JPS586179A - Manufacture of field effect transistor - Google Patents

Manufacture of field effect transistor

Info

Publication number
JPS586179A
JPS586179A JP10396081A JP10396081A JPS586179A JP S586179 A JPS586179 A JP S586179A JP 10396081 A JP10396081 A JP 10396081A JP 10396081 A JP10396081 A JP 10396081A JP S586179 A JPS586179 A JP S586179A
Authority
JP
Japan
Prior art keywords
layer
opening
gate
field effect
effect transistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10396081A
Other languages
Japanese (ja)
Inventor
Shuji Asai
浅井 周二
Yoichi Aono
青野 洋一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP10396081A priority Critical patent/JPS586179A/en
Publication of JPS586179A publication Critical patent/JPS586179A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/80Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Junction Field-Effect Transistors (AREA)

Abstract

PURPOSE:To obtain a Schottky barrier gate FET having high performanc resembled to recess structure by a method wherein the interval between electrodes is made narrow having planar structure, and influence of a surface depletion layer is reduced. CONSTITUTION:On a GaAS wafer 10 formed with an N type operation layer on a GaAs substrate, Al as the first layer 11, Si3N4 as the second layer 12, SiO2 as the third layer 13, and a photo resist film 14 formed with an opening at the gate forming part are adhered respectively in order. Then the layer 13 and the layer 12 are etched, and moreover the layer 11 is etched. Then side etching is performed on the layer 13 and the layer 12 to extend the opening. When the photo resist film 14 is removed, a group of the openings is formed as to be formed of the layer 13 broader than the layer 11, and the layer 12 more broader. Then a gate metal of Ti-Pt-Au, etc., is evaporated on the whole surface, and the T- shaped gate electrode 9 is formed through the opening part of the layer 13. After the layers 11, 12 and 13 are removed, the ohmic electrodes 4, 5 of source and drain are formed having the gate electrode 9 as an umbrella.

Description

【発明の詳細な説明】 本発明はシーツトキーパリアゲート瀝電界効果トランジ
スタの製造方法に関し、1IIIR−ゲート電極とソー
スおよびドレイン電極間の距離を制御性がよく、セルフ
ァライン方式て形成する電界効果トランジスタの製造方
法に関する0 8愚に比べS〜6倍と大きな電子移動度を有するGaA
s牛導体は、その高速性に大きな特徴があり最近、超高
速集積回路(IC)に応用する研究−尭が活発に行われ
ている。このGapm  ICの能動素子としては、基
本的に111K[Htよび第2図に示すようなシ■ット
キーバリャゲート瀧電界効果トランジスタ(Mlg F
l”r ’)が提案されている0ξれは、プレーナ構造
と呼ばれ、半絶縁性GaAs基1[1上にエピタキシャ
ル成長やイオン注入によ轢厚喜約02μ簡の1形動作層
2を形成した後、ホトレジスト膜によるリフトオフ法な
どによりシーットキーゲート電極3を形成し、マスクの
位置合せを行ないPIUII)にリフトオフ法などによ
りソース詔よびドレインのオーミック電極4.5を形成
した比較的簡単な構造のものである・ しかしこの様なプレーナ構造では、オーミック電極を形
成するために目合せが必Jjlて、1台せ精度は最喪の
機器に愈いても±a、S声鵬ぐらいてあり、ゲートの電
極間隔を10層1m以下にすることは実際上は難かしい
。また、この様なプレーナ構造では、GaAs動作層の
表頁で結晶性の乱れや気体の1着などにより第2図に示
すように表面に空乏層6が生じ実効的な動作層が狭くな
る。その結果、ゲートとソース間の動作層の抵抗弁(ソ
ース直列抵抗)が増大し、相互コンダクタンスfrmが
著しく低下する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a sheet keeper gate field effect transistor, and relates to a method for manufacturing a sheet keeper gate field effect transistor, in which the distance between the gate electrode and the source and drain electrodes can be easily controlled, and the field effect transistor is formed using a self-line method. GaA has an electron mobility that is ~6 times larger than that of 08G.
BACKGROUND ART Semiconductor conductors are characterized by their high speed, and recently, research has been actively conducted to apply them to ultra-high-speed integrated circuits (ICs). The active elements of this Gapm IC are basically 111K [Ht] and a Schottky barrier gate field effect transistor (MlgF) as shown in Fig.
The proposed structure is called a planar structure, in which a type 1 active layer 2 with a thickness of about 02 μm is formed on a semi-insulating GaAs base 1 by epitaxial growth or ion implantation. After that, a sheet key gate electrode 3 is formed by a lift-off method using a photoresist film, the mask is aligned, and the source and drain ohmic electrodes 4.5 are formed by a lift-off method (PIUII) to form a relatively simple structure. However, in such a planar structure, alignment is required to form an ohmic electrode, and the accuracy of a single device is about ±a, S, even if it is the worst equipment. In practice, it is difficult to reduce the gate electrode spacing to 1 m or less in 10 layers.In addition, in such a planar structure, the surface of the GaAs active layer may have problems such as crystallinity disturbance and gas adhesion, as shown in Figure 2. As shown, a depletion layer 6 is formed on the surface, and the effective active layer becomes narrow.As a result, the resistance valve (source series resistance) of the active layer between the gate and the source increases, and the mutual conductance frm decreases significantly.

