JPS5858804B2 - Denkai capacitors - Google Patents

Denkai capacitors

Info

Publication number
JPS5858804B2
JPS5858804B2 JP50079837A JP7983775A JPS5858804B2 JP S5858804 B2 JPS5858804 B2 JP S5858804B2 JP 50079837 A JP50079837 A JP 50079837A JP 7983775 A JP7983775 A JP 7983775A JP S5858804 B2 JPS5858804 B2 JP S5858804B2
Authority
JP
Japan
Prior art keywords
silver
conductor
palladium
powder
solder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP50079837A
Other languages
Japanese (ja)
Other versions
JPS523153A (en
Inventor
瑛一 網島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP50079837A priority Critical patent/JPS5858804B2/en
Publication of JPS523153A publication Critical patent/JPS523153A/en
Publication of JPS5858804B2 publication Critical patent/JPS5858804B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Electric Connection Of Electric Components To Printed Circuits (AREA)

Description

【発明の詳細な説明】 本発明は銀、パラジウム、銀−パラジウムの3成分系か
らなる導電粒子とはんだ耐熱性樹脂またはガラス粉との
混合からなる導体塗料を用いてコンデンサの陰極を構成
する方法を採用した集積回路板に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides a method for constructing a cathode of a capacitor using a conductive paint made of a mixture of conductive particles consisting of a three-component system of silver, palladium, and silver-palladium and a solder heat-resistant resin or glass powder. This invention relates to an integrated circuit board that employs.

本発明の目的は、薄膜、厚膜などの無機質絶縁板(たと
えば無アルカリガラス基板、アルミナ磁器板、フォルス
テライト磁器板、テラスグレーズドアルミナ磁器板)に
蒸着法、スパッタリング法、沈積法、スクリーン印刷法
、静電的印刷法、光学的印刷法等を使って形成された導
体と、タンタル粉末焼結固体、アルミ箔焼結固体、アル
ミ−タンタル合金系粉焼結固体の陰極に銀ペイントを構
成させてなるコンデンサとの接続を、錫−鉛合金系もし
くは錫を含む各種の合金系のはんだ合金材料を用いてリ
フロウはんだ付は方法によりはんだ付けする際において
生じていた欠点、すなわち樹脂成分の融解、はんだ中の
錫への銀の溶は込み、銀の基板面上での移行による該基
板面上の印刷導体間の電気的短絡の発生等の諸問題を解
消することにある。
The purpose of the present invention is to form inorganic insulating plates such as thin films and thick films (for example, alkali-free glass substrates, alumina porcelain plates, forsterite porcelain plates, terrace glazed alumina porcelain plates) by vapor deposition, sputtering, deposition, and screen printing methods. , a conductor formed using an electrostatic printing method, an optical printing method, etc., and a cathode of a tantalum powder sintered solid, an aluminum foil sintered solid, or an aluminum-tantalum alloy powder sintered solid. Reflow soldering using tin-lead alloy or various alloy-based solder alloy materials to connect capacitors with other metals has disadvantages that occur when soldering by the method, namely melting of the resin component, The object of the present invention is to solve various problems such as the incorporation of silver into tin in solder and the occurrence of electrical short circuits between printed conductors on the substrate surface due to silver migration on the substrate surface.

本発明の説明に先立ち従来技術を説明する。Prior to explaining the present invention, the prior art will be explained.

すなわちここ10数年来の膜回路の進展により、薄膜お
よび厚膜の分野に関して、ガラス板または磁器板面に導
体を形成し、該導体上にリード線なしの部品本体をはん
だ合金層をはさんで載置し、次に該本体に設けた電極と
この電極が上記はんだ合金層を介して対応する上記導体
とをはんだ付けする組立法が盛んとなってきた。
In other words, with the development of film circuits over the past ten years, in the field of thin films and thick films, conductors are formed on the surface of glass plates or porcelain plates, and parts without lead wires are sandwiched between solder alloy layers on the conductors. An assembly method has become popular in which an electrode provided on the main body is then soldered to the conductor to which the electrode corresponds via the solder alloy layer.

この方法であると基板上に載置されている部品にはリー
ド線が付されていないので、ディップとか、フロラソル
ダリングのような「印刷回路板の孔に部品のリード線を
挿入して、該リード線の端部を回路板の下部においては
んだ付けする」というはんだ付は方法を採用することが
できない。
With this method, there are no lead wires attached to the components mounted on the board, so you can insert the component lead wires into the holes of the printed circuit board using dip or flora soldering. It is not possible to use a soldering method in which the ends of the lead wires are soldered at the bottom of the circuit board.

