is taken out from the upper end of the perforated plate.
[0026]
【Example】
Subsequently, as a specific example for realizing the grain sorting method of the present invention, details of the grain sorting apparatus of the present invention will be described based on the drawings.
FIG. 1 shows an overall structural diagram of a granule sorting apparatus 1 of the present invention. The example in the figure is slit-shaped and has an opening direction D H A large number of long holes 3 that are inclined with respect to the plate surface are opened, and a large specific gravity discharge port 5 is provided at the upper end. H The angle θ P Is the opening direction D of the long hole 3 H A perforated plate 7 provided to be inclined in the same direction as 7 ° to 14 °; and the perforated plate 7 is supported by a support spring plate (not shown), and in the same direction as the inclined direction of the perforated plate 7. , Horizontal direction L H The angle θ V Direction D in the range of 40 ° to 90 ° V And a driving means 9 that reciprocates with an amplitude of 6 mm to 12 mm; and a flow amount of the particle group to the porous plate 7 is set to 1 m of the porous plate area. 2 5.5m per hour Three A flow rate control means 11 to be controlled below; a blower means 13 for allowing an air flow to pass through the long hole 3 of the perforated plate 7 from below to above; a perforation provided at an appropriate upper position above the slope of the perforated plate 7; And a diffusion supply means 15 for diffusing and flowing down the particle group on the plate 7.
[0027]
In more detail with reference to FIGS. 2 and 3 below, the perforated plate 7 is attached to the housing 17 at a predetermined angle. The drive means 9 includes an electric motor 19 and a camshaft pulley 21, both of which are connected by a transmission means 23 such as a belt. The cam shaft pulley 21 is provided with a cam 25, and a cam follower 27 of the cam 25 is connected to the housing 17. On the other hand, the air blowing means 13 has a porous plate area of 1 m during idling. 2 30m per minute Three ~ 45m Three A general fan 29 having the ability to pass the air flow is used, and is connected by the transmission means 23 such as the belt, and the motor 17 reciprocates and blows air by the single motor 19. The power of However, instead of such driving means 9, the casing 17 may be fixed and only the perforated plate 7 may be reciprocated. Also, the air blowing means 13 may be an air flow that is sent by intake air from an appropriate position above the porous plate 7, apart from the exhaust type that sends the air flow from below the porous plate 7 as shown in the figure.
As shown in FIG. 2, the perforated plate 7 has a slit-like long hole 3 opened over almost the entire surface, and is surrounded by a standing wall 33 that opens a discharge port 31 for small specific gravity grains such as rice grains. It has a structure. On the other hand, a large specific gravity discharge port 5 such as a glass piece is mainly provided at the upper end, and the large specific gravity particles can be discharged by opening and closing the shutter plate 35.
[0028]
A raw material supply port 37 formed by a combination of the flow rate control means 11 and the diffusion supply means 15 is provided at an appropriate position above the inclination of the perforated plate 7, while diffusing a group of grains such as rice grains over a wide area, as shown in FIG. It is made to flow down to the flow area d shown by the oblique line. As described in the section of the above-mentioned operation, this is for making the thickness of the lower layer of the particle group uniform. An example of diffusion and flow down is shown. However, this flow area may be formed by various diffusion forms, and is not limited to this example.
[0029]
As shown in FIG. 3, this diffusion supply means 15 has a structure in which a rough wire net 41 is provided in two steps in the upper and lower stages in the shape of a horse's back inside a reverse funnel-shaped guide member 39 that opens toward the upper surface of the perforated plate 7. It is. In addition, a funnel-shaped raw material receiving member 43 is provided on the upper portion of the guide member 39. 2 5.5m per hour Three The following granule groups are supplied. The particle group supplied to the raw material receiving member 43 passes through the eyes of the two wire meshes 41, 41 and falls down, or is bounced by the meshes and slides down to the side. It spreads in the entire direction or in the front-rear direction and flows down on the perforated plate 7. Since the diffusion supply means 15 has a function of diffusing and flowing down the particle group on the porous plate 7 as described above, it can take various structures other than this example.
[0030]
As described above, the flow rate control means 11 sets the flow rate of the particle group flowing down to the porous plate 7 to 1 m of the porous plate area. 2 5.5m per hour Three The following control is performed, not limited to the present embodiment, and any position may be used as long as it is a pre-process of the diffusion supply means 15, and a known flow valve or the like may be used. For example, the area of the porous plate 7 is 0.34 m. 2 In this case, when this is applied to the rice grain group, the flow rate by the following calculation may be set. 5.5 (Control flow rate: m Three /Hour)×0.78 (apparent specific gravity of rice grains) × 0.34 (area of perforated plate 7: m 2 ) = 1.45 (flow rate: ton / hour). In other words, the flow rate may be controlled to 1.45 tons or less per hour, and if this flow rate is exceeded, the sorting rate decreases. The smaller the specific gravity difference, the smaller the flow rate may be.