ζこて、目合せの問題を避けてソース直列抵抗を小さく
するために、第S閣に示すようにオーミック電極下にイ
オン注入やエピタキシャル成長によりキャリア#Ifを
高(したt層重を形成して接触抵抗を下げようとするt
層構造が提案されているが、この構造でも表面空乏層の
影譬を減らすこと繻【11副−一南一烏鳴論t4c向上
で釦−■そζで表面空乏層によるソース直列抵抗を小さ
くでき、しかも目合せS度fII春はど必要としない第
4図のようなリセス構造が提案専れている0これは、ゲ
ート電極の近傍だけを纏込んて所定の厚さの動作層(リ
セス部$)にして、伽の部分は厚くすることにより、電
極間抵抗を小さくしたものである0 このリセス構造により電気約特性が大きく改善され、高
性能なMlg Fl’l’を得ることができるようにな
ったoしかし、このリセス構造において、リセス量の1
IIIFな調整が難しく、ウーーノ1面内でのばらつ会
も大会い0 また、I合せによらずセルファライン方式により電極を
形成しようという試みも従来から提案されている。これ
は第Haのようにゲート電極9を1字−または合のcI
lにして、この傘を利用してソース・ドレインのオーミ
ック電@4、Sを形成しようというものであるoT″#
皺のゲート電極を員遼する方法には、AIと他の金属を
積層しムIをサイドエツチングするものや、めっきによ
り電極を盛上げるものなどがあるが、ムIの号イドエツ
チングは制御性や再現性に問題があり、めっきによる盛
上げも肩の横幅を再現性棗く制御することは困難である
ζ In order to avoid alignment problems and reduce the source series resistance, a T layer with a high carrier #If is formed under the ohmic electrode by ion implantation or epitaxial growth, as shown in the S section. Trying to lower contact resistance
A layered structure has been proposed, but even with this structure, it is important to reduce the influence of the surface depletion layer. The recessed structure shown in Fig. 4, which does not require any alignment S degree fII spring, has been proposed. The recessed structure greatly improves the electrical characteristics, making it possible to obtain high-performance MlgFl'l'. However, in this recess structure, the recess amount is 1
IIIF adjustment is difficult, and variations within one Uno surface are also common.In addition, attempts to form electrodes using the self-line method without relying on I alignment have been proposed in the past. This is the case where the gate electrode 9 is set to 1- or cI as in No. Ha.
l, and use this umbrella to form a source/drain ohmic conductor @4,
There are methods to make wrinkled gate electrodes, such as layering AI and other metals and side-etching the layer, and raising the electrode by plating. There are also problems with reproducibility, and it is difficult to control the width of the shoulder with good reproducibility even with plating.

