JPS5860575A - Transistor - Google Patents

Transistor

Info

Publication number
JPS5860575A
JPS5860575A JP15993481A JP15993481A JPS5860575A JP S5860575 A JPS5860575 A JP S5860575A JP 15993481 A JP15993481 A JP 15993481A JP 15993481 A JP15993481 A JP 15993481A JP S5860575 A JPS5860575 A JP S5860575A
Authority
JP
Japan
Prior art keywords
electrode
gate
source
insulating layer
input
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP15993481A
Other languages
Japanese (ja)
Other versions
JPS6251509B2 (en
Inventor
Naofumi Tsuzuki
都築 直文
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP15993481A priority Critical patent/JPS5860575A/en
Publication of JPS5860575A publication Critical patent/JPS5860575A/en
Publication of JPS6251509B2 publication Critical patent/JPS6251509B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/80Field effect transistors with field effect produced by a PN or other rectifying junction gate, i.e. potential-jump barrier

Abstract

PURPOSE:To obtain the FET chips for high output, the input impedance of which will decline very little and the loss due to gate width is very small, by a method wherein a gate leadout electrode and a source earth electrode are formed into microstrip line structure. CONSTITUTION:A source leadout electrode 5 is formed on the greater part of the lead-out side for use as an earth electrode, and, at the same time, an insulating layer 16 is formed on the earth electrode and a gate terminal electrode 15. A contact window 17 is formed at a part of the insulating layer 16, and in addition, a strip line electrode 18 is thickly formed by performing plating and the like. A microstrip line transmission path, having a dielectric insulating layer 16 to be placed between two electrodes, is formed using said electrode 18 and the earth electrode 5. The strip line electrode 18 is electrically connected to a gate electrode 1 through the contact window 17, and other end of the electrode 18 is connected to a gate bonding electrode 19.

Description

【発明の詳細な説明】 本発明はトランジスタ、特にマイクロ波帯高出力用砒化
ガリウム寛界効呆形トランジスタに関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a transistor, particularly a gallium arsenide low-effect transistor for high output power in the microwave band.

這界効釆形トランジスタ(以下、FETという)の高出
力化に竿ってゲート′遡価幅が増加されるが、ゲート電
極幅の増加によシミ他金属自体の抵抗とゲート−ソース
間のコンダクタンスによる入力信号の損失によりt力利
得の低下が生じる。このため−極パターンの設計では、
ゲート届を損失の無視できる程度に短かく保つことが好
ましく、ゲート幅の単泣長当りに出すゲート引き出し成
極数を増加させる必要がある。また一方では、低コスト
化のためチップパターンにおける一〇密度を増加させる
心安がりり、ドレイ/及びンース岨極を人人反対方回に
引さ出す′IIt、極構造としている。このため、ソー
ス這腐則に引き出される′電極、例えはゲート4.′、
!l!、とノース電極とが厘なシあって、ゲルト・ソー
ス間に静屈容菫が果中定数的に形成されてしまう。F 
E ’i’のチップの人力−ff111 (ゲート・ソ
ース間)の真性インピーダンスは容量性であるため、こ
こに四に容電が一人されると、入力インピーダンスは史
に容量性になると同時に抵抗成分も小さくなってしまう
。この入力インピーダンスの減少は、外部の伝送線路と
の整合損失を増加させたり、素子容器内部のチップ近傍
に形成される内部整合回路を複雑化した沙、更に動作Q
を高くするため周波数帯域幅を狭くすることになシ、高
周波電力特性上好ましくない。
As the output of field-effect transistors (hereinafter referred to as FETs) increases, the gate width increases, but as the gate electrode width increases, the resistance of the metal itself and the gate-source gap increase. Loss of the input signal due to conductance causes a reduction in power gain. Therefore, in the design of -polar patterns,
It is preferable to keep the gate length short enough to ignore the loss, and it is necessary to increase the number of gate extraction polarizations per single contact length of the gate width. On the other hand, in order to reduce the cost, the chip pattern has a structure in which the density is increased, and the drain/nose poles are drawn out in the opposite direction. For this reason, an electrode drawn out according to the source decay rule, for example, gate 4. ′,
! l! , and the north electrode, a static bending violet is formed between the gel and the source in a constant manner. F
Since the intrinsic impedance of the chip E 'i' -ff111 (between gate and source) is capacitive, if one capacitor is added here, the input impedance becomes capacitive and at the same time has a resistive component. will also become smaller. This decrease in input impedance increases the matching loss with external transmission lines, complicates the internal matching circuit formed near the chip inside the device container, and further increases the operational quality.
It is undesirable to narrow the frequency bandwidth in order to increase the frequency, which is undesirable from the viewpoint of high-frequency power characteristics.

本発明の目的はかかるインピーダンス低下を招くことな
く、外部との整合が容易なトランジスタを提供すること
にあり、ゲート引き出し電極とソース接地電極とをマイ
クロストリップライン構造にしたものである。
An object of the present invention is to provide a transistor that can be easily matched with the outside without causing such a decrease in impedance, and has a gate lead electrode and a source common electrode in a microstrip line structure.

この結果、ゲート・ソース間に生じる集中定数的静電容
量を除去できるとともに、各ゲート幅を小さく、かつバ
ランスよく形成できる。このため、入力インピーダンス
が轟くかつ抵抗性インピーダンスに近づくとともに、低
損失化が図られ、チップ内のバランスも改善されるため
、広帯域で高電力利得を有するFETチップが実現でき
る。また、前記マイクロストリップライン部のパターン
を入力整合化させることによって内部整合回路の簡略化
又は省略が可能となり、高周波高出力化に好都合の構造
となる。
As a result, lumped capacitance generated between the gate and source can be eliminated, and each gate width can be made small and well-balanced. Therefore, the input impedance is loud and approaches resistive impedance, the loss is reduced, and the balance within the chip is improved, so that an FET chip with a wide band and high power gain can be realized. Further, by input matching the pattern of the microstrip line section, it becomes possible to simplify or omit the internal matching circuit, resulting in a structure convenient for increasing high frequency and high output.

以下に、本発明をよシよく理解するために図面を用いて
詳しく説明する。第1図は従来の高出力用の砒化ガリウ
ムF E Tの電極構造を示し、ゲート電極1の両側に
ソース電極2、ドレイン電極3が交互に配置される。前
記各電極はゲート引き出し電極4、ソース引き出し電極
5、ドレイン引き出し電極6と夫々接続される。破M7
内には砒化ガリウムの動作活性層が形成され、ゲート電
極は砒化ガリウム表面とシシットキバリア接合され、1
り7−ス、ドレイン11極は夫々のオーミック領域8,
9において砒化ガリウム表面と抵抗性接触されて形成さ
れている。
In order to better understand the present invention, the present invention will be explained in detail below using the drawings. FIG. 1 shows the electrode structure of a conventional high-output gallium arsenide FET, in which source electrodes 2 and drain electrodes 3 are alternately arranged on both sides of a gate electrode 1. Each of the electrodes is connected to a gate lead-out electrode 4, a source lead-out electrode 5, and a drain lead-out electrode 6, respectively. Broken M7
An active layer of gallium arsenide is formed in the inner layer, and the gate electrode is bonded to the gallium arsenide surface with a barrier barrier.
The source and drain 11 poles are connected to the respective ohmic regions 8,
9 is formed in resistive contact with the gallium arsenide surface.

以上の構成において、ゲート長は爾遮断周波数で動作さ
せるために通常0.5μm〜2μm程度に設計されなけ
ればならない。このため、ゲート電極の固有抵抗とゲー
ト・ソース間のインダクタンスによる入力信号の減衰に
よる損失が無視できなくなり、ゲート電極幅即ちゲート
電極101本の長さを短かく保つ必要が生じる。Xバン
ド帯における上述の損失は、例えばゲート長が0.5μ
m1ゲ一ト電極幅が100 amの場合でQ、7dB、
幅200μmの場合で2.2aB 程度となり、更に高
周波化に伴ってこの損失も増加する。従って0.5μm
のゲート長で損失を0.5dB以下に保つためには、ゲ
ート電極幅を80μm以下に設計する必要がある。この
ようなゲート電極幅の設計上の制約は第1図のゲート電
極1の1本の長さを短かくして、その分だけ引き出し数
を増やすことを意味している。しかしゲート電極1とゲ
ート引き出し電極4はゲート集束用電極IOを介して接
続されており、ゲート電極1を集束するためにはソース
電極2を横切る必要が生じ、両電極間に二酸化桂素等の
絶縁膜を介した重なり部11が形成される。従って、上
述の引き出し数の増加は重なり部11の増加として現わ
れてくる。F E Tのチップのゲート参ソース間のい
わゆる真性な入力インピーダンスは、第2図の破線12
に示される様に容量性であるため、このインピーダンス
にMJB己クロりオーバ一部11によって生じる静電容
量13が平列に接続されると、第3図のスミス図表に示
される様なインピーダンス軌跡14とな夛、入力インピ
ーダンスはより容量性となp、また抵抗成分も更に低い
値となる。この人力インピーダンスの低下は外部伝送路
(正常50Ωの標準線路)とのインピーダンス整合を阻
害するだけでなく、それを保償するための内部整合回路
の構成をも複雑化してしまう。即ち、不整合損失の増加
、内部整合回路の複雑化および周波数帯域幅の狭帯域化
を招き、総合的な出力電力特性を大幅に劣化させる。
In the above configuration, the gate length must normally be designed to be about 0.5 μm to 2 μm in order to operate at a cut-off frequency. Therefore, the loss due to the attenuation of the input signal due to the specific resistance of the gate electrode and the inductance between the gate and source cannot be ignored, and it becomes necessary to keep the gate electrode width, that is, the length of the gate electrode 101 short. The above-mentioned loss in the X band is caused by a gate length of 0.5μ, for example.
When m1 gate electrode width is 100 am, Q is 7 dB,
In the case of a width of 200 μm, the loss is approximately 2.2 aB, and this loss also increases as the frequency becomes higher. Therefore 0.5μm
In order to keep the loss at 0.5 dB or less with a gate length of , it is necessary to design the gate electrode width to 80 μm or less. Such a design restriction on the gate electrode width means that the length of one gate electrode 1 in FIG. 1 is shortened and the number of leads is increased by that amount. However, the gate electrode 1 and the gate extraction electrode 4 are connected via the gate focusing electrode IO, and in order to focus the gate electrode 1, it is necessary to cross the source electrode 2. An overlapping portion 11 is formed with an insulating film interposed therebetween. Therefore, the above-mentioned increase in the number of drawers appears as an increase in the overlapping portion 11. The so-called intrinsic input impedance between the gate and source of the FET chip is shown by the dashed line 12 in FIG.
Since it is capacitive as shown in Fig. 3, when the capacitance 13 generated by the MJB self-clocking over portion 11 is connected in parallel to this impedance, an impedance locus as shown in the Smith diagram in Fig. 3 is obtained. 14, the input impedance becomes more capacitive, and the resistance component also has a lower value. This decrease in human input impedance not only impedes impedance matching with an external transmission line (normal 50Ω standard line), but also complicates the configuration of an internal matching circuit for ensuring this. That is, this results in an increase in mismatch loss, a more complex internal matching circuit, and a narrower frequency bandwidth, resulting in a significant deterioration of the overall output power characteristics.

第4図は本発明の一実施例によるFETの[積構造を示
し、5g5図はそのk” E Tテップの断面構造を示
す。第4図において、第1図と同一部分は  ・同一参
照符号を付して説明する。第4図では従来性なわれてい
たゲート集束用′に極1′0の構造とは異なり、ソース
引き出し電極5を引き出し側の大部分、図ではチップ右
半分の全面に形成し、接地−極とするとともに、前記接
地電極上及びゲート堝電#1A15の上にポリイミド等
の数μmn程度の厚い絶縁層16を形成する。前記ゲー
ト端電極15上の絶縁層16の一部にコンタクト窓17
を形成する。前記絶縁層16の上には更にス) IJツ
ブライン電極18がメッキ等によシ厚く形成される。
FIG. 4 shows the product structure of an FET according to an embodiment of the present invention, and FIG. 5g5 shows the cross-sectional structure of its k"ET step. In FIG. In Fig. 4, unlike the conventional structure in which gate focusing electrodes 1 and 0 are used, the source extraction electrode 5 is placed over most of the extraction side, and in the figure, the entire right half of the chip. A thick insulating layer 16 of several μm, such as polyimide, is formed on the ground electrode and on the gate electrode #1A15. Contact window 17 in part
form. Further, on the insulating layer 16, an IJ tube line electrode 18 is formed thickly by plating or the like.

この電極18と接地電極5とで、間に誘電体の絶縁層1
6をもつマイクロストリップライン伝送路を形成する。
This electrode 18 and the ground electrode 5 have a dielectric insulating layer 1 between them.
A microstrip line transmission line with 6 is formed.

前記ストリップライン電極18は前記コレタクト窓17
を通して、各々のゲート電極1と電気的に接続されてお
シ、また他端はトーナメント式に順次集束され、ゲート
ボンディング電極19へと接続される。ストリップライ
ン電極18の寸法はその特性インピーダンスと電気長に
よって、電極幅及び長さが決定される。
The strip line electrode 18 is connected to the collect window 17.
It is electrically connected to each gate electrode 1 through the wire, and the other end is sequentially focused in a tournament manner and connected to the gate bonding electrode 19. The width and length of the stripline electrode 18 are determined by its characteristic impedance and electrical length.

以上の構造によって従来構造で問題であったソース・ゲ
ートの電極重な9部によって生じる集中定数としての静
電容量が除去できると同時に、ゲート電極のストライプ
の長さも短かくできるため入力インピーダンスの低下お
よびゲート幅による損失の極めて少ない高出力用FET
チップが実現できる。またゲート電極1からゲートボン
ディング電極19までの電気長けすべてのゲート1を極
に対して全く同一となるため、従来の集束電極部10に
よりていた各々のゲート電極間の位相差もなくなるため
、各ゲートのRF動作時の安定性がよくなり、出力特性
の安定化も期待できる。更に、前記マイクロストリップ
ラインを内部整合回路の一部、おるいはそれ自体として
構成できるため、回路要素、の簡略化もできる。
With the above structure, it is possible to eliminate the capacitance as a lumped constant caused by the overlapping 9 parts of the source and gate electrodes, which was a problem with the conventional structure, and at the same time, the length of the gate electrode stripe can be shortened, resulting in a reduction in input impedance. High output FET with extremely low loss due to gate width
chips can be realized. In addition, since all the electrical lengths from the gate electrode 1 to the gate bonding electrode 19 are exactly the same with respect to the gate 1 as a pole, the phase difference between each gate electrode caused by the conventional focusing electrode section 10 is also eliminated. The stability during RF operation of the gate is improved, and it is also expected that the output characteristics will be stabilized. Furthermore, since the microstrip line can be configured as a part of the internal matching circuit or itself, the circuit elements can be simplified.

第3図に、本実施例構造におけるインピーダンス軌跡を
示すと、マイクロストリップライン電極18の特性イン
ピーダンスを適当に選び、かつゲートボンディング電極
19によシ靜電容量が付加されるだめ、その軌跡は20
の様になり、入カイ/ビーダンスの純抵抗化が可能とな
る。
FIG. 3 shows the impedance locus in the structure of this embodiment.If the characteristic impedance of the microstrip line electrode 18 is appropriately selected and the static capacitance is added to the gate bonding electrode 19, the locus will be 20.
It becomes possible to make the input/beadance pure resistance.

以上のように本発明によれば従来構造の欠点であるゲー
ト集束用電極間の電なシ部によって生じる寄生容量を除
去でき、高インピーダンス化できると伴に、ゲート幅の
長さによって生じる損失も減少でき、各ゲート間のバラ
ンスも改善されるため安定かつ高利得、広帯域な出力特
性が、実現できる。更に、ゲートおよびソース電極をマ
イクロストリップライン構造とすることにより、内部整
合回路の簡素化もしくは省略化ができる。−また、本実
施例では入力側を例にとってゲート電極のマイクロスト
リップライン化を説明したが、11力1則についても同
様な構造が採用できることは云う壕でもなく、ドレイン
及びソース電極のマイクロストリップライン化も可能と
なり、第6図に示す様なマイクロ波、ミリ波帯での面出
カモノリシック”I Cが容易に構成できる。
As described above, according to the present invention, it is possible to eliminate the parasitic capacitance caused by the electrical conductivity between the gate focusing electrodes, which is a drawback of the conventional structure, and it is possible to increase the impedance, while also reducing the loss caused by the long gate width. Since the balance between each gate is improved, stable, high gain, and wideband output characteristics can be achieved. Furthermore, by forming the gate and source electrodes into a microstrip line structure, the internal matching circuit can be simplified or omitted. - Also, in this embodiment, we have explained how to make the gate electrode into a microstrip line by taking the input side as an example, but it is not to say that a similar structure can be adopted for the 11-force-1 rule, but it is also possible to use the microstrip line for the drain and source electrodes. This makes it possible to easily construct surface-exposed monolithic ICs in the microwave and millimeter wave bands as shown in FIG.

同、本実施例でけ砒化カリウムショットキバリア型FE
Tを例にとって説明したが、本願の効果範囲は半導体材
料及び、待合の種類には制限さtないことは云うまでも
なく、横形FETのみならす一般の半導体素子(バイポ
ーラ、、MOS等)全般に及ぶことは明らかである。
Similarly, in this example, potassium arsenide Schottky barrier type FE
Although the explanation has been given using T as an example, it goes without saying that the scope of effect of the present application is not limited to the semiconductor material and the type of waiting area, but is applicable not only to lateral FETs but also to general semiconductor devices (bipolar, MOS, etc.). It is clear that this is widespread.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の化;刃用U aA s F 12 ’1
’  の′ぼ立構造を示す平田1図、第2図は従来の′
酸甑溝造にj?けるGaAsFET  の等価回路、第
3図は入力インピーダンスの軌跡を示すスミス図、彬4
図は本発明の一実施例による電力用GaAsFET  
の電極構造を示す平面図、第5図はそのG3AsFt’
i’  のチップ構造を示すlrr面図、第6図は本発
明の他の実施例のチップ構造を示す断面図を示す。 16・、・、・ゲート電極、2・・・・・・ソース電極
、3・・・・・・ドレイン電極、4・・・・・・ゲート
引き出し電極、5・・・・・・ソース引き出し成極、6
・・・・・・ドレイン引き出し電極、7・・・・・・動
作活性層を示す領域線、8・・・・・・ソース電極のオ
ーミック電域、9・・・・・・ドレイン電極のオーミッ
ク穎城、10・・・・・・ゲート集束用電極、11・・
・・・・重なり部、12・・・・・・真性導価回路部、
13・・・・・・靜遡谷讐、14・・・°°°インピー
ダンス軌跡、15・・・・・・ゲート埒11極、 16
・・・・・・艇l献1−117・・・・・・コンタクト
窓、18・・・・・・ストリップジインmi、19・・
・・・・ゲートボンディング′ilL憾、20・・・・
・・インピーダンス軌跡。 代理人 弁理人  内 涼   漬 パ′・)箔 2図 ス 、3 図 其 4 図
Figure 1 shows the conventional version; U aA s F 12 '1 for the blade.
Figure 1 and Figure 2 of Hirata show the ridge structure of the conventional
Is it j for the acid koshikomizozukuri? Fig. 3 is a Smith diagram showing the locus of the input impedance.
The figure shows a power GaAsFET according to an embodiment of the present invention.
5 is a plan view showing the electrode structure of G3AsFt'
FIG. 6 is a sectional view showing the chip structure of another embodiment of the present invention. 16... Gate electrode, 2... Source electrode, 3... Drain electrode, 4... Gate lead electrode, 5... Source lead electrode. pole, 6
......Drain extraction electrode, 7...Region line indicating active layer, 8...Ohmic electric field of source electrode, 9...Ohmic field of drain electrode Eicheng, 10...Gate focusing electrode, 11...
...Overlapping part, 12...Intrinsic conductive circuit part,
13... Silent flow, 14...°°° impedance locus, 15... 11 gate poles, 16
...Boat reference 1-117...Contact window, 18...Strip window, 19...
・・・Gate bonding 'ilL, 20...
... Impedance locus. Agent, Patent Attorney, Ryozuke Pa'・)Haku Figure 2, Figure 3, Figure 4

Claims (1)

【特許請求の範囲】[Claims] 半導体基板の一主面に形成された入力、出力および固定
電化半導体領域と、これら入力、出力および固定電位半
導体領域の夫々の一部と接続して前記半導体基板上に引
き出された入力、出力および同定電位用電極とを有し、
前記入力および出力用電極のいづれか一方は絶縁層を介
して前記固定電位用X極の主面上に形成され、該絶縁層
とMf虻固定電位用電極およびその上の入力もしくは出
力用電極とでス1リップライン構造を形成していること
を%徴とするトランジスタ。
Input, output, and fixed voltage semiconductor regions formed on one main surface of the semiconductor substrate; input, output, and an identification potential electrode;
Either one of the input and output electrodes is formed on the main surface of the fixed potential X electrode via an insulating layer, and the insulating layer, the Mf fixed potential electrode, and the input or output electrode thereon are connected to each other. A transistor characterized by forming a slip line structure.
JP15993481A 1981-10-07 1981-10-07 Transistor Granted JPS5860575A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15993481A JPS5860575A (en) 1981-10-07 1981-10-07 Transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15993481A JPS5860575A (en) 1981-10-07 1981-10-07 Transistor

Publications (2)

Publication Number Publication Date
JPS5860575A true JPS5860575A (en) 1983-04-11
JPS6251509B2 JPS6251509B2 (en) 1987-10-30

Family

ID=15704340

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15993481A Granted JPS5860575A (en) 1981-10-07 1981-10-07 Transistor

Country Status (1)

Country Link
JP (1) JPS5860575A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5892270A (en) * 1981-11-27 1983-06-01 Mitsubishi Electric Corp Gaas microwave monolithic integrated circuit device
US4587541A (en) * 1983-07-28 1986-05-06 Cornell Research Foundation, Inc. Monolithic coplanar waveguide travelling wave transistor amplifier
EP0814512A2 (en) * 1996-06-20 1997-12-29 Murata Manufacturing Co., Ltd. High-frequency semiconductor device
EP0818824A2 (en) * 1996-07-10 1998-01-14 Murata Manufacturing Co., Ltd. High-frequency semiconductor device
JP2017112210A (en) * 2015-12-16 2017-06-22 富士電機株式会社 Semiconductor module

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5846665A (en) * 1981-09-12 1983-03-18 Mitsubishi Electric Corp Analog integrated circuit device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5846665A (en) * 1981-09-12 1983-03-18 Mitsubishi Electric Corp Analog integrated circuit device

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5892270A (en) * 1981-11-27 1983-06-01 Mitsubishi Electric Corp Gaas microwave monolithic integrated circuit device
US4587541A (en) * 1983-07-28 1986-05-06 Cornell Research Foundation, Inc. Monolithic coplanar waveguide travelling wave transistor amplifier
EP0814512A2 (en) * 1996-06-20 1997-12-29 Murata Manufacturing Co., Ltd. High-frequency semiconductor device
EP0814512A3 (en) * 1996-06-20 1999-06-23 Murata Manufacturing Co., Ltd. High-frequency semiconductor device
KR100287477B1 (en) * 1996-06-20 2001-04-16 무라타 야스타카 High-frequency semiconductor device
EP0818824A2 (en) * 1996-07-10 1998-01-14 Murata Manufacturing Co., Ltd. High-frequency semiconductor device
EP0818824A3 (en) * 1996-07-10 1999-06-23 Murata Manufacturing Co., Ltd. High-frequency semiconductor device
US6285269B1 (en) 1996-07-10 2001-09-04 Murata Manufacturing Co., Ltd. High-frequency semiconductor device having microwave transmission line being formed by a gate electrode source electrode and a dielectric layer in between
JP2017112210A (en) * 2015-12-16 2017-06-22 富士電機株式会社 Semiconductor module

Also Published As

Publication number Publication date
JPS6251509B2 (en) 1987-10-30

Similar Documents

Publication Publication Date Title
US6707102B2 (en) Semiconductor device including an insulated gate type field effect transistor and method for fabricating the same
US5313083A (en) R.F. switching circuits
JP3175823B2 (en) High frequency amplifier
US4393392A (en) Hybrid transistor
US4298846A (en) Semiconductor device
JP2643662B2 (en) High power field effect transistor amplifier
US4647867A (en) High-frequency, high-gain, push-pull amplifier circuit
JPS5860575A (en) Transistor
JPH02214125A (en) Wireless frequency switching circuit
US4975659A (en) Amplifier package using vertical power transistors with ungrounded common terminals
US3378738A (en) Traveling wave transistor
JP3004882B2 (en) Spiral inductor, microwave amplifier circuit and microwave amplifier
Oakes et al. A power silicon microwave MOS transistor
JP2737874B2 (en) Semiconductor line converter
US4786881A (en) Amplifier with integrated feedback network
JPS6348869A (en) Semiconductor device
JP2689957B2 (en) Semiconductor device
JP3216990B2 (en) Si transistor with built-in partial matching circuit
JPH07321130A (en) Semiconductor device
JP3468851B2 (en) Monolithic microwave IC
JPS58221512A (en) Matching device
JPS6211018Y2 (en)
JPS58223373A (en) Dual gate type field effect transistor
TW449960B (en) RF amplifier
JPH1154699A (en) High-frequency integrated circuit device