[0031]
In such a granular material sorting apparatus 1, it is most desirable that the optimum air volume can be monitored with respect to the long hole of the porous plate 7 as described above. However, because of the structure of this device, measurement during its operation is impossible, so it was set while measuring by the method shown in FIG. 4 in the idling state. As shown in the figure, the raw material supply port 37 is removed and blown by the blower means 13 from under the porous plate 7, and the lower end of the cylindrical vinyl sheet 47 is placed on the bottom wall 33 of the porous plate 7 by a tape 49 so as not to escape the wind. Then, all the air blown out from the long hole 3 of the perforated plate 7 was allowed to pass through the exhaust tube 53 provided at the upper end of the vinyl sheet 47, and the passing air amount was measured by the anemometer 55. At this time, the inner diameter of the exhaust pipe 53 was adjusted so that the wind speed was in the range of 5 m to 8 m per second so that the cross-sectional area of the exhaust pipe 53 was too small and excessive back pressure was not applied. As a result, when the granule is a rice grain, 1 m of the perforated plate area during idling 2 30m per minute Three ~ 45m Three It was measured that the air flow rate was appropriate.
[0032]
In the present invention as described above, the conditions may be determined by the following tendency in each of the above condition setting ranges. (1) The more inclined the surface of the granular material, the more inclined θ P Make it smaller. (2) The larger the granular body, the longer the amplitude (reciprocating distance) of the porous plate 7 is increased. (3) As the amplitude of the porous plate 7 is shorter, the number of reciprocating motions per minute is increased. (4) The air flow rate per unit time passing through the long hole 3 of the porous plate 7 is decreased as the number of reciprocating motions per minute of the porous plate 7 is increased or the specific gravity of the granular material is decreased.
[0033]
Hereinafter, the operation of the present apparatus will be described in more detail with reference to FIGS. 1 to 3 by taking as an example a case where glass pieces are mixed in rice grains. The perforated plate 7 is 0.34 m as described above. 2 The one of the area is used. First, after the present sorting apparatus 1 is idled and the rice grain group is continuously supplied from the flow rate control means 11 to the diffusion supply means 15, the rice grain group is diffused by the metal nets 41 and 41 having a rough net shape. It falls in a wide area and evenly in the falling area d on the perforated plate 7. Here, D of the porous plate 7 V And the reciprocating motion up and down shown in the direction, and the air flow blowing in the diagonally upward direction opposite to the discharge port 31 of the small specific gravity particles from the countless long holes 3 opened in the perforated plate 7. Due to the action, the rice grain group that has fallen to the position of the flow-down area d of the perforated plate 7 first moves in the direction of the discharge port 5 of the large specific gravity grains, and becomes a layer having a thickness of about 1 cm and the tip (left end in the figure) It gradually spreads downward in a layered manner (right direction in the figure) while filling, and when the entire surface of the porous plate 7 is filled, it overflows from the discharge port 31 of small specific gravity particles and flows down to the outside of the porous plate 7, Thereafter, as long as the supply of the rice grain group continues, the rice grain group continues to flow from the downstream area d to the discharge port 31 for the small specific gravity grains. However, in this flow state, not all of the layer having a thickness of 1 cm flows in the downward direction of the slope, but the upper layer portion flows downward in the slope (right side of the figure), while the lower layer portion reversely inclines upward (see the figure). Gradually move to the left).
[0034]
It is D of perforated plate 7 V This is because the reciprocating motion in the diagonally up and down direction shown in FIG. 5 and the air flow blown out from the numerous long holes 3 are blown out in the direction of the large specific gravity discharge port 5. And the lower layer part moves to the direction of the discharge port 5 of the large specific gravity grain, but the rice grain of the small specific gravity in the rice grain group floats in the meantime, toward the discharge port 31 of the small specific gravity grain in the opposite direction. And flow. And in this flow process, D V Among the rice grains that flow on the perforated plate 7 by the reciprocating motion in the diagonally up and down direction, a glass piece having a specific gravity slightly larger and smaller in volume than the rice grains is the same as in the case of soybean and sesame as described above. It gradually sinks to the lower part of the. At this time, as described above, a part of the air flow that blows out from the many long holes 3 of the perforated plate 7 blows through the layer of the rice grain group from the bottom to the top, thereby forming a gap between the rice grains, and friction with the rice grains. Reduced to promote the smooth settlement of the glass piece. In this way, the glass piece gradually sinks in the layer of rice grains by receiving the volume selection action by the vibration of the reciprocating motion, but the sinking speed is extremely slow. However, in the present invention, the flow rate of the rice grains flowing on the porous plate 7 is 1 m of the porous plate area. 2 5.5m