JPS5861661A - Charge transfer device - Google Patents

Charge transfer device

Info

Publication number
JPS5861661A
JPS5861661A JP56159490A JP15949081A JPS5861661A JP S5861661 A JPS5861661 A JP S5861661A JP 56159490 A JP56159490 A JP 56159490A JP 15949081 A JP15949081 A JP 15949081A JP S5861661 A JPS5861661 A JP S5861661A
Authority
JP
Japan
Prior art keywords
electrodes
electrode
wiring
phase transfer
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP56159490A
Other languages
Japanese (ja)
Other versions
JPH039617B2 (en
Inventor
Tetsuo Yamada
哲生 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Tokyo Shibaura Electric Co Ltd filed Critical Toshiba Corp
Priority to JP56159490A priority Critical patent/JPS5861661A/en
Publication of JPS5861661A publication Critical patent/JPS5861661A/en
Publication of JPH039617B2 publication Critical patent/JPH039617B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/148Charge coupled imagers
    • H01L27/14825Linear CCD imagers

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

PURPOSE:To obtain transfer electrodes which are difficult to generate poor insulations and suitable for miniaturization, by providing the array of transfer electrodes in parallel on the insulating film of a semiconductor substrate, simultaneously coupling one end of the electrode which applies equal voltages, and then connecting the other end to the wiring which transmits the signal. CONSTITUTION:In parallel with the array of photoelectric conversion elements 31 in a row, a gate electrode 34 and, with it placed between, the first phase transfer electrodes 32a-32d are formed opposed to the element 31 one to one via an insulating film. The sides of the gate electrode 34 are joined one another, and the other ends are connected 37, 37a, 37b to the Al wiring at an interval of one piece. Among the first phase transfer electrodes, the second phase transfer electrodes 33a-33d are formed by slightly superposing thereon, joined by a pair of two pieces and connected 38a, 38b to the Al wiring 36. The connection parts 38a, 38b are formed on the region between connection parts 37a, 37b. In this constitution, since connection points can be reduced for the number of the first and second phase electrodes, the area surpulsage for connection becomes large resulting in the facilitation of the connection, and electrodes are formed in an integral body, a normal transfer voltage is applied even with the poor insulation at one point, and accordingly the rate of defectives greatly decreases.

Description

【発明の詳細な説明】 (1)発明の分野 本発明は電荷転送装置に係り、とくにその転送電極構造
に関する。
DETAILED DESCRIPTION OF THE INVENTION (1) Field of the Invention The present invention relates to a charge transfer device, and more particularly to its transfer electrode structure.

(2)従来技術 第1図は従来の固体撮像装置に用いられる電荷転送素子
の部分平面図である。その構造を以下に説明する。半導
体基板10上に光電変換素子11a〜lidが一列に並
んで形成されている。各素子は前記基板lOと逆導電影
領域からなシ、光信号が入射すると電荷を蓄積する。こ
の素子列111〜lidと平行にゲート電極14が形成
されている。さらにこのゲート電極14をはさんで前記
光電変換素子11a〜lid K l対1に対応して第
1相転送を極12a〜12dが形成されている。また第
1相転送′tt極121〜12dの電極間の領域に第2
相転送電極13a−13dが第1相電極と少しオーバー
ラツプして形成てれている。
(2) Prior Art FIG. 1 is a partial plan view of a charge transfer element used in a conventional solid-state imaging device. Its structure will be explained below. Photoelectric conversion elements 11a to lid are formed on a semiconductor substrate 10 in a line. Each element accumulates a charge when an optical signal is incident thereon due to the opposite conductive shadow region to the substrate IO. A gate electrode 14 is formed parallel to the element rows 111 to lid. Furthermore, first phase transfer poles 12a to 12d are formed across the gate electrode 14, corresponding to the photoelectric conversion elements 11a to lid Kl pair 1. In addition, there is a second phase transfer in the region between the electrodes of the first phase transfer
Phase transfer electrodes 13a-13d are formed with a slight overlap with the first phase electrode.

第2図は転送電極部分の拡大図である。各電極は2層の
ポリシリコン層より構成されている。第2相転送電極は
1層めのポリシリコン#12a −1〜12cm1と絶
#膜(図示せず)を介して積層された2層めのポリシリ
コン層12m−2〜12cm2から構成されておシ、こ
れらは隣接する第2相転送電極の間の領域で共通のアル
ミ配線15Vこコンタク) 17a〜17cによって接
続されている。第2相転送電極も同様vc11*メc’
)ホ9 シリ* ン%13a −4〜13cm1と絶縁
膜を介して積層された2j−めのポリ7リコン13!l
 −2〜13c −2から構成されており、コンタク)
 18a −18Cにより共通のアルミ配線16に接続
されている。転送it極を2層構造にするのは、第1層
めの電極を形成した後これにセルファラインに基板lO
と同−導電形不純物領域を形成することによプ第2層め
の電極下のポテンシャルを第1層めO電極下のポテンシ
ャルに比べて浅くシ、電荷が逆方向に転送されないよう
にするためである。
FIG. 2 is an enlarged view of the transfer electrode portion. Each electrode is composed of two polysilicon layers. The second phase transfer electrode is composed of a first layer of polysilicon #12a-1 to 12cm1 and a second polysilicon layer of 12m-2 to 12cm2 laminated via an insulation film (not shown). These are connected by common aluminum wiring 15V contacts 17a to 17c in the region between adjacent second phase transfer electrodes. Similarly, the second phase transfer electrode is vc11*mec'
) 2j-th poly 7 silicone 13 laminated with silicon % 13a -4~13cm1 via an insulating film! l
Consists of -2 to 13c -2, contact)
It is connected to the common aluminum wiring 16 by 18a to 18C. The reason why the transfer IT electrode has a two-layer structure is to form the first layer electrode and then attach the substrate lO to the self-alignment line.
By forming an impurity region of the same conductivity type, the potential under the second layer electrode is made shallower than the potential under the first layer O electrode, so that charges are not transferred in the opposite direction. It is.

次にこの電荷転送素子の動作を説明する。Next, the operation of this charge transfer element will be explained.

光電変換素子11a〜−1idに光信号が入射すると電
荷が発生しそのPN接合に蓄積される。ゲート電極14
に一定のタイミングでパルス信号φSHを与えるとこれ
らの光電に換系子11a −lidに蓄積された電荷が
それぞれ対応する第1相転送電極12a〜12dに転送
される。第1相転送電極12a −12dと、第2相転
送電極13a ’= i3dにはそれぞれ配線15.1
6から位相が牛周期ずれ九パルス信号φ8.φ2が与え
られておシ、ガえは光電変換索子lidよシ第1相転送
電極12dに転送されてきた電荷は、パルス信号φi、
φ1によりこの電極から、隣接する第2相転送電極13
dに再び転送される。さらに次のタイミングでこの電荷
は第1相転送電極12cに送られる。
When an optical signal is incident on the photoelectric conversion elements 11a to -1id, charges are generated and accumulated in their PN junctions. Gate electrode 14
When a pulse signal φSH is applied at a constant timing to these photoelectric charges, the charges accumulated in the converters 11a-lid are transferred to the corresponding first phase transfer electrodes 12a to 12d, respectively. The first phase transfer electrodes 12a-12d and the second phase transfer electrode 13a'=i3d each have wiring 15.1.
6, the phase is shifted from the cow cycle by 9 pulse signals φ8. When φ2 is applied, the charge transferred from the photoelectric conversion element lid to the first phase transfer electrode 12d is generated by the pulse signal φi,
φ1 from this electrode to the adjacent second phase transfer electrode 13
d again. Further, at the next timing, this charge is sent to the first phase transfer electrode 12c.

このようにして、第1相、@2相相転型極列12a〜I
2d、13a〜13dによって電荷が一定方向に順次送
られていく。
In this way, the first phase, @2 phase phase inversion type pole array 12a to I
2d, 13a to 13d, charges are sequentially sent in a certain direction.

(3)従来技術の閲遍点 従来の電荷転送素子の転送電極構造では、第1相転送電
極12a〜12dがおのおの独立にコンタクト17a 
−17dによりて配線15に接dされている、。
(3) Browsing point of conventional technology In the transfer electrode structure of the conventional charge transfer element, the first phase transfer electrodes 12a to 12d each independently contact the contact 17a.
It is connected to the wiring 15 by -17d.

従ってそのうちの1つでも接続不良を起こせば正常な電
荷転送は不可能になってしまうという欠点があった。
Therefore, there is a drawback that if a connection failure occurs in even one of them, normal charge transfer becomes impossible.

また第1相転送電極12a〜12dのコンタクト17a
〜17dは、第2相転送電極121−12dの間の鍼域
に形成しなければならない。ところが第2図を多照すれ
ばわかるとおシ微細化が進むにつれて電極間がますます
侠〈なっており、とくに第1相の電極に対して確実なコ
ンタクトが形成できなくなる傾向かあシネ車重が高くな
って141となっている1゜(4)発明の目的 本発明は従来装置の欠点を改善し、接続不良が起こりに
<<、微細化に適した転送電極構造を有する電荷転送装
置を提供することを目的とする。
Also, the contacts 17a of the first phase transfer electrodes 12a to 12d
~17d must be formed in the acupuncture area between the second phase transfer electrodes 121-12d. However, if we look closely at Figure 2, we can see that as film miniaturization progresses, the distance between the electrodes becomes increasingly tight, and there is a tendency for it to become impossible to form reliable contact with the first phase electrode in particular. 1° (4) Purpose of the Invention The present invention improves the drawbacks of conventional devices and provides a charge transfer device having a transfer electrode structure suitable for miniaturization, which prevents connection failure from occurring. The purpose is to provide.

(5)発明の要点 本発明は半導体基体と、この基体上に形成され九絶縁膜
と、この結縁膜上に形成されほぼ平行に並んで配置され
九転送電極列のうち同時に等しい電圧が付加される転送
電極と、これらの電極の複数−をほぼその一端部で結合
して電極群を構成する結合手段と、この電極群に与える
信号を伝達する配線と、前記電極群の前記結合手段が形
成された一端部と逆端部においてこの電極群と前記配線
との接続を行なう少なくとも1′)の接続部を有するこ
とを%黴とする電荷転送装置である。
(5) Main Points of the Invention The present invention comprises a semiconductor substrate, nine insulating films formed on the substrate, nine transfer electrode arrays formed on the connecting film and arranged approximately in parallel, and to which equal voltages are simultaneously applied. a transfer electrode, a coupling means for coupling a plurality of these electrodes substantially at one end to form an electrode group, a wiring for transmitting a signal to be applied to the electrode group, and a coupling means for the electrode group. The charge transfer device is characterized in that it has at least 1' connecting portions for connecting the electrode group and the wiring at one end and the opposite end.

(6)発明の実施例 第3図は本発明の一実施例の電荷転送素子を示す部分平
面図である。光電変換素子31a〜31dが半導体基板
父上に一列に形成されでいる。これらの素子は基板園と
反対導電影領域により形成されてiる。この素子列に平
行に基板父上に絶縁膜を介してゲート電極具が形成され
ている。このゲート電極Uをはさんだ基板30上に絶縁
膜を介して前記素子31j〜31dに1対1に対応して
第1相転送電極32−〜32dが形成されている。これ
らの第1相転送電極32a 〜32dは、ゲート電極3
4(iillの一端部で互いに連結されている。また他
端部は一本おきにA)−配線35にコンタクト37M 
、 37bで接続されている。第1相転送電極の間には
これらに少レオーバーンツブして第2相転送電極33a
〜33dが形成されている。第2相転送電極は2本1組
で連結してAJ−配線謁にコンタクト38a 、 38
bで接続されている。この人1配線36と第2相転送電
極との接続部は1本おきに形成された前記第1相転送電
極のコンタク) 37a 、 37b間の領域に形成さ
れる。
(6) Embodiment of the Invention FIG. 3 is a partial plan view showing a charge transfer device according to an embodiment of the invention. Photoelectric conversion elements 31a to 31d are formed in a row on the semiconductor substrate. These elements are formed by a substrate field and an oppositely conductive shadow region. A gate electrode member is formed parallel to this element array on the upper surface of the substrate with an insulating film interposed therebetween. On the substrate 30 sandwiching the gate electrode U, first phase transfer electrodes 32- to 32d are formed in one-to-one correspondence to the elements 31j to 31d via an insulating film. These first phase transfer electrodes 32a to 32d are connected to the gate electrode 3.
4 (iill) are connected to each other at one end.Alternatively, every other end is A) - contact 37M is connected to wiring 35.
, 37b. Between the first phase transfer electrodes, there is a small rheobron protrusion between the second phase transfer electrodes 33a.
~33d are formed. The second phase transfer electrodes are connected in pairs and are connected to the AJ-wiring audience contacts 38a, 38.
Connected by b. The connection portion between the person 1 wiring 36 and the second phase transfer electrode is formed in a region between the contacts 37a and 37b of the first phase transfer electrode formed every other line.

第4図は第1相と第2相の転送電極の詳細図である。第
1相転送電極は1層めのポリシリコン層32a−1〜3
2d−1と絶縁膜(図示せず)を介して積層された3層
めのポリシリコン層32a−2〜32d −2によって
形成されている。同様に第2相転送電極I’l1層めの
ポリシリコン層33m−1〜33d−1とこれに絶縁膜
を介して積層された2層めのポリシリコンlm33m−
2〜33d−2によって形成されている。このように電
極が3層のポリシリコン層で構成されているのは、まず
第1層めを形成した後これにセル7アラインに基板と同
−導電形の領域を形成することによシ第2,3層めの電
極下のボテンシャルを第1層めの電極下のものより浅く
して電荷の流水が逆流しないような構造にすることと、
電極間が接近しているので短絡しないように絶縁膜を介
した構造にすることが目的である。
FIG. 4 is a detailed diagram of the first and second phase transfer electrodes. The first phase transfer electrode is the first polysilicon layer 32a-1 to 32a-3.
2d-1 and third polysilicon layers 32a-2 to 32d-2 stacked with an insulating film (not shown) interposed therebetween. Similarly, the second phase transfer electrode I'l1 layer of polysilicon layers 33m-1 to 33d-1 and the second layer of polysilicon lm33m-1 laminated thereon with an insulating film interposed therebetween.
2 to 33d-2. The reason why the electrode is composed of three polysilicon layers is that after first forming the first layer, a region of the same conductivity type as the substrate is formed in the cell 7 alignment. The potentials under the second and third layer electrodes are made shallower than those under the first layer electrode to create a structure that prevents the flow of charge from flowing backwards.
Since the electrodes are close to each other, the purpose is to create a structure with an insulating film in between to prevent short circuits.

以下に本実施例の動作を説明する。光電変換素子31a
〜31dに光信号が入射すると、基体刃内部で電荷が発
生する。この電荷はこの素子のPN接合部に蓄積される
。その後ゲート電極Uに印加されるパルスφSHによっ
て、この電荷は第1相伝送電極3211〜32(iに転
送される。第1相転送電極32a〜32dと、第2相転
送電極33a〜33dにはAJ配線35.36によって
それぞれ共通のコンタクト37a、 37b。
The operation of this embodiment will be explained below. Photoelectric conversion element 31a
When an optical signal is incident on ~31d, an electric charge is generated inside the base blade. This charge is stored in the PN junction of the device. Thereafter, by the pulse φSH applied to the gate electrode U, this charge is transferred to the first phase transfer electrodes 3211 to 32 (i). Common contacts 37a and 37b by AJ wiring 35 and 36, respectively.

38m、 38ksカらパルスφ、とφ、がそれぞれ印
加される。
Pulses φ and φ are applied from 38 m and 38 ks, respectively.

コンタクトは電極2本に対し1つの割合であるので十分
遍く信号が伝達する。パルスφ重と4文は半周期ずれて
いる。この結果第1相転送電極32d下の電荷は第2相
転送電極33d下に転送され、第2相転送電極33d下
の電荷は第1相転送電極32c下に荷が一定方向に順次
送られる。
Since the number of contacts is one for every two electrodes, signals are transmitted sufficiently evenly. The pulse φ weight and the 4th sentence are shifted by half a cycle. As a result, the electric charges under the first phase transfer electrode 32d are transferred under the second phase transfer electrode 33d, and the electric charges under the second phase transfer electrode 33d are sequentially sent under the first phase transfer electrode 32c in a fixed direction.

第5図は本発明の別の実施例に用いられる転送電極部分
の平面図である。第1相転送!極が一体化され4電極ご
とに一つの共通のコンタクト57で配線55に接続され
てhる。第2相転込電極53a〜53hは4本に対して
lりのコンタク)58a、58bを設けて配線56に接
続されている。このように電極とコンタクトの数の割合
は、信号の伝達が悪くならない程度に適当に選べばよい
FIG. 5 is a plan view of a transfer electrode portion used in another embodiment of the present invention. First phase transfer! The poles are integrated and connected to the wiring 55 through one common contact 57 for every four electrodes. The second phase transfer electrodes 53a to 53h are connected to the wiring 56 by providing contactors 58a and 58b (for each of the four electrodes). In this way, the ratio between the number of electrodes and the number of contacts may be appropriately selected to the extent that signal transmission is not impaired.

(7)発明の効果 本発明によれば第1相転送電極が互いに連結されている
ため、おのおのの電極すべてに配線用のコンタクトを設
ける必要はなく、コンタクトの数を間引くことができる
。この結果第2相伝送電極もまとめてコンタクト部ft
設けることができる。
(7) Effects of the Invention According to the present invention, since the first phase transfer electrodes are connected to each other, it is not necessary to provide wiring contacts for all of the electrodes, and the number of contacts can be reduced. As a result, the second phase transmission electrodes are also integrated into the contact section ft.
can be provided.

こうして第1相、第2相電極の数に対して、それぞれコ
ンタクトの数を減らすことができる。こうしてコンタク
トをとる面積的余裕が大きくなり、接続し易くなる。と
くに近年は電極間間隔が数μm程度である上、多数のポ
リシリコン層を積層して電極を形成するとき2μm程度
のオーバーシップが必要となるため、第2図のような従
来の構造では、事実上充分なコンタクトを形成すること
は不可能である。本発明では第4図を参照すればわかる
ように電極間間隔が数μmであってもコンタクトの形成
に十分な余裕を持つことができる。また電極が互いに連
結され一本化されているため、一つのコンタクトで接続
不良が起きても正常な転送電圧が全電極に印加され、不
良率を激減させることができる。
In this way, the number of contacts can be reduced relative to the number of first and second phase electrodes. In this way, there is a large area margin for making contact, making it easier to connect. In particular, in recent years, the spacing between electrodes is on the order of several micrometers, and when forming electrodes by laminating a large number of polysilicon layers, an overship of about 2 micrometers is required. It is virtually impossible to form sufficient contact. In the present invention, as can be seen from FIG. 4, even if the distance between the electrodes is several μm, there is sufficient margin for contact formation. In addition, since the electrodes are connected to each other and integrated into one, even if a connection failure occurs in one contact, a normal transfer voltage is applied to all electrodes, making it possible to drastically reduce the defective rate.

また第2の実施例で示した通り、本発明は装置の微細化
にともない電極間隔の集約化が進めば進む程、その効果
を発揮するものであシ、電荷転送素子の構造として最適
のものである。
Furthermore, as shown in the second embodiment, the present invention becomes more effective as the electrode spacing becomes more compact as the device becomes finer. It is.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の電荷転送素子の部分平面図、第2図はそ
の転送電極部分の拡大図、第3図は本発明の第1の実施
例の電荷転送素子の部分平面図、第4図はその転送電極
部分の拡大図、第5図は本発明の第2の実施例の電荷転
送菓子の電極部分の平面図である。図において 30・・・・・・・・・・・・・半導体基体、32a〜
32d・・・第1相伝送電極、35・・・・・・・・・
・・・・配 線、37a 、 37b・・・接 続 部
。 (7317)代理人 弁理士  則 近 憲 佑(ほか
1名) 第 1図 、、t。 第2図 12511        186         
#C第3図    74 ¥4図
FIG. 1 is a partial plan view of a conventional charge transfer device, FIG. 2 is an enlarged view of its transfer electrode portion, FIG. 3 is a partial plan view of a charge transfer device according to the first embodiment of the present invention, and FIG. 5 is an enlarged view of the transfer electrode portion, and FIG. 5 is a plan view of the electrode portion of the charge transfer confectionery according to the second embodiment of the present invention. In the figure, 30...... Semiconductor substrate, 32a~
32d...first phase transmission electrode, 35......
...Wiring, 37a, 37b...Connection part. (7317) Agent: Patent Attorney Noriyuki Chika (and 1 other person) Figure 1, t. Figure 2 12511 186
#C Figure 3 74 ¥4 Figure

Claims (4)

【特許請求の範囲】[Claims] (1)半導体基体と、この基体上に形成された絶縁膜と
、この絶@膜上に形成場れほぼ平行に並んで配置された
転送電極列のうち同時に等しい電圧が付加される転送電
極と、これらの電極の複数個をほぼその一端部で結合し
て電極群を構成する結合手段と、この電極群に与える信
号を伝達する配線と、前記電l極群の紡記結合手段が形
成された一端部と逆端部においてこの電極群と帥記配線
との接続を行なう少なくとも1つの接続部を有すること
を特徴とする電荷転送装置。
(1) A semiconductor substrate, an insulating film formed on this substrate, and transfer electrodes to which equal voltages are simultaneously applied among the transfer electrode arrays formed on the insulating film and arranged almost parallel to each other. , a coupling means for coupling a plurality of these electrodes at substantially one end thereof to form an electrode group, a wiring for transmitting a signal to be applied to the electrode group, and a spinning coupling means for the electrode group are formed. A charge transfer device comprising at least one connection portion for connecting the electrode group to the main wiring at one end and the opposite end.
(2)半導体基体上に光電変換素子が一!!数+I!!
配列して形成され、この光電変換素子列に対応して転送
電極列が設けられており、この転送電極への配線と接続
部はこの転送°電極列をはさんで前記光電変換素子列と
反対側に設けられていることを特徴とする特許請求の範
囲第1項記載の電荷転送装置。
(2) One photoelectric conversion element on the semiconductor substrate! ! Number + I! !
A transfer electrode row is provided corresponding to this photoelectric conversion element row, and the wiring and connection portion to this transfer electrode is opposite to the photoelectric conversion element row with this transfer electrode row in between. 2. The charge transfer device according to claim 1, wherein the charge transfer device is provided on the side.
(3)電極群を構成する転送電極の数が接続部の数の2
倍であることを特徴とする特許請求の範囲第1項記載の
電荷転送装置。
(3) The number of transfer electrodes that make up the electrode group is equal to the number of connection parts.
2. The charge transfer device according to claim 1, wherein the charge transfer device is twice as large.
(4)転送電極が多層構造をなす不純吻を含んだ多結晶
シリコンで形成されていることを特徴とする特許請求の
範囲第1項記載の電荷転送装置。
(4) The charge transfer device according to claim 1, wherein the transfer electrode is formed of polycrystalline silicon containing impurity and has a multilayer structure.
JP56159490A 1981-10-08 1981-10-08 Charge transfer device Granted JPS5861661A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56159490A JPS5861661A (en) 1981-10-08 1981-10-08 Charge transfer device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56159490A JPS5861661A (en) 1981-10-08 1981-10-08 Charge transfer device

Publications (2)

Publication Number Publication Date
JPS5861661A true JPS5861661A (en) 1983-04-12
JPH039617B2 JPH039617B2 (en) 1991-02-08

Family

ID=15694900

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56159490A Granted JPS5861661A (en) 1981-10-08 1981-10-08 Charge transfer device

Country Status (1)

Country Link
JP (1) JPS5861661A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5898961A (en) * 1981-12-09 1983-06-13 Toshiba Corp Charge transfer device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50123285A (en) * 1974-03-16 1975-09-27
JPS5337392A (en) * 1976-09-17 1978-04-06 Sanyo Electric Co Ltd Driving pulse supplying method of charge coupled type semiconductor device
JPS53111284A (en) * 1971-10-27 1978-09-28 Philips Nv Charge coupled semiconductor
JPS5591869A (en) * 1978-12-29 1980-07-11 Ibm Charge coupled device
JPS55179074U (en) * 1979-06-08 1980-12-23

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53111284A (en) * 1971-10-27 1978-09-28 Philips Nv Charge coupled semiconductor
JPS50123285A (en) * 1974-03-16 1975-09-27
JPS5337392A (en) * 1976-09-17 1978-04-06 Sanyo Electric Co Ltd Driving pulse supplying method of charge coupled type semiconductor device
JPS5591869A (en) * 1978-12-29 1980-07-11 Ibm Charge coupled device
JPS55179074U (en) * 1979-06-08 1980-12-23

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5898961A (en) * 1981-12-09 1983-06-13 Toshiba Corp Charge transfer device
JPH0245345B2 (en) * 1981-12-09 1990-10-09 Tokyo Shibaura Electric Co

Also Published As

Publication number Publication date
JPH039617B2 (en) 1991-02-08

Similar Documents

Publication Publication Date Title
US4087833A (en) Interlaced photodiode array employing analog shift registers
KR100477788B1 (en) Method for fabricating CMOS image sensor having photodiode coupled capacitor
WO1991012688A1 (en) Selective operation in interlaced and non-interlaced modes of interline transfer ccd image sensing device
US4689687A (en) Charge transfer type solid-state imaging device
JPS585086A (en) Solid-state image pickup device
JPS63120465A (en) Charge transfer device
JPH0516669B2 (en)
JPH0525174B2 (en)
US5416344A (en) Solid state imaging device and method for producing the same
KR100193408B1 (en) Solid-state imaging device
US5115293A (en) Solid-state imaging device
US4866497A (en) Infra-red charge-coupled device image sensor
JPS5861661A (en) Charge transfer device
CN115831994A (en) High-performance composite dielectric grid photosensitive detector
US6482667B2 (en) Solid state image sensor device and method of fabricating the same
JP2572181B2 (en) CCD image element
US4857979A (en) Platinum silicide imager
JP3072505B2 (en) CCD
JPH0828497B2 (en) Solid-state imaging device
JPH05315587A (en) Semiconductor device
EP0185343A1 (en) Charge transfer device
JPH0322755B2 (en)
JPS6271273A (en) Manufacture of charge coupled device
JP3100624B2 (en) Non-interlaced interline transfer CCD image sensor with simple electrode structure for each pixel
JPH06296009A (en) Solid-state image pickup element and its manufacture