本発明の目的は、これらの聞題点を堆り除いた新しい電
界効果トランジスタの製造方法を提供することにある0 本発明によれば、半導体基板表面上に、菖1層、92層
および第3層を鋏順序に積層し、次いでゲート形成部分
が開口したホトレジスト膜を被着し、エツチングにより
前記第1層に前記ホトレジスト膜の開口幅と同じ開口を
設けた後、前記ls3層に前記第1Mの開口よ吟^い−
pを設け、前記ホトレジスト膜を除去した後、金1if
:ゲート金属を被着して断面が〒・字型のゲート電@管
形成し、前記篇1層−第2層および第3層を除去した後
、前記ゲート電極を傘にしてソース禽よびドレインのオ
ーt vり電極を形成することを特徴とする電界効果ト
ランジスタの製造方法が得られる。
An object of the present invention is to provide a new method for manufacturing a field effect transistor that eliminates these problems. The three layers are laminated in a scissors order, and then a photoresist film with an opening in the gate formation portion is deposited, and an opening having the same width as the opening width of the photoresist film is provided in the first layer by etching. Check out the 1M opening.
After removing the photoresist film, gold 1if
: A gate metal is deposited to form a gate tube with a square cross section, and after removing the first layer, second layer and third layer, the source and drain are formed using the gate electrode as an umbrella. There is obtained a method for manufacturing a field effect transistor characterized by forming an automatic electrode.

以下、実施例をli!iWJを用いて説明する。Examples are shown below. This will be explained using iWJ.

縞藝図は、本発明の詳細な説明するための図である。The striped map is a diagram for explaining the present invention in detail.

嬉6図Cmlのように牛縁性GaA畠基板上に不純物I
11度約IQ  am、厚さ約0.2μmのn形動作層
をエビメキシャル成長法あるいはイオン注入法盛ζより
形成したGlム−ウ龜−ハ10の上に、スパッター蒸着
機’?、111層11としrAjを約0.35m5 1
112層Uとして8isNnを約CL’ifim%fl
E3層13として810雪を#0.3μm該順序に被着
する。 さらにゲート形成部分15が約0.7声1m開
口したホトレジスト膜14を被着形成する◎ 次に、jlsigl(b)のように異方性エツチング例
えば平行平amのスパッタエツチング装置を用いてer
aガスEより、JI1層8jOg13、第2層8isN
44をエツチングし、ガスをCC1aK、切換えて第1
層ム111をエツチングする0このとき、横方向にはほ
とんどエツチングされないため、ホトレジスト層14の
パターンとほとんど同一のパターンが第1層11に形成
される口 次に第6m1l(c)のように等方性エツチングである
例えば円筒部プラズマエツチング装置を用いて、CF4
ガスで第3層8i0x13tiiよび菖2層8isNn
認をサイドエツチングして一口を広げる。ここてム4は
CF4’ガスではほとんどエツチングされず、8ii4
は810意よりも約10倍の速さでエツチングされ、第
2層8isN4がjも広< 1108 tL 25 o
 111711 ic meW化あけるBiO2のサイ
ドエツチング量とエーング時閲との関係を示す0この図
より、サイドエツチング量のばらつきは小さく、再現性
がよいCきが分かる0こζては、第3層81Q、口を約
0.171mサイドエツチングする〇 次に第6図(d)のようにホトレジスト膜14を除去す
ると、第1層11より第3層nが広く第2層ルがより広
いような開口群が形成専れている0次に、第6E−)の
ように全面1(TI−Pt−ムUなどのゲート金属を約
a5μtag着すれば、8轟0s13の開口部を通して
T字部、のゲート電l1lIが形成される・次に、第6
図(0のようにゲート開口部および近傍をホトレジスト
膜17で覆怠い、第@@−のようにスパッタエツチング
により余分なゲート金属、嬉3層13および第2層12
を除去し、餓1層11の人jを露出させる。そしてホト
レジスト膜17を除去し60℃のリン酸中で第1層のA
jを除去すると、−口したホトレジスト膜を被着形成し
、AaGeを約(11μm1着すれば、T字型のゲート
電極が傘になり、ソースおよびドレイン電極がゲート電
Ii9に対して自己整合的に形成され、ホトレジスト膜
誌をリフトオフすれば、電界効果、トランジスタの基本
構造第6図(j)が出来上る。
As shown in Figure 6, Cml, impurity I is deposited on the fertile GaA Hatake substrate.
An n-type active layer of about 11 degrees IQ am and about 0.2 μm thick was formed using a sputter deposition machine on top of the Gl layer 10, which had been formed by the epimexical growth method or the ion implantation method. , 111 layers 11 and rAj is approximately 0.35 m5 1
8isNn as 112 layer U about CL'ifim%fl
As the E3 layer 13, #0.3 μm of 810 snow is deposited in this order. Furthermore, a photoresist film 14 having an opening of approximately 0.7 mm and a gate forming portion 15 is deposited.Next, as shown in JLSIGL(b), anisotropic etching is performed, for example, using a parallel plane am sputter etching device.
From a gas E, JI1 layer 8jOg13, second layer 8isN
44, switch the gas to CC1aK, and
Etching the layer 111 At this time, since there is almost no etching in the lateral direction, a pattern almost identical to the pattern of the photoresist layer 14 is formed on the first layer 11. Using a directional etching, for example, a cylindrical plasma etching device, CF4
3rd layer 8i0x13tii and irises 2nd layer 8isNn with gas
Side-etch the recognition to widen the bite. Here, element 4 is hardly etched by CF4' gas, and 8ii4
is etched about 10 times faster than 810, and the second layer 8isN4 is also wider than 1108tL 25o.
111711 ic This figure shows the relationship between the side etching amount of BiO2 and the etching time after conversion to meW. From this figure, it can be seen that the variation in the side etching amount is small and C etching has good reproducibility. , the opening is side-etched by about 0.171m. Next, as shown in FIG. 6(d), the photoresist film 14 is removed, and an opening is formed in which the third layer n is wider than the first layer 11 and the second layer n is wider. If the gate metal such as TI-Pt-muU is deposited on the entire surface 1 (approximately a5μtag) as in No. 6E-) where the group is exclusively formed, then the T-shaped part, through the opening of 0s13 Gate voltage l1lI is formed.Next, the sixth
(As shown in Figure 0, the gate opening and its vicinity are not covered with a photoresist film 17, and as shown in Figure 2, sputter etching is performed to remove excess gate metal, the third layer 13, and the second layer 12.
Remove and expose person j of starvation 1 layer 11. Then, the photoresist film 17 is removed and the first layer A is heated in phosphoric acid at 60°C.
After removing j, a diagonal photoresist film is deposited and AaGe is deposited with a thickness of approximately (11 μm), and the T-shaped gate electrode becomes an umbrella, and the source and drain electrodes are self-aligned with respect to the gate electrode Ii9. By lifting off the photoresist film, the basic structure of a field effect transistor shown in FIG. 6(j) is completed.