per hour Three Since the moving speed of the rice grain group is slow, the glass particles having a slow settlement speed will finish sinking to the lower layer of the rice grain group before reaching the discharge port 31 of the small specific gravity grain due to the volume selection action by vibration. . And if it sinks to the lower layer part of a rice grain group, a glass piece will be gradually sent to the direction of the discharge port 5 of a large specific gravity grain by the air flow which blows off from the many long holes 3, and a reciprocating motion. At this time, the flow rate of air blown from the many long holes 3 of the porous plate 7 is 1 m of the porous plate 7 area. 2 30m per minute Three ~ 45m Three Since the amount is much smaller than in the past, for example, even a glass piece having a small volume and a large surface area contained in the rice grain group is not blown upward.
[0035]
Further, the rice grain group flowing down on the porous plate 7 is diffused by the action of the diffusion supply means 15 and flows almost uniformly in the wide area of the flowing region d of the porous plate 7, so it is partially necessary. An overly thick layer that is thicker than that is not formed. Therefore, the air flow that flows intermittently due to the reciprocating motion of the perforated plate 7 and flows through a slight gap between the rice grain group and the perforated plate 7 is not obstructed, and the air flow is unevenly distributed by hitting the thick layer portion. No glass piece is blown above the rice grain group.
That is, this glass piece is blown up when the layer of rice grains becomes partly thick, a heavy pressure is applied to that part, and even if the porous plate 7 is reciprocating, the lower part of the thick layer is in close contact with the porous plate 7. As a result, the air flow that has flowed through the lower part of the rice grain group up to that part is sealed off, so the air flow is blown up from the bottom of the rice grain group at that position, It is generated by blowing the glass piece that has sunk in the lower layer part to the upper layer part of the rice grain group.
Accordingly, the supply from the diffusion supply means 15 prevents the overlying layer from being generated, and acts to move the glass piece that has settled in the lower layer portion of the rice grain group as it is without being lifted to the upper layer portion. The piece of glass that has smoothly moved to the upper side of the slope in this way eventually reaches the discharge port 5 (the left end in the figure) of the large specific gravity particle, and the glass piece or stone particle (the stone particle has a specific gravity) that moves from various places of the perforated plate 7. Since it is large, it is easily sorted) and stays in the vicinity. When a certain amount of large specific gravity particles accumulate, the shutter 35 is pulled to open the discharge port 5 for large specific gravity particles, and foreign matter is discharged to the outside. Of course, the shutter 35 is left open, and foreign matter does not have to stay.
[0036]
And in this invention, since the grain size selection which sorts out the large foreign material from a rice grain group can also be used together, a foreign material can be removed more completely. In addition, since the present invention sorts mainly by the difference in volume, it goes without saying that it can cope with not only sorting of rice grains but also sorting of all other grains.
[0037]
【The invention's effect】
According to the present invention, the following excellent effects are brought about mainly by the description in the section of the above action.
The grain sorting method of the present invention is realized for the first time by a completely new concept that does not correspond to any of the conventional methods, that is, the concept of volume sorting, in sorting and removing foreign substances mixed in the grain. Therefore, with a very simple method and device structure, for example, glass fragments in rice grains and small specific gravity stone grains such as pumice, which were previously said to be impossible to sort and remove, have a very small specific gravity difference and large grain sorting. However, foreign substances having a small volume that cannot be removed can be efficiently removed. Especially when applied to rice grains, the effects brought by the food industry, which is extremely afraid of foreign matter, is immensely great.
[Brief description of the drawings]
BRIEF DESCRIPTION OF DRAWINGS FIG. 1 is an explanatory diagram showing an example of the structure of a granule sorting apparatus for realizing the present invention.
FIG. 2 is an explanatory diagram showing an example of the structure of a perforated plate used in the granule sorting apparatus of the present invention.
FIG. 3 is an explanatory diagram showing an example of the structure of the diffusion supply means used in the granule sorting apparatus of the present invention.
FIG. 4 is an explanatory diagram showing a method for measuring the flow rate of air passing through a perforated plate in the granule sorting apparatus of the present invention.
[Explanation of symbols]
1 Granule sorter 35 Shutter plate
3 Long hole 37 Raw material supply port
5 Large specific gravity discharge port 39 Guide member
7 Perforated plate 41 Wire mesh
9 Driving means 43 Raw material receiving member
11 Flow control means 47 Vinyl sheet
13 Blowing means 49 Tape
15 Diffusion supply means 51 Guard plate
17 Housing 53 Exhaust tube
19 Electric motor 55 Anemometer
21 Camshaft pulley
23 Transmission means
25 cams
27 Cam Follower
29 fans
31 Small specific gravity outlet
33 Standing wall

