JPS5860568A - Semiconductor image-pickup device - Google Patents
Semiconductor image-pickup deviceInfo
- Publication number
- JPS5860568A JPS5860568A JP56160625A JP16062581A JPS5860568A JP S5860568 A JPS5860568 A JP S5860568A JP 56160625 A JP56160625 A JP 56160625A JP 16062581 A JP16062581 A JP 16062581A JP S5860568 A JPS5860568 A JP S5860568A
- Authority
- JP
- Japan
- Prior art keywords
- light
- junction
- depletion layer
- section
- source
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 13
- 238000003384 imaging method Methods 0.000 claims description 6
- 239000000758 substrate Substances 0.000 abstract description 10
- 239000012535 impurity Substances 0.000 abstract description 4
- 238000005513 bias potential Methods 0.000 abstract description 3
- 238000005530 etching Methods 0.000 abstract description 3
- 230000035945 sensitivity Effects 0.000 abstract description 3
- 238000000034 method Methods 0.000 abstract description 2
- 238000009413 insulation Methods 0.000 abstract 1
- 238000001514 detection method Methods 0.000 description 5
- 230000003287 optical effect Effects 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005468 ion implantation Methods 0.000 description 1
- 230000031700 light absorption Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L27/00—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
- H01L27/14—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
- H01L27/144—Devices controlled by radiation
- H01L27/146—Imager structures
- H01L27/14643—Photodiode arrays; MOS imagers
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Electromagnetism (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Solid State Image Pick-Up Elements (AREA)
- Transforming Light Signals Into Electric Signals (AREA)
- Light Receiving Elements (AREA)
Abstract
Description
【発明の詳細な説明】 この発明は半導体撮像装置に関するものである。[Detailed description of the invention] The present invention relates to a semiconductor imaging device.
近年、半導体集積回路の製造技術向上に伴ない、半導体
党センサについても、この技術によシ集積化され、かつ
検出信号処理の機能を与え九半導体撮儂装置が開発され
ている。In recent years, as manufacturing technology for semiconductor integrated circuits has improved, semiconductor sensors have also been integrated using this technology, and semiconductor imaging devices have been developed that are provided with a detection signal processing function.
従来のこovao装置として、光センナ部にフォトダイ
オードを用いて光電変換処理を行なわせるようにし九M
O!all撮儂装置があり、これを第1図に示しである
。すなわち、この第1図において、(11はP形半導体
基I11、(23は基1m):に選択的にパターン化形
威され九絶縁酸化鱗、(3)は基板面に拡散形成された
N影領域(4)とその電極(5)とからなっていて、光
センサ部のフォトダイオードを構成しているソース部、
(9は電極(7)をもつゲート部、■は同様に基板面に
拡散形成されたN影領域(9)とその電極Qlとからな
るドレイン部である。As a conventional ovao device, the optical sensor part uses a photodiode to perform photoelectric conversion processing.
O! There is an all-imaging device, which is shown in FIG. That is, in this FIG. 1, (11 is a P-type semiconductor group I11, (23 is a group 1m): nine insulating oxide scales selectively patterned, and (3) is an N layer formed by diffusion on the substrate surface. a source section comprising a shadow region (4) and its electrode (5) and forming a photodiode of the optical sensor section;
(9 is a gate portion having an electrode (7), and 2 is a drain portion consisting of an N shadow region (9) similarly diffused on the substrate surface and its electrode Ql.
この従来構造にあって、ソース部(旦)のPN接合は、
通常、ドレイン部径)のPN接合と同電位に逆バイアス
された状態とさ九、そのほかは一般のMO8型トランジ
スタの動作原理を利用している。In this conventional structure, the PN junction in the source part (dan) is
Normally, it is reverse biased to the same potential as the PN junction of the drain (diameter), and otherwise uses the operating principle of a general MO8 type transistor.
従って今、ゲート部(りがオフ状態にあるとき、受光用
のN形ソース領域(4)に、ある波長領域の光a地が照
射されると、この元はそのPN接合O空乏層Q2の領域
に吸収さnて電子αj、正孔041対が生成され、前記
したようにこのPN接合が逆バイアスさnているために
、生成された電子α3FiN形領域に。Therefore, when the gate part is in the OFF state, when the light receiving N-type source region (4) is irradiated with light in a certain wavelength range, the source of this light is in the PN junction O depletion layer Q2. As described above, since this PN junction is reverse biased, the generated electrons α3 are absorbed in the FiN type region.
正孔α4は基板のP影領域に移動して逆バイアス電位差
が小さくなる。そして次にゲート部(alの電極(7)
4C電圧が印加されてオン状態となシ、ゲート直下にN
形チャネルが生ずると、ソース、ドレイン間がIEjl
IIaちれて電流が流れ、ソース部(旦)は旧状態の逆
バイアスされた電位に復帰されることになる。The holes α4 move to the P shadow region of the substrate, and the reverse bias potential difference becomes smaller. Then, the gate part (al electrode (7)
When a 4C voltage is applied and it turns on, there is an N voltage directly below the gate.
When a shaped channel occurs, IEjl between the source and drain
A current flows after IIa, and the source portion (Dan) is returned to its old reverse biased potential.
従ってこの電流を積分して得られる電荷量は、当初の光
Qlの入射量に対応して光電変換された検出信号とみる
ことができるのである。Therefore, the amount of charge obtained by integrating this current can be seen as a detection signal photoelectrically converted corresponding to the initial amount of incident light Ql.
しかし乍ら従来のこの種の装置では、光aυの吸収に関
与するソース部(1)のPN接合の空乏層(2)幅を有
効有用する心機があるが、その幅を大きく設計しようと
すると、半導体基板(11の不純物員度によって制約を
受けるという問題があった。However, in conventional devices of this type, the width of the depletion layer (2) of the PN junction in the source section (1), which is involved in the absorption of light aυ, is effectively utilized, but if you try to design the width to be large, , there was a problem in that it was limited by the impurity content of the semiconductor substrate (11).
この発明は従来のこのような問題点に鑑み、光センサの
受光部KV溝構造を採用して、その構造内にフォトダイ
オードを形成させ、PN接合の空乏層幅¥c1ir効に
利用することによシ、尤の検出感度を向上させるように
したものである。In view of these conventional problems, the present invention adopts a KV groove structure in the light receiving part of an optical sensor, forms a photodiode within the structure, and utilizes it for the depletion layer width \c1ir effect of the PN junction. This is intended to improve the detection sensitivity.
以下、この発明装置の一実施例につき、112図を参照
して詳細に説WAjる。Hereinafter, one embodiment of the inventive device will be explained in detail with reference to FIG. 112.
この第2図実施例にあって、齢配第1図従来例と同一符
号は同一または相当部分を示しておシ、この実施例では
党センサの受光部となるN形ソース領域を次のように構
成する。すなわち、パターン化形成された絶縁酸化II
(21をエツチングマスクとして、P形手導体基板(1
)の表面を例えばKOH液に浸して異方性エツチングす
ることに工夛v溝(]a)に形成させると共に、このV
溝り1a)面よル不純物としての例えばム8をできるだ
け浅くイオン注入してN影領域(4a)とするもので、
このN影領域(4a)Fiフォトダイオードとなるソー
スill (3)を構成し、かつセルファラインにて同
時にドレイン部径)のN影領域(9)をも形成させる。In the embodiment shown in FIG. 2, the same reference numerals as in the conventional example shown in FIG. Configure. That is, patterned insulating oxide II
(Use 21 as an etching mask, P-type conductor substrate (1)
) is immersed in, for example, a KOH solution and anisotropically etched to form a V-groove (]a).
Groove 1a) In this method, ion implantation of, for example, mu 8 as an impurity is performed as shallowly as possible to form the N shadow region (4a).
This N shadow region (4a) constitutes a source ill (3) which becomes a Fi photodiode, and at the same time an N shadow region (9) of drain portion diameter) is also formed in the self-line.
従ってこの5!施例装置においてもまたMOg型トラン
ジスタの動作原理を利用することになる。まず受光用の
ソース部(刃とドレイン部径)との各PN接合は、通嵩
、同電位に逆ノくイアスされてシリ、ゲート部(印がオ
フ状態にあるとき、受光用のソース部径)のN影領域(
4a)に、ある波長領域の光0υが照射されると、同領
域(41)がV溝(1a)形状に形成さnているために
、この光IはそのPN接合の空乏層(12m)に斜め方
向から入射されることになシ、同時にまたその表面で反
射された党(11m)も、反対側の表面から同様に空乏
層(12a)に斜め方向から入射され、このようにして
空乏層(12m)の領域に元α2.ならびに反射光(l
1m)が吸収されて電子αj、正孔04対が生成され、
かつこの電子a3はN影領域(4a)に、正孔α◆は基
板(1)のP影領域に移動して、その結果、ソースl!
1131の逆バイアス電位差が小さくなる。そして続い
てこの状妙のま\、ゲート部(りの電極(7)に電圧が
印加されてオン状態となシ、このゲート直下にN形≠ヤ
ネルが生ずると、ソース、ドレイン間が短絡されて電流
が流れ、ソース部(31は旧状態の逆バイアスされた電
位に復帰されるから、従来例と同様にこの電流を積分し
て葡た電荷量から入射量を検出することができるのであ
る。Therefore this 5! The embodiment device also utilizes the operating principle of MOg type transistors. First, each PN junction between the light receiving source part (blade and drain part diameter) is connected to the same potential with the same potential. diameter) of N shadow areas (
When 4a) is irradiated with light 0υ in a certain wavelength range, since the same region (41) is formed in the shape of a V-groove (1a), this light I will penetrate into the depletion layer (12m) of the PN junction. At the same time, the particles (11m) reflected by the surface are also incident obliquely into the depletion layer (12a) from the opposite surface, and in this way the depletion layer (12a) is In the area of the layer (12 m), the original α2. and reflected light (l
1m) is absorbed to generate electron αj and hole 04 pairs,
Moreover, the electron a3 moves to the N shadow region (4a) and the hole α◆ moves to the P shadow region of the substrate (1), resulting in the source l!
The reverse bias potential difference of 1131 becomes smaller. Then, while this situation continues, a voltage is applied to the gate electrode (7) to turn it on, and if an N-type ≠ layer occurs directly under this gate, a short circuit will occur between the source and drain. A current flows through the source section (31), and the source section (31) is restored to its old reverse-biased potential. Therefore, as in the conventional example, the incident amount can be detected from the amount of charge obtained by integrating this current. .
なお前記実施例では基板の導区形t−P形としたがN形
としてもよく、また光センサ1iK7オトダイオード以
外の、但えはショットキダイオードを用いてもよいこと
は勿論である。In the above embodiment, the conductive type of the substrate is t-P type, but it may be of N type, and it goes without saying that a Schottky diode other than the optical sensor 1iK7 autodiode may be used.
以上詳述したようにこの発明によるときは、元センサの
受光5t−V溝構造にしたので、被検出光がPN接合の
空乏層に斜め方向から入射さすると共に、受光面で反射
した元もまた同様に対向面から、その空乏層に同様に斜
め方向から入射されることになシ、基板の不純物濃度に
制約されずに、空乏層幅を有効利用し得てその元の検出
個号レベル、ひいては検出感度を向上でき、併せてその
構造も簡単で容易かつ安価に実施てきるなどの%長があ
る。As detailed above, according to the present invention, since the light receiving 5t-V groove structure of the original sensor is used, the detected light is incident on the depletion layer of the PN junction from an oblique direction, and the original light reflected on the light receiving surface is also Similarly, since the depletion layer is incident on the opposite surface from an oblique direction, the width of the depletion layer can be effectively used without being restricted by the impurity concentration of the substrate, and the original detection level can be reduced. Furthermore, the detection sensitivity can be improved, and the structure is simple and can be implemented easily and inexpensively.
第1図は従来例による半導体撮像装置を示す概饗構成V
、第2図はこの発明の一実施例による半導体撮像装置を
丞す概景構賊図である。
(1)・・・・P形半導体基鈑、(11)・・・・V溝
、(21・・・・絶縁酸化膜、(辺・・・・ソース部、
(4)。
(4a)・・・・N影領域、(5)・・・・電極、(9
・・・・ゲート部、(7) ”・・φ電極、(影・・・
−ドレイン部、(9)−・・・N影領域、(lG・・・
・電極、aυ・・・・入射量、(l1m) ・・・・反
射光、Q3゜(12m) ・・・・空乏層。FIG. 1 shows a general configuration V of a conventional semiconductor imaging device.
FIG. 2 is a schematic diagram showing a semiconductor imaging device according to an embodiment of the present invention. (1)...P-type semiconductor substrate, (11)...V groove, (21...insulating oxide film, (side...source part,
(4). (4a)...N shadow area, (5)...electrode, (9
...Gate part, (7) "...φ electrode, (shadow...
-Drain part, (9)-...N shadow area, (lG...
・Electrode, aυ...Incidence amount, (l1m)...Reflected light, Q3゜(12m)...Depletion layer.
Claims (1)
対して入射光ならびに受光部からの反射光を、それぞれ
に斜め方向から入射させるようにしたことt特徴とする
半導体撮像装置。A semiconductor imaging device characterized in that a light receiving section of a semiconductor sensor has a V-groove structure, and incident light and reflected light from the light receiving section are made to enter the light receiving section from oblique directions.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP56160625A JPS5860568A (en) | 1981-10-06 | 1981-10-06 | Semiconductor image-pickup device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP56160625A JPS5860568A (en) | 1981-10-06 | 1981-10-06 | Semiconductor image-pickup device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS5860568A true JPS5860568A (en) | 1983-04-11 |
Family
ID=15718973
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP56160625A Pending JPS5860568A (en) | 1981-10-06 | 1981-10-06 | Semiconductor image-pickup device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5860568A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6329679B1 (en) * | 1998-06-29 | 2001-12-11 | Hyundai Electronics Industries Co., Ltd. | Photodiode with increased photocollection area for image sensor |
WO2004082024A1 (en) | 2003-03-10 | 2004-09-23 | Hamamatsu Photonics K.K. | Photodiode array, method for manufacturing same, and radiation detector |
JP2008218670A (en) * | 2007-03-02 | 2008-09-18 | Toshiba Corp | Solid-state image pickup device |
-
1981
- 1981-10-06 JP JP56160625A patent/JPS5860568A/en active Pending
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6329679B1 (en) * | 1998-06-29 | 2001-12-11 | Hyundai Electronics Industries Co., Ltd. | Photodiode with increased photocollection area for image sensor |
US6723580B2 (en) | 1998-06-29 | 2004-04-20 | Hyundai Electronics Industries Co., Ltd. | Method of forming a photodiode for an image sensor |
US6787386B2 (en) | 1998-06-29 | 2004-09-07 | Hynix Semiconductor, Inc. | Method of forming a photodiode for an image sensor |
WO2004082024A1 (en) | 2003-03-10 | 2004-09-23 | Hamamatsu Photonics K.K. | Photodiode array, method for manufacturing same, and radiation detector |
EP1605514A1 (en) * | 2003-03-10 | 2005-12-14 | Hamamatsu Photonics K.K. | Photodiode array, method for manufacturing same, and radiation detector |
EP1605514A4 (en) * | 2003-03-10 | 2008-04-09 | Hamamatsu Photonics Kk | Photodiode array, method for manufacturing same, and radiation detector |
CN100438053C (en) * | 2003-03-10 | 2008-11-26 | 浜松光子学株式会社 | Photodiode array, method for manufacturing same, and radiation detector |
JP2008218670A (en) * | 2007-03-02 | 2008-09-18 | Toshiba Corp | Solid-state image pickup device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100371457B1 (en) | Dark current reducing guard ring | |
KR100595907B1 (en) | Method and Structure of Forming Semiconductor Image Sensor | |
US8368164B2 (en) | Phototransistor having a buried collector | |
JPS5812746B2 (en) | semiconductor photodetector | |
US8212327B2 (en) | High fill-factor laser-treated semiconductor device on bulk material with single side contact scheme | |
US5488251A (en) | Semiconductor device and process for producing the same | |
KR100780545B1 (en) | Cmos image sensor and method for manufacturing the same | |
US5410168A (en) | Infrared imaging device | |
US6707126B2 (en) | Semiconductor device including a PIN photodiode integrated with a MOS transistor | |
JPS62109376A (en) | Light receiving semiconductor device | |
US6096573A (en) | Method of manufacturing a CMOS sensor | |
JP2002314116A (en) | Lateral semiconductor photodetector of pin structure | |
JPS5860568A (en) | Semiconductor image-pickup device | |
KR100263474B1 (en) | Solid stage image sensor and method of fabricating the same | |
KR100790210B1 (en) | Image sensor and fabricating method of thesame | |
JPS6057234B2 (en) | Charge-coupled semiconductor photodiode | |
JP3919378B2 (en) | Light receiving element and photoelectric conversion device using the same | |
JPH0230183A (en) | Solid-state image sensing element | |
JPH03261172A (en) | Solid state image sensor | |
KR100340059B1 (en) | image sensor with finger type photodiode | |
JPS6018957A (en) | Solid-state image pickup element | |
CN107393985B (en) | A kind of back-illuminated type snowslide light-sensitive device and preparation method thereof | |
JPH0436582B2 (en) | ||
KR100935048B1 (en) | Image sensor and manufacturing method | |
JP2792219B2 (en) | Semiconductor device with photodiode and method of manufacturing the same |