ここで、Mt層はゲート金属とGaAsを侵さずに選択
的に除去できることが必要であるoAノはリン酸で容易
にエツチングで合一しかもGaAsあるいはT I/P
 t/ As+8らには通常用いられているゲート金属
、例えば、Mo5WST1等はリン酸でほとんど侵され
ないので111層として適しているO 第2層および第3層の物質は、エツチング速度が第2層
のほうが速いものてあればよい。8i0xと8i1N4
は、物質としても安定であり他にも多(利用専れて素子
に悪影響を与えないのて適している〇 また等方性エツチングは、筐体によるウーνトエッチン
グても可能であるが、エツチング反応が結合強度の弱い
結晶界面を通して進むため、端面ががさついて制御性も
悪い。それ鰐反し、畳方性ドライエツチングでは、端面
は平たんで制御性のよいエツチングを得ることがてきる
。I11図化示したようにサイドエツチング量のばらつ
会は約(11j1111であり、目合せ精度の±a、s
smE較べれば非常に精度がよいξとが分かる。つまり
、この第3層のサイドエツチング量よりT字部ゲート電
極の肩幅が一義的に決まり、また、この肩幅によりソー
ス$よびドレインの電極間隔が一義的に決まるため8c
形状精度のよい電極を得ることがて會ることが分かる。
Here, it is necessary that the Mt layer can be selectively removed without damaging the gate metal and GaAs.
Gate metals commonly used for t/As+8 et al., such as Mo5WST1, are hardly attacked by phosphoric acid, so they are suitable for the 111 layer. It would be better if there was something faster. 8i0x and 8i1N4
is stable as a material and is suitable for many other uses as it does not adversely affect the device if used exclusively.In addition, isotropic etching is also possible by weight etching using the casing. Because the etching reaction proceeds through crystal interfaces with weak bonding strength, the edge surfaces are rough and the controllability is poor.On the other hand, with fold-oriented dry etching, the edge surfaces are flat and etching can be obtained with good controllability. As shown in Figure I11, the variation in side etching amount is approximately (11j1111), and the alignment accuracy ±a, s
If we compare smE, we can see that ξ is very accurate. In other words, the shoulder width of the T-shaped gate electrode is uniquely determined by the amount of side etching of the third layer, and since this shoulder width uniquely determines the spacing between the source and drain electrodes, 8c
It can be seen that this is achieved by obtaining electrodes with good shape accuracy.