Claims (5)

開孔方向が板面に対して斜め方向となる多数の長孔が開孔され、前記長孔の開孔方向と同じ方向で、水平方向に対して7°〜14°の方向に傾斜させて設けた多孔板を、
当該多孔板の傾斜方向と同じ方向で、水平方向に対して40°〜90°の方向に、6mm〜12mmの振幅で毎分350回〜650回の往復運動をさせ、かつ多孔板の長孔に対してその下から上に空気流を通過させながら、
米粒中に米粒より僅かに比重が大きくかつ体積が小さい上に表面に多くの尖鋭な凹凸が存在するガラス片が混入した粒体群を、前記多孔板上にその傾斜上方から多孔板面積の1m2当たり毎時5.5m3以下の流量で流下させる粒体の選別方法。
A number of long holes whose opening direction is oblique to the plate surface are opened, and are inclined in the same direction as the opening direction of the long holes in a direction of 7 ° to 14 ° with respect to the horizontal direction. The perforated plate provided
The reciprocating motion is performed 350 to 650 times per minute with an amplitude of 6 mm to 12 mm in the same direction as the inclined direction of the perforated plate and in the direction of 40 ° to 90 ° with respect to the horizontal direction. Against the air flow from the bottom to the top,
A grain group in which a glass piece having a specific gravity slightly larger and smaller in volume than the rice grain and having many sharp irregularities on the surface is mixed in the rice grain on the perforated plate from the upper side of the slope to 1 m of the perforated plate area. A method of selecting granules to flow down at a flow rate of 5.5 m 3 or less per 2 per hour.
多孔板の長孔を通過させる空気流量を、空転時に多孔板面積の1m2当たり毎分30m3〜45m3の範囲とする請求項1記載の粒体の選別方法。The air flow rate passing through the long holes of the porous plate, screening methods of the granules according to claim 1, wherein the range of 1 m 2 per minute per 30m 3 ~45m 3 of the porous plate area during idling. 請求項1または2記載の粒体の選別方法と、粒体と異物の大きさの差によって異物を除去する選別方法とを併用する、粒体の選別方法。  A method for selecting particles, wherein the method for selecting particles according to claim 1 and the method for removing particles according to the difference in size between the particles and the particles are used in combination. 開孔方向が板面に対して斜め方向となる多数の長孔が開孔され、前記長孔の開孔方向と同じ方向で、水平方向に対して7°〜14°の方向に傾斜させて設けた多孔板と、
多孔板をその傾斜方向と同じ方向で、水平方向に対して40°〜90°の方向に、6mm〜12mmの振幅で往復運動させる駆動手段と、
多孔板への粒体群、つまり米粒中に米粒より僅かに比重が大きくかつ体積が小さい上に表面に多くの尖鋭な凹凸が存在するガラス片が混入した粒体群の流下量を、多孔板面積の1m2当たり毎時5.5m3以下に制御する流量制御手段と、
多孔板の長孔に対してその下から上に空気流を通過させる送風手段と、を備えた粒体選別装置。
A number of long holes whose opening direction is oblique to the plate surface are opened, and are inclined in the same direction as the opening direction of the long holes in a direction of 7 ° to 14 ° with respect to the horizontal direction. A perforated plate provided;
Drive means for reciprocating the perforated plate in the same direction as the inclination direction and in the direction of 40 ° to 90 ° with respect to the horizontal direction with an amplitude of 6 mm to 12 mm;
The amount of flow of particles into the perforated plate, that is, the amount of particles mixed with glass pieces that have a slightly larger specific gravity and a smaller volume than the rice grains, and that have many sharp irregularities on the surface, A flow rate control means for controlling to below 5.5 m 3 per hour per 1 m 2 of area;
A blower means for passing an air flow from the bottom to the top of the long hole of the perforated plate.
送風手段から多孔板の長孔に対して、空転時に多孔板面積の1m2当たり毎分30m3〜45m3の空気流を通過させる請求項4記載の粒体選別装置。With respect to the long hole of the porous plate from the blowing means, granules sorting apparatus according to claim 4, wherein passing the porous plate 1m per per 2 minute area 30m 3 ~45m 3 of the air flow during idling.
JP08485396A 1996-04-08 1996-04-08 Granule sorting method and granule sorting apparatus using the same Expired - Fee Related JP3677861B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08485396A JP3677861B2 (en) 1996-04-08 1996-04-08 Granule sorting method and granule sorting apparatus using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08485396A JP3677861B2 (en) 1996-04-08 1996-04-08 Granule sorting method and granule sorting apparatus using the same