そこでリフロウソルダ一方式によるはんだ付けが考えら
れている。
Therefore, soldering using a one-way reflow solder is being considered.

この方式を説明すると、はんだの導体に対するめつきと
か、はんだのプレフォーム体を導体と部品との間に介在
させ、しかる後、赤外線炉、電熱炉等の炉中を通過させ
て250〜350℃に加熱するものである。
To explain this method, solder is plated onto the conductor, a solder preform is interposed between the conductor and the component, and then the solder is passed through an infrared furnace, an electric heating furnace, etc. at 250 to 350°C. It is heated to

そうすると、はんだは、融けてはんだ付は用フラックス
の助けにより被はんだ付は面の酸化物を除去した状態で
基板と部品との導電体に接合され、電気的な接触を成就
することができる。
Then, the solder melts and, with the help of the soldering flux, the solder is joined to the conductor of the board and the component with the oxide removed from the surface, and electrical contact can be established.

このようなりフロラソルダ一方式は膜回路に個別のリー
ド線なしの部品を取付けるに当り、人的技術では、成し
難い部品底面部の電極と基板の導体とのはんだ付は接続
をおこない得、また1個の個別部品について複数のはん
だ必要箇所を同時にはんだ付は接続することができ、さ
らに一枚の基板に対して多数の個別部品を同時にはんだ
付は接続することを効率よくおこなうことができる利点
がある。
In this way, the Florasolder one-sided method can connect the electrodes on the bottom of the component and the conductor of the board, which is difficult to do with human skills, when attaching components without individual lead wires to the membrane circuit. The advantage is that it is possible to simultaneously solder and connect multiple soldering points for one individual component, and it is also possible to efficiently solder and connect many individual components to one board at the same time. There is.

なお基板の電極としては金、銅のめつき、銅とニッケル
と金との三層めっき、銀粉とパラジウム粉末とガラス粉
との混合物の焼き付けなどがよく使用されている。
As electrodes for the substrate, plating with gold or copper, three-layer plating with copper, nickel, and gold, and baking with a mixture of silver powder, palladium powder, and glass powder are often used.

一方、固体焼結型のタンタル粉、タンタル粉−アルミニ
ウム粉、アルミニウム箔などを陽極材料とする個別の電
解コンデンサにおける陰極側は従来、次のものから形成
されている。
On the other hand, the cathode side of individual electrolytic capacitors using solid sintered tantalum powder, tantalum powder-aluminum powder, aluminum foil, or the like as an anode material has conventionally been formed from the following materials.

すなわち二酸化マンガン層の形成をまずおこない、つい
でそれに続く銀ペイント層の形成により外部にはんだ付
けきれる面を形成させていた。
That is, a manganese dioxide layer was first formed, and then a silver paint layer was formed to form an external solderable surface.

上記銀ペイント層は、60〜70重量パ決セントの銀粉
を酢酸セルローズ樹脂の酢酸ブチル溶剤とからなる残部
に組合せてペースト化したものを途布し、次に60℃に
加熱して溶剤を揮発させた後、80℃の状態で30分間
焼き付は硬化させてつくられている。
The above silver paint layer is made by applying a paste made by combining 60 to 70 weight percent silver powder with the remainder consisting of cellulose acetate resin and butyl acetate solvent, and then heating it to 60°C to volatilize the solvent. After that, it is baked and cured for 30 minutes at 80°C.

上記した銀ペイント導体層が前述したりフロラソルダリ
ング方式により260℃を最高保持温度とする炉中を5
分間にわたって通過させられると、銀ペイントの成分中
の酢酸セルローズが分解してはんだ付は面で気化し、正
常なはんだ付は状態を達成することができない。
The above-mentioned silver paint conductor layer is heated in a furnace with a maximum holding temperature of 260°C by the above-mentioned or flora soldering method.
When passed for a period of minutes, the cellulose acetate in the components of the silver paint decomposes and the solder evaporates on the surface, and normal soldering cannot achieve the condition.

また同時に、はんだ中の錫への銀の急激な拡散がおこり
、銀ペイントによる正常な導体層は破壊されてしまう欠
点がある。
At the same time, there is a drawback that rapid diffusion of silver into the tin in the solder occurs, destroying a normal conductor layer made of silver paint.

このような欠点を解消するため銀ペイントの成分中の樹
脂をよう耐熱性の高いエポキシ樹脂に変更することが考
えられる。
In order to eliminate these drawbacks, it is conceivable to change the resin in the silver paint components to an epoxy resin with high heat resistance.

そうすると樹脂がはんだ付は条件である260℃5分の
保持条件で揮化するのを防ぐことができる。
By doing so, it is possible to prevent the resin from volatilizing under the holding condition of 260° C. for 5 minutes, which is a condition for soldering.

しかし銀導体のはんだ中の錫による「くわれ」による銀
ペイント導体層の破壊は免れ難い。
However, it is inevitable that the silver paint conductor layer will be destroyed by the tin in the solder of the silver conductor.

このため緩和策として錫−鉛はんだ中に銀を2〜3%含
有させておく処置が必要となるが、そうするとはんだの
コストが銀を含有させることから約2倍に増加し、しか
も根本的な解決となっていない。
Therefore, as a mitigation measure, it is necessary to incorporate 2 to 3% silver into the tin-lead solder, but this will approximately double the cost of the solder due to the inclusion of silver, and furthermore, it will cause serious problems. It has not been resolved.

また個別部品の銀電極部が基板の導体面に接触した状態
では、銀導体の移行が該銀導体よう低電位なる側に向っ
て基板の絶縁面に沿って進むことも改善を要する一課題
である。
Another issue that requires improvement is that when the silver electrode portion of an individual component is in contact with the conductor surface of the substrate, the silver conductor migrates along the insulating surface of the substrate toward the side where the potential is lower than that of the silver conductor. be.

そこで本発明は上記した欠点のない電解コンデンサを集
積した集積回路板を提供するものである。
Accordingly, the present invention provides an integrated circuit board on which electrolytic capacitors are integrated without the above-mentioned drawbacks.

以下本発明の一実施例を述べる。An embodiment of the present invention will be described below.

すなわち個別の電解コンデンサの陰極部を、該陰極部に
配した電極を用いて基板の膜導体にはんだ付けするに当
って、上記電極の導体ペイントを銀、銀−パラジウム、
パラジウムの3種の金属粉と、耐熱性樹脂とその溶剤の
配合物とにより形成したものを使用することを骨子とす
る。
That is, when soldering the cathode part of an individual electrolytic capacitor to the membrane conductor of the board using the electrode arranged on the cathode part, the conductor paint of the electrode is silver, silver-palladium, silver, silver-palladium, etc.
The main idea is to use a mixture of three types of metal powder, palladium, a heat-resistant resin, and its solvent.

勿論、導体の抵抗値が高目でよければパラジウム粉ある
いは銀−パラジウム粉もしくはその両方を導電粉末とし
て用いてもよい。
Of course, if a high resistance value of the conductor is acceptable, palladium powder, silver-palladium powder, or both may be used as the conductive powder.

個別の電解コンデンサの陰極側の導体を以上のごとく形
成すれば、まず耐熱性樹脂の配合によって260℃5分
程度に十分耐えるはんだ耐熱性が得られ、さらにパラジ
ウム導体の採用により銀の移行を解消するか、あるいは
軽減することができる。
If the conductor on the cathode side of an individual electrolytic capacitor is formed as described above, first of all, the combination of heat-resistant resin will provide enough soldering heat resistance to withstand 260℃ for about 5 minutes, and the adoption of a palladium conductor will eliminate silver migration. or can be reduced.

またパラジウム−銀導体の採用によりパラジウムのみの
場合の導体抵抗値の高まりを銀粉末のみの場合の導体抵
抗値に近ずけるものである。
Furthermore, by employing a palladium-silver conductor, the increase in conductor resistance value when using only palladium approaches the conductor resistance value when using only silver powder.

またパラジウム粉末を用いるならば割高な銀を用いた場
合に比べて材料コストを下げることができる。
Furthermore, if palladium powder is used, the material cost can be lowered compared to the case where silver is used, which is relatively expensive.

次に従来組成である比較例A、B、Cと本発明の具体的
実施例Aとを以下のように述べる。
Next, Comparative Examples A, B, and C having conventional compositions and specific Example A of the present invention will be described as follows.

すなわち電解コンデンサの陰極部の導電電極体を次のも
のから形成する。
That is, the conductive electrode body of the cathode portion of the electrolytic capacitor is formed from the following.

比較例 A 粒径の平均が0.5〜2.5μの銀粉、70重量置型酢
酸セルローズ25重量俤と溶剤5重置型とからなるもの
に分散させたもの。
Comparative Example A Silver powder with an average particle size of 0.5 to 2.5 μm was dispersed in a 70-weight stacking type cellulose acetate weighing 25 weight units and a solvent in a 5-layer stacking type.

比較例 B 粒径の平均が0.5〜2.5μの銀粉70重重量上エポ
キシ樹脂25重置型と溶剤5重置型とからなるものに分
散させたもの。
Comparative Example B Silver powder having an average particle size of 0.5 to 2.5 μm was dispersed in a 70-weight layer of epoxy resin (25 layers) and a solvent layer (5 layers).

比較例 C 粒径の平均が0.5〜1.5μの鋼粒20重置型と粒径
の平均が1.8〜2.3μのパラジウム粉45重置型と
をエポキシ樹脂30重嚢多と溶剤5重置型とからなるも
のに分散させたもの。
Comparative Example C A type with 20 layers of steel grains with an average particle size of 0.5 to 1.5μ and a type with 45 layers of palladium powder with an average particle size of 1.8 to 2.3μ were combined with 30 layers of epoxy resin. and a five-layered solvent type.

実施例 A 粒径の平均が0.5〜1.5μの銀粉10重量置型粒径
の平均が1.8〜2.3μのパラジウム粉15重置型と
粒径の平均が0.7〜1.4μのパラジウム−調合金粉
35重嚢多とをエポキシ樹脂35重嚢多と溶剤5重置型
とからなるものに分散させたものなお上記溶剤としては
カルビートールアセテートが適当である。
Example A: 10-weight stacking type of silver powder with an average particle size of 0.5-1.5μ; 15-weight stacking type of palladium powder with an average particle size of 1.8-2.3μ; and 15-weight stacking type with an average particle size of 0.7-1 .4 micron palladium-prepared alloy powder with 35 layers is dispersed in a product consisting of 35 layers of epoxy resin and 5 layers of solvent. Calbitol acetate is suitable as the solvent.

次に上記比較例A p B ) Cおよび実施例Aのも
**のを硬化せしめてその性能を比較すると下表のごと
くなる。
Next, Comparative Example A p B ) C and Example A were cured and their performances were compared as shown in the table below.

上表に示すごとく本発明の実施例であるAのものは従来
組成である比較例A、Hのものに比べて銀の移行時間が
著しく延長されている。
As shown in the table above, the silver migration time of Example A of the present invention is significantly longer than that of Comparative Examples A and H, which have conventional compositions.

したがって導体間の短絡故障の可能性を著しく減じてい
る。
Therefore, the possibility of short-circuit failures between conductors is significantly reduced.

そして260℃30分のりフロラソルダリング相当の加
熱条件においても導体膜が損傷されることがなく、実施
例Aの抵抗値は比較例Cの銀粉−エポキシ樹脂系よりも
低目となっている。
Even under heating conditions equivalent to flora soldering at 260° C. for 30 minutes, the conductor film was not damaged, and the resistance value of Example A was lower than that of Comparative Example C, a silver powder-epoxy resin system.

さらに比較例Cの場合に比べて、実施例Aの場合の方が
面積抵抗が低くて導体として適している。
Furthermore, compared to Comparative Example C, Example A has a lower sheet resistance and is suitable as a conductor.

ゆえに今後の膜回路用の部品の底部電極として特に有効
なものである。
Therefore, it is particularly effective as a bottom electrode for future membrane circuit components.

以上説明したことからも明らかなように本発明の電解コ
ンデンサを集積した集積回路板は、回路板に形成された
導体部に電解コンデンサをリフロウはんだ付は法により
取り付けるに当り、上記電解コンデンサの陰極部の導電
電極体として銀、パラジウム、銀−パラジウムの3成分
系からなる導電粒子をガラスまたは樹脂と共に樹脂が飛
散しない温度で塊成してなるものを用いるから、冒頭に
述べた従来例の致命的な欠点、すなわち樹脂成分の融解
、はんだ中の錫への銀の溶は込み、銀の基板面上での移
行による該基板面上の印刷導体間の電気的短絡の発生等
の諸問題は生じない。
As is clear from the above explanation, when the integrated circuit board on which the electrolytic capacitor of the present invention is integrated, the electrolytic capacitor is attached to the conductor portion formed on the circuit board by reflow soldering, the cathode of the electrolytic capacitor is As the conductive electrode body used in this section is made by agglomerating conductive particles consisting of a three-component system of silver, palladium, and silver-palladium together with glass or resin at a temperature that does not cause the resin to scatter, the disadvantage of the conventional example mentioned at the beginning is avoided. Problems such as melting of resin components, incorporation of silver into tin in solder, and occurrence of electrical shorts between printed conductors on the substrate surface due to silver migration on the substrate surface, etc. Does not occur.

Claims (1)

【特許請求の範囲】[Claims] 1 磁器質ベースの厚膜回路板またはガラスベースの薄
膜回路板の表面に導体が形成され、その導体部に固体電
解質を持つ電解コンデンサをリフロウはんだ付は法によ
う取り付けるに当b、前記コンデンサの陰極部の導電電
極体として銀、パラジウム、銀−パラジウムの3成分系
からなる導電粒子をガラスまたは樹脂と共に樹脂が飛散
しない温度で塊成してなるものを用いることを特徴とす
る電解コンデンサを集積した集積回路板。
1. When attaching an electrolytic capacitor with a conductor formed on the surface of a porcelain-based thick-film circuit board or a glass-based thin-film circuit board and having a solid electrolyte in the conductor part by reflow soldering, b. An integrated electrolytic capacitor characterized in that conductive particles consisting of a three-component system of silver, palladium, and silver-palladium are agglomerated together with glass or resin at a temperature at which the resin does not scatter as the conductive electrode body of the cathode part. integrated circuit board.
JP50079837A 1975-06-26 1975-06-26 Denkai capacitors Expired JPS5858804B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP50079837A JPS5858804B2 (en) 1975-06-26 1975-06-26 Denkai capacitors

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP50079837A JPS5858804B2 (en) 1975-06-26 1975-06-26 Denkai capacitors

Publications (2)

Publication Number Publication Date
JPS523153A JPS523153A (en) 1977-01-11
JPS5858804B2 true JPS5858804B2 (en) 1983-12-27

Family

ID=13701313

Family Applications (1)

Application Number Title Priority Date Filing Date
JP50079837A Expired JPS5858804B2 (en) 1975-06-26 1975-06-26 Denkai capacitors

Country Status (1)

Country Link
JP (1) JPS5858804B2 (en)

Also Published As

Publication number Publication date
JPS523153A (en) 1977-01-11

Similar Documents

Publication Publication Date Title
JP4645594B2 (en) Conductive paste and ceramic electronic component using the same
KR900008274B1 (en) Thick film resistor circuits
US4130854A (en) Borate treated nickel pigment for metallizing ceramics
US6936192B2 (en) Resistive composition, resistor using the same, and making method thereof
JPS6166303A (en) Conductive paste for thick film
KR100268699B1 (en) Conductive paste compositions for chip resistor terminal electrodes
JP2658509B2 (en) Method of forming electronic component, electrode paste and terminal electrode
JPH0616461B2 (en) Chip type porcelain capacitor
US4168519A (en) Capacitor with tin-zinc electrodes
JPS5874030A (en) Electronic part, conductive film composition and method of producing same
JPS5858804B2 (en) Denkai capacitors
JP2001155955A (en) Electronic component equipped having external terminal electrode and mounting electronic article thereof
JP2005353620A (en) Resistor composition and resistor using the same
JPH05128910A (en) Conductor paste
JP2007095926A (en) Chip resistor
JP4295202B2 (en) Chip component and chip component manufacturing method
JP2002252124A (en) Chip-type electronic component and its manufacturing method
JP2004088019A (en) Electrode composite and electronic component
JPH0652721A (en) Conductor
CN107393784A (en) It is a kind of can be resistant to high pressure from control type protector and preparation method thereof
JP2531023B2 (en) Conductive paste
JP2001023438A (en) Conductive paste and ceramic electronic component
JPH04329616A (en) Laminated type electronic component
JP2000260654A (en) Ultra-small chip type electronic component
JPH0544838B2 (en)