・ ゲート金属を蒸着する方向は第@R(e)に示したよう
に垂直でもよいが、第8図−)に示すように蒸着する方
向を傾むけて斜め蒸着をして、!字置ゲ−)tliを非
対称形にし、後のニーは岡しように余分な層を除去して
オーミマり電極を形成すれば第$図如に示すよう化オフ
セットゲートにすることがで会る◎これによりドレイン
耐圧の向上およびソース抵抗の低減を國ることかで台、
高性能な)all FITを得ることかで會る0前記実
施例においてソースおよびドレインのオー1ツタ電極の
形成にはムuGaを蒸着するものを示したが、イオン注
入により一層を形成しその上にオーミ!り電極を形成す
ればソース抵抗をさらに効果的に減らすことができる。
- The direction in which the gate metal is deposited may be vertical as shown in Section @R(e), but it can be deposited obliquely by tilting the direction in which it is deposited, as shown in Figure 8-). If you make tli asymmetrical and form an ohm-margin electrode by removing the extra layer on the later knee, you can make an offset gate as shown in Figure ◎ This improves drain breakdown voltage and reduces source resistance.
In the above embodiments, muGa was deposited to form the source and drain electrodes, but a single layer was formed by ion implantation and then Ohmi! The source resistance can be further effectively reduced by forming a secondary electrode.

第9図はこの例を示したものであり、イオン注入秦件と
しては、例えば注入イオン8e+、  ドース量5xi
o”mar”1.ig速電JE1061ceV  tl
l適轟テあるO 以上詳しく説明したごと(本発明化よればプレーナー構
造て電極間隔を訣くしs表面空乏層の影響を小さくして
、リセス構造に近い高性能のMISFITを得ることが
可能となり、しかも従来のりセス構造において必要とさ
れた制御性、再現性に欠ける掘込み部分の鳳形動作層厚
専の調整ニーが不要となり、41性の揃った素子を再現
性よ(生寓することが可能となった0
FIG. 9 shows this example, and the ion implantation conditions include, for example, implanted ions of 8e+ and a dose of 5xi.
o”mar”1. ig speed train JE1061ceV tl
As explained in detail above (according to the present invention, it is possible to obtain a high-performance MISFIT similar to a recessed structure by narrowing the electrode spacing and reducing the influence of the surface depletion layer). In addition, there is no need to adjust the thickness of the tung-shaped movement layer in the excavated portion, which lacks the controllability and reproducibility required in the conventional glue structure, and allows elements with uniform properties to be reproducibly obtained. 0 became possible

【図面の簡単な説明】[Brief explanation of the drawing]

第illは、従来の最も基本的なプレーナ構造のシ1ッ
トキーゲートー電昇効果トランジスタ(MisFN’!
’ )の断面図であり、第3園は、このプレーナ構造M
18  FITのGaAs輪作層の1&NE表両空乏層
が発生している状態を示しである・第5Iilは一層が
あるプレーナー構造ΦMmll FIT  の図、第4
11はリセス構造のMISFITの図である。 そして、第1IIはテ字臘ゲート電極でセルファライン
方式によるプレーナ構造の■8FMテ である。 第4It(−〜0)は、本発−の製造方法を説明するた
めのg″1?あるO symは、円筒型プラズマエシチング装置で高周波出力
30Wにおけるホトレジストマスク下のstow層の工
!チング時間とサイドエツチング量の関係を示す0第8
図Ca)、(6)は斜め蒸着によるオフセフトゲ−) 
II MBI!I FITの製造方法を説明する閣であ
る0 籐會図は本発明の製造方法により形成専れたテ字部ゲー
ト電極をマスクに0層を廖虞したプレーナ構造M18 
FITtT  である0@Eおいて lは半絶縁@GaλS基板、 2はGaAm動作層、3
はゲー11、4はソース電極、 5はトイイン電極、 
6は表面空乏層、 フは一層、8はリセス部、 9はT
字部ゲート電極、1GはGaムS基板、 11は#i4
1層(ムj)、 ttはS雪層(8isN4)、 13
は第3層(1110m)、14はホトレジスト膜、 謁
はゲート開口、16は第1層のゲート開口、17、比は
ホトレジスト膜を示す0第 1 図         
稟 31!I第6図 (b)              (#)(C)  
                         
   (hン(ε)              (j
)第 7 図 エラチン1時間C分】 第85!1 (b) 鳥91¥1
The illumination is the conventional most basic planar structure Sheetkey gate-voltage effect transistor (MisFN'!
), and the third garden is a cross-sectional view of this planar structure M
18 The 1&NE surface of the GaAs rotation layer of FIT shows the state in which both depletion layers are generated. 5th Iil is a planar structure with one layer ΦMmll FIT, 4th
11 is a diagram of a MISFIT having a recessed structure. The 1st II is an 8FM TE with a planar structure using a self-line method with a T-shaped gate electrode. 4th It(-~0) is g"1?Osym for explaining the manufacturing method of the present invention. The stow layer under the photoresist mask is etched at a high frequency output of 30 W using a cylindrical plasma etching device. No. 8 showing the relationship between time and side etching amount.
Figures Ca) and (6) are off-theft games by oblique deposition)
IIMBI! The figure below shows the planar structure M18 in which the zero layer is removed using the T-shaped gate electrode as a mask, which is formed by the manufacturing method of the present invention.
In 0@E which is FITtT, l is semi-insulating @GaλS substrate, 2 is GaAm active layer, 3
is the gate 11, 4 is the source electrode, 5 is the toy-in electrode,
6 is a surface depletion layer, F is a single layer, 8 is a recessed portion, 9 is a T
Gate electrode, 1G is GaM S substrate, 11 is #i4
1 layer (muj), tt is S snow layer (8isN4), 13
is the third layer (1110 m), 14 is the photoresist film, audience is the gate opening, 16 is the gate opening of the first layer, 17, ratio is the photoresist film, 0.
Rin 31! IFigure 6 (b) (#) (C)

(hn(ε) (j
) Figure 7 Elatin 1 hour C minute] No. 85!1 (b) Bird 91 yen 1

Claims (1)

【特許請求の範囲】 1、半導体基1[褒藺上に、第1層、第20畠よび第3
層を該1序に積層し、次いてゲート形成部分が開口した
ホトレジスト膜を被着し、工1チングにより前記館1層
に前記ホトレジスト膜の一ロ―と同じ開口を設けた後、
前記第3層に前記第1層の開口より広い開口を設けると
ともに前1!III冨層に前記第3層よりも広い開口を
1ム前記ホトレジスト膜を除去した後、全IIkゲート
金属を被着して断両がテ字瀝のゲージ電極を廖虞しt前
記のil1層、tltz層および第3層を除膏した後、
前記ゲート電極を傘にしてソースおよびドレインのオー
 t vり電極を形成することを特徴とする電界効果ト
ランジスタの製造方法@ 1 ゲート形成部分が開口したホトレジスト膜を被着し
た後、異方性ドライエツチング法により前記半導体基板
表両が露出する重て前記第1層、菖2層自よび第3層に
開口を設け、勢方性ドライエツチング$により前III
!層自よ0第3層をサイドエツチングして開口をムげる
特許請求の範−嬉1項記噴の電界効果シランジスタの1
1′R1方法。 龜 ゲート嚢属を斜め1着によ#)*威する特許請求の
範囲第1項記載の電界効果トランジスタの製造方法0 4、T字型ゲート電極を形成した後、オーミνり金属と
してA w G eを被着することkよりソースおよび
ドレインのオーミマク電極を形成する特許請求の範囲第
1項記載の電界効果トランジスタの製造方法・ 賑 テネ腫ゲート電極を形成した後、前記ゲート電極を
傘にして、イオン注入によりノーを形威しオーミック電
極を形成する特許請求の範■第1項記載の電界効果トラ
ンジスタの製造方法◎
[Claims] 1. Semiconductor substrate 1
After stacking the layers in the first order, then depositing a photoresist film with an opening in the gate forming part, and forming an opening in the first layer in the same manner as the first row of the photoresist film by etching,
The third layer is provided with an opening wider than the opening in the first layer, and the front 1! After removing the photoresist film and forming an opening wider than the third layer in the III layer, the entire IIk gate metal is deposited and a gauge electrode with a T-shape cut is formed in the IL1 layer. , after removing the tltz layer and the third layer,
A method for manufacturing a field effect transistor, characterized in that overlapping source and drain electrodes are formed using the gate electrode as an umbrella. Openings are formed in the first layer, the second layer, and the third layer so that both surfaces of the semiconductor substrate are exposed by an etching method.
! A field effect silane resistor according to claim 1, in which the third layer is side-etched to eliminate the opening.
1'R1 method. 4. After forming the T-shaped gate electrode, A w is formed as an ohmic metal. A method for manufacturing a field effect transistor according to claim 1, which forms source and drain ohmic electrodes by depositing Ge. The method for manufacturing a field effect transistor according to claim 1, wherein an ohmic electrode is formed by forming an ohmic electrode by ion implantation.
JP10396081A 1981-07-03 1981-07-03 Manufacture of field effect transistor Pending JPS586179A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10396081A JPS586179A (en) 1981-07-03 1981-07-03 Manufacture of field effect transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10396081A JPS586179A (en) 1981-07-03 1981-07-03 Manufacture of field effect transistor

Publications (1)

Publication Number Publication Date
JPS586179A true JPS586179A (en) 1983-01-13

Family

ID=14367952

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10396081A Pending JPS586179A (en) 1981-07-03 1981-07-03 Manufacture of field effect transistor

Country Status (1)

Country Link
JP (1) JPS586179A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60167381A (en) * 1984-02-09 1985-08-30 Matsushita Electronics Corp Manufacture of semiconductor device
JPH03185739A (en) * 1989-12-01 1991-08-13 Hughes Aircraft Co Self-aligning t gate hemt
US5252843A (en) * 1989-09-01 1993-10-12 Fujitsu Limited Semiconductor device having overlapping conductor layers

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60167381A (en) * 1984-02-09 1985-08-30 Matsushita Electronics Corp Manufacture of semiconductor device
US5252843A (en) * 1989-09-01 1993-10-12 Fujitsu Limited Semiconductor device having overlapping conductor layers
JPH03185739A (en) * 1989-12-01 1991-08-13 Hughes Aircraft Co Self-aligning t gate hemt

Similar Documents

Publication Publication Date Title
US4656076A (en) Self-aligned recessed gate process
JPS63263770A (en) Gaas mesfet and manufacture of the same
US3920861A (en) Method of making a semiconductor device
JP2553699B2 (en) Method for manufacturing semiconductor device
JPS5999776A (en) Manufacture of schottky gate type electric field effect transistor
JPS586179A (en) Manufacture of field effect transistor
US4642259A (en) Source-side self-aligned gate process
GB2156579A (en) Field effect transistors
JPH02271537A (en) Semiconductor device and its manufacture
JPS6323366A (en) Manufacture of field-effect transistor
JPS63208278A (en) Manufacture of field effect transistor
JPS6144473A (en) Manufacture of semiconductor device
JPS6151980A (en) Manufacture of semiconductor device
JPS6037172A (en) Manufacture of field effect transistor
JPS62204576A (en) Manufacture of vertical type transistor
KR940001894B1 (en) Method of fabricating a semiconductor device
JP2503667B2 (en) Method for manufacturing semiconductor device
CN113808950A (en) Manufacturing method for improving depletion type MOSFET device
JP2726730B2 (en) Manufacturing method of field effect transistor
JPS6037176A (en) Manufacture of field effect transistor
JPH0797634B2 (en) Field effect transistor and manufacturing method thereof
JPH03203246A (en) Method of manufacturing semiconductor device
JPS61188971A (en) Schottky gate field effect transistor and manufacture thereof
JPH03289142A (en) Manufacture of compound semiconductor device
JPH0327536A (en) Manufacture of field effect transistor