Publications (2)

Publication Number Publication Date
JPH09271720A JPH09271720A (en) 1997-10-21
JP3677861B2 true JP3677861B2 (en) 2005-08-03

Family

ID=13842368

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08485396A Expired - Fee Related JP3677861B2 (en) 1996-04-08 1996-04-08 Granule sorting method and granule sorting apparatus using the same

Country Status (1)

Country Link
JP (1) JP3677861B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102728555B (en) * 2011-04-11 2015-09-30 王仲武 A kind of dry separation enrichment and separation method and the system for dry separation enrichment and separation method
MY164157A (en) * 2011-08-05 2017-11-30 Japan International Res Center For Agricultural Sciences Solid mixture separation apparatus
JP5520264B2 (en) * 2011-08-23 2014-06-11 精研工業株式会社 Method for removing dust in transported grain and laterally fed grain transport device
CN109261514A (en) * 2018-10-31 2019-01-25 郑州市正升重工科技有限公司 A kind of pollen removing device of Machine-made Sand
CN112452763B (en) * 2020-12-08 2021-08-31 承德隆泉米业有限责任公司 Efficient screening device for rice processing and using method thereof

Also Published As

Publication number Publication date
JPH09271720A (en) 1997-10-21

Similar Documents

Publication Publication Date Title
AU2003271008B2 (en) Dry separating table, a separator and equipment for the compound dry separation with this table
US5032256A (en) Method and apparatus for air separation of material
AU648508B2 (en) A rotating screen
US6561359B2 (en) Method and apparatus for removing lightweight particulates during processing of a primary material
JP3677861B2 (en) Granule sorting method and granule sorting apparatus using the same
CN206392399U (en) A kind of grain processing stoning machine
US20080093271A1 (en) Apparatus for separating solids from a liquid
RU2185247C1 (en) Magnetic hydroseparator
CN207170258U (en) Automatically mould impurity elimination particle blender is removed
US4194970A (en) Method for screening particulate materials
RU2184618C1 (en) Magnetic hydraulic separator
US1593729A (en) Classifier
CN109746113A (en) A kind of granule materials water choosing device
EP0618010A1 (en) Method and installation for separating materials
US5794786A (en) Method and apparatus for sorting solids by airstream
CN103934198A (en) Environment-protecting micro powder pneumatic separation tower for sand making
US3438490A (en) Method and apparatus for wet sizing finely divided solid materials
JP2004522575A (en) Method and apparatus for separating granular material
JP2757333B2 (en) Method and apparatus for airflow separation of solid matter
CN208839991U (en) Stone combination sieve is removed in a kind of vibratory cleaning
JP3612325B1 (en) Non-ferrous waste sorting device and non-ferrous waste sorting system using the same
JP4096101B2 (en) Wind sorter
CN210523079U (en) Novel tea winnowing machine
CN208879075U (en) Gravity grading stone remover is used in a kind of processing of rice
CN214160508U (en) Silica flour impurity wind selector

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040826

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041102

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050201

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050314

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050419

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050502

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees