JPS5857761A - Photo semiconductor device - Google Patents

Photo semiconductor device

Info

Publication number
JPS5857761A
JPS5857761A JP56156283A JP15628381A JPS5857761A JP S5857761 A JPS5857761 A JP S5857761A JP 56156283 A JP56156283 A JP 56156283A JP 15628381 A JP15628381 A JP 15628381A JP S5857761 A JPS5857761 A JP S5857761A
Authority
JP
Japan
Prior art keywords
layer
junction
type
semiconductor
semiconductor layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP56156283A
Other languages
Japanese (ja)
Other versions
JPH0410233B2 (en
Inventor
Hirobumi Ouchi
博文 大内
Hiroshi Matsuda
広志 松田
Makoto Morioka
誠 森岡
Masahiko Kawada
河田 雅彦
Kazuhiro Kurata
倉田 一宏
Yasushi Koga
古賀 康史
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP56156283A priority Critical patent/JPS5857761A/en
Priority to KR8204346A priority patent/KR900000074B1/en
Priority to EP82109103A priority patent/EP0076495B1/en
Priority to DE8282109103T priority patent/DE3277353D1/en
Publication of JPS5857761A publication Critical patent/JPS5857761A/en
Priority to US06/880,118 priority patent/US4740819A/en
Publication of JPH0410233B2 publication Critical patent/JPH0410233B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by at least one potential-jump barrier or surface barrier, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier or surface barrier
    • H01L31/107Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier or surface barrier the potential barrier working in avalanche mode, e.g. avalanche photodiode
    • H01L31/1075Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier or surface barrier the potential barrier working in avalanche mode, e.g. avalanche photodiode in which the active layers, e.g. absorption or multiplication layers, form an heterostructure, e.g. SAM structure

Abstract

PURPOSE:To lower a dark current and stabilize interface by stacking the layer having a large forbidden energy band width Eg and a multi-atomic layer including the composition atoms thereof on the semiconductor layer having a small Eg and by covering it with a protection film. CONSTITUTION:On the epitaxial layer 12 on the n<+> type InP 11, the In0.61Ga0.39 As0.83P0.17 13 having a smaller Eg is surrounded by the n type InP 14 having a larger Eg, and the incident light is absorbed by the layer 13. In addition, at the surface, the insulating film 17 is provided over the n type In0.9Ga0.1As0.2P0.8 15 having a large Eg and the characteristic at the interface is stabilized and a dark current is lowered. The p-n junction is isolated from the layer 13 and maintains the hard junction characteristic by the impurity concentration distribution and efficiently collects the photo exciting carrier. Moreover, since the depletion layer width can be made wide, the junction capacitance can be made small and the element can operate at a high speed.

Description

【発明の詳細な説明】 本発明は半導体検出器に関する。41!に界面特性の改
善による低暗電流化に適した受光素子に関するO 従来は、#!1図(a)および(b)に示す様にメサ型
あるいはプレーナ型構造の受光素子が提案されている。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to semiconductor detectors. 41! In the past, #! As shown in FIGS. 1(a) and 1(b), a light receiving element having a mesa type or planar type structure has been proposed.

第1図(a)の構造にお絶で、半導体基板01上に第1
の導電型の半纏体層022よび第2の導電型の半4陣層
03が形成され、史に電極08゜09が設けられている
。第1図18)の様なメサ構造では、高い電界が接合端
面に露出するため0表面保mI#の性質により、素子特
性が左右されることI/cなり、実土用望ましくない。
The structure shown in FIG. 1(a) is different from the structure shown in FIG.
A half-layer 022 of a conductivity type and a half-layer 03 of a second conductivity type are formed, and electrodes 08 and 09 are provided thereon. In a mesa structure as shown in FIG. 1 (18), a high electric field is exposed at the junction end face, so the device characteristics are influenced by the property of 0 surface retention mI# (I/c), which is not desirable for practical use.

一方、第1図(b)のプレーナ構造(公開vfff公報
昭55−132079号)では、メサ型構造に比べて安
定な動作が侍られると期待づれる。第1図1b)の構造
で乞+ J I n P半導体基板l上にn 型InP
層2.InGaAsPj63 オよびn型InP層が形
成されている。6はたとえは(3d拡散層でこの拡散端
面でPn接合が形成されている。7に絶縁1(8,9は
1[他であるoしかし、、InP結晶は、蒸気圧の高い
Pが結晶成長後の素子作成プロセスの熱処理工程におい
て解離し9表面層は変質することが考えられる。それ故
1表面保護膜形成後の界面特性は不安定となり、暗tf
iが大きくなる原因となる。
On the other hand, the planar structure shown in FIG. 1(b) (Vfff Publication No. 132079/1983) is expected to provide more stable operation than the mesa structure. In the structure shown in Fig. 1b), n-type InP is formed on a J I n P semiconductor substrate l.
Layer 2. InGaAsPj63 and n-type InP layers are formed. For example, 6 is a 3d diffusion layer and a Pn junction is formed at this diffusion end face. It is thought that the surface layer 9 may be dissociated and altered in quality during the heat treatment step of the device fabrication process after growth. Therefore, the interface characteristics after the formation of the surface protective film 1 become unstable, and the dark tf
This causes i to become large.

本発明の目的は、前述した欠点を除去することにより、
 Ifxaの小さい安定な受乎累子を提供することにあ
る。
The object of the invention is to eliminate the aforementioned drawbacks,
The purpose of the present invention is to provide a small and stable version of Ifxa.

本発明の骨子は第2図に示す様に、能動領域となる禁止
帯幅の小さい物質層13(第1t半導体層)の上に光の
窓層となる禁止帯幅の大きい物質層14(第2の半導体
層)を形成し、更に、14の物質の組成原子を含んだ多
原子の層(第3の半導体層)を形成し、この上部に表口
床#!狭で保躾することによって、半導体と界面との闇
の安定化を図るものである。第2の半導体層中TICk
’n接合が設けられている◇暗電流の低下、並びに界面
安定化を図った受光素子構造を特徴とする。
As shown in FIG. 2, the gist of the present invention is that a material layer 14 (first semiconductor layer) with a large bandgap width, which serves as an optical window layer, is placed on a material layer 13 (first semiconductor layer) with a small bandgap width, which serves as an active region. Further, a polyatomic layer (third semiconductor layer) containing constituent atoms of 14 substances is formed, and a top layer #! is formed on top of this layer. By maintaining the narrowness, it is possible to stabilize the darkness between the semiconductor and the interface. TICk in the second semiconductor layer
◇Features a light-receiving element structure that reduces dark current and stabilizes the interface.

前記の第3の半導体層にはIjl!2の半導体層(たと
えばInP )と(1)格子贅合をとり得る。(2)同
じ結晶系をとり得る。(3)高温にさらされても第2の
半導体層よりも安定である等の性質を持つ半導体材料を
用いる0InPに対してはInGaAsPが好ましい。
The third semiconductor layer has Ijl! (1) lattice overlap can be achieved with the second semiconductor layer (for example, InP). (2) They can have the same crystal system. (3) InGaAsP is preferable for OInP, which uses a semiconductor material that has properties such as being more stable than the second semiconductor layer even when exposed to high temperatures.

表面のInGaAsP層は能動領域の半導体材料よりバ
ンド・ギヤ、プが大なる組成とすれば良い。
The InGaAsP layer on the surface may have a composition with a larger band gap than the semiconductor material of the active region.

本発明の実施例を第2図に示し、その構造を以下に説明
する。
An embodiment of the present invention is shown in FIG. 2, and its structure will be described below.

約IQ  cm  以上の高不純gljllIIgLの
n 形lnP基板−11.上に公知の液相エピタキシャ
ル成長法により不純@濃度が9xlOCm  、厚g1
.5μmのn形InP層、12.%:影形成、続いて不
純119211度が7X10   cm  、厚さl、
3μmのn形■nO,61Ga039 ” 083 P
O1T層、13.を形成し、引沈いて不純qmatLが
9XlOcm、厚さ1.8μmのn形InP層、14を
形成し、最後に不純物濃度7xlOcm  、厚さ0.
2μmのn形” 0.9 Ga01 AsO,2P(1
8層、15.を連続的に形成する。AI O及びSi0
 1%lを公知の気相化牛皮21          
 2 6法によって形成した後、公知の選択ホトエ、チノグ法
によって不必要都のAj O及びSiO膜!82 を除去した後、更に領域15を除去し、上dピ絶縁物を
拡散マスクとして公知の拡散法によりて、 Znあるい
はCd不純*5r:上記領域14及び15中に導入し、
拡散深さ0.7μmのP 形の拡散領域。
High impurity gljllllllgL n-type lnP substrate with approximately IQ cm or more -11. A well-known liquid phase epitaxial growth method is applied to the impurity @concentration of 9xlOCm and thickness of g1.
.. 5 μm n-type InP layer, 12. %: shadow formation, followed by impurity 119211 degrees 7X10 cm, thickness l,
3μm n-type ■nO, 61Ga039” 083P
O1T layer, 13. is deposited to form an n-type InP layer 14 with an impurity qmatL of 9XlOcm and a thickness of 1.8μm, and finally an impurity concentration of 7XlOcm and a thickness of 0.
2μm n-type” 0.9 Ga01 AsO,2P(1
8 layers, 15. are formed continuously. AI O and Si0
1% l of known vaporized cowhide 21
After forming by the 26 method, unnecessary Aj O and SiO films are formed by the known selection method and chinog method! After removing 82, the region 15 is further removed, and Zn or Cd impurity *5r is introduced into the regions 14 and 15 by a known diffusion method using the upper dpi insulator as a diffusion mask.
P-shaped diffusion region with a diffusion depth of 0.7 μm.

16、を形成する0拡散層、16.とInP層。16.0 diffusion layer forming 16. and InP layer.

14、 VCよってpn接合が形成きれる。pn接合面
と領域、13.との間隔は1.1μmである。
14. A pn junction can be formed by VC. pn junction surface and region, 13. The distance between the two is 1.1 μm.

次に、拡散iスフとして用いた杷縁映を除去した後、公
知方法によって8i0  あるい1jsiN  を!3
4 再度形成した適用した。この後表面電極、18゜及び裏
面電極、19’に形成した。本素子は適切なステムにヤ
ウントされ、素子としての動作が試みられた。
Next, after removing the loquat that was used as the diffusion i-suffu, 8i0 or 1jsiN is obtained using a known method. 3
4 Re-formed and applied. After this, a front electrode at 18° and a back electrode at 19' were formed. This device was mounted on a suitable stem and attempted to operate as a device.

以下に本実施例の構成及び動作を説明する。本実施例で
は1禁止帯幅狭い領域13が禁止帯幅の広い領域によっ
て囲まれているため、入射光は領域13中で吸収される
構成となっている。また。
The configuration and operation of this embodiment will be explained below. In this embodiment, since the region 13 with a narrow forbidden band width is surrounded by the region with a wide forbidden band width, the incident light is absorbed in the region 13. Also.

表面層は禁止帯幅の広いInGaAsP層で形成され、
その上に表面保農用の絶縁膜が形成されているため、界
面での特性が安定となり、暗電流の低減に好適である。
The surface layer is formed of an InGaAsP layer with a wide forbidden band width,
Since an insulating film for surface preservation is formed thereon, the characteristics at the interface become stable, which is suitable for reducing dark current.

また、pn接合は領域13より離れて形成されていると
共に、不純物S度分布も配置されているため、ハードな
接合特性を維狩し。
Further, since the pn junction is formed apart from the region 13 and the impurity S degree distribution is also arranged, hard junction characteristics can be maintained.

かつ、光励起キャリアを効第良く接合へ果めるのに適し
ている。また、電界分布を考慮して空乏層の広がりを設
定しであるため、接合各賞を低減し。
Moreover, it is suitable for efficiently delivering photoexcited carriers to a junction. In addition, the spread of the depletion layer is set in consideration of the electric field distribution, which reduces each junction.

高速化に適している。Suitable for high speed.

本素子を逆方向にバイアスすると、空乏I−は接合直下
の領域14及び領域、13に広がる。このため、領域1
3の禁止帯幅に対応した長波長端の光波−!kまで効率
良く吸収し1発生した正孔はドリフト電界によってpn
接合に果められる。本試作pinホトダイオードの主な
特性は、波長感度領域1.0〜1.55μm、童子効率
65%(1,3μm)。
When the device is biased in the reverse direction, the depletion I- spreads to region 14 and region 13 just below the junction. Therefore, area 1
Light waves at the long wavelength end corresponding to the forbidden band width of 3-! The holes generated by efficiently absorbing up to k become pn due to the drift electric field.
It is achieved by joining. The main characteristics of this prototype PIN photodiode are a wavelength sensitivity range of 1.0 to 1.55 μm and a Doji efficiency of 65% (1.3 μm).

接合:iHl O,8pF 、暗電流H0,1nA(1
ov)以下である。
Junction: iHlO, 8pF, dark current H0, 1nA (1
ov) below.

本実施例の効果を以下に説明する。The effects of this embodiment will be explained below.

fal  In()aAsP層と絶縁膜との界面特性を
用いることにより、低11i流の低減できる。
By using the interface characteristics between the fal In()aAsP layer and the insulating film, the low 11i current can be reduced.

(bl  前述した様々層構成にすることにより、トン
ネル効果による1lftIL流の^・d大を防止できる
(bl) By using the various layer configurations described above, it is possible to prevent the 1ftIL flow from occurring due to the tunnel effect.

(C)  前述した様な層構成にすることにより、光励
起キャリアを効率良く接合LlcJI/4めることがで
き。
(C) By forming the layer structure as described above, photoexcited carriers can be efficiently transferred to the junction LlcJI/4.

高感度化できる0 +d+  前述した様な層構成VCすることにより、光
励起キャリアをドリフト遠吠で接合へ集めることができ
、高速化できる。
0 + d+ Enables High Sensitivity By using the layer configuration VC as described above, photoexcited carriers can be collected to the junction by drift howling, and the speed can be increased.

(e)  前述した様な層構成とすることにより、空乏
1−幅を広くとることができるため、接合容t%:小さ
くでき、素子の高速化に効果がある〇別の実施例として
光の入射方向をInP基板狗とした場合がある。第3図
がこの例を示す装Tl1l!l?面図である。第2図と
同一符号は同一部位を示している。層15が表面保鰻の
ためのI n tea As P盾である。第2図にお
ける実施例との相違点は電極19が拡散領域16の下部
に位置する領域の金属を除去する点、および電極18は
入射光不安のため全面に設けられている点である。
(e) By forming the layer structure as described above, the depletion 1 width can be widened, so the junction capacitance t% can be reduced, which is effective in increasing the speed of the device. In some cases, the incident direction is set to the InP substrate. Figure 3 shows an example of this. l? It is a front view. The same symbols as in FIG. 2 indicate the same parts. Layer 15 is an Intea As P shield for surface protection. The difference from the embodiment shown in FIG. 2 is that the electrode 19 removes the metal in the region located below the diffusion region 16, and the electrode 18 is provided over the entire surface to prevent insecurity of incident light.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の素子構造例を示す断面図であり。 (a)はメサ型、(b)はプレーナ型構造を示すC第2
図および第3図は本発明による一実施例の素子構造の断
面図を示す。 符号の説明 01 ・=・n  形InP基板、02−=n形1 n
GaA s。 03・・・・・・P形I nGaAs、 08.09・
−・・・11L8M、 1 、11・・・・・・n 形
InP基板、2・・・−・n 形InP層。 12−−−−−− n形1nP層、3. l 3−==
・n形1n()aAsl’層、4.14・・・・・・n
形InP層、6.16・・・・・・P形InGaAsP
拡散III、 7. 17.17 ・・・−・n形In
GaAsP層、 8.I8・、・、、、p形1極、9.
19・・・・・・n形11L他0 第 1 図 θ8 第 2  図 /γ 垢 3 図 B 第1頁の続き 0発 明 者 倉出−宏 国分寺市東恋ケ窪1丁目280番 地株式会社日立製作所中央研六 所内 0発 明 者 古賀康史 国分寺市東恋ケ窪1丁目280番 地株式会社日立製作所中央研究 所内 手続補正書(方式) 事件の表示 昭和56 年特許願第 156283  シJ発明の名
称 光半導体装置 補正をする者 ”   ’510°O式云村 111″!、 製 作 
所、111    勝   茂 代   理   人 明細書の発明の名称の欄 補11ニの内容    t*w−yrつp<io+明細
書の発明の名称を「光半導体装置」に訂正する。
FIG. 1 is a sectional view showing an example of a conventional element structure. (a) shows a mesa structure, and (b) shows a planar structure.
FIG. 3 shows a cross-sectional view of an element structure of an embodiment according to the present invention. Explanation of symbols 01 ・=・n-type InP substrate, 02-=n-type 1 n
GaAs. 03...P-type InGaAs, 08.09.
-...11L8M, 1, 11...n-type InP substrate, 2...-n-type InP layer. 12------ n-type 1nP layer, 3. l 3-==
・N-type 1n()aAsl' layer, 4.14...n
type InP layer, 6.16...P type InGaAsP
Diffusion III, 7. 17.17 ・・・-・n-type In
GaAsP layer, 8. I8・・・・、p type 1 pole 9.
19...N-type 11L and others 0 1st Fig. θ8 2nd/γ 3 Fig. B Continuation of page 1 0 Author: Kurade-Kokokubunji City, Higashikoigakubo 1-280 Hitachi, Ltd. Chuo Inventor Yasushi Koga 1-280 Higashi-Koigakubo, Kokubunji City, Hitachi, Ltd. Central Research Laboratory Procedural amendment (method) Case description 1982 Patent application No. 156283 Name of invention Optical semiconductor device Person” '510°O Yunmura 111''! , Production
111 Katsu Shigeyo Osamu Contents of supplement 11d in the column for the title of the invention in the specification t*w-yrp<io+ The name of the invention in the specification is corrected to "optical semiconductor device."

Claims (1)

【特許請求の範囲】[Claims] 第1の導電形を示す半導体の上に前記s1の半導体l−
よりも禁制帯幅が広く、かつ第1の導電形を示す第2の
半導体層が設けられており、第2の半導体層に第2の導
電形な示す領域を設けたpn接合が形成された光検出装
置において、痢2の半導体層のよに前記第1の導電形を
示す第3の半導体層が設けられ、第3の半導体層上に設
けられた第4の絶縁膜とで表面保睡機能を構成したこと
を特徴とする半導体装置0
On the semiconductor exhibiting the first conductivity type, the semiconductor l- of the s1 is placed.
A second semiconductor layer having a wider forbidden band width and exhibiting the first conductivity type is provided, and a pn junction is formed in which a region exhibiting the second conductivity type is provided in the second semiconductor layer. In the photodetecting device, a third semiconductor layer exhibiting the first conductivity type is provided like the semiconductor layer of Dialysis 2, and a fourth insulating film provided on the third semiconductor layer provides surface protection. Semiconductor device 0 characterized by having functions configured
JP56156283A 1981-10-02 1981-10-02 Photo semiconductor device Granted JPS5857761A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP56156283A JPS5857761A (en) 1981-10-02 1981-10-02 Photo semiconductor device
KR8204346A KR900000074B1 (en) 1981-10-02 1982-09-27 Beam-checking semiconductor apparatus
EP82109103A EP0076495B1 (en) 1981-10-02 1982-10-01 Photodiode
DE8282109103T DE3277353D1 (en) 1981-10-02 1982-10-01 Photodiode
US06/880,118 US4740819A (en) 1981-10-02 1986-06-30 Photo semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56156283A JPS5857761A (en) 1981-10-02 1981-10-02 Photo semiconductor device

Publications (2)

Publication Number Publication Date
JPS5857761A true JPS5857761A (en) 1983-04-06
JPH0410233B2 JPH0410233B2 (en) 1992-02-24

Family

ID=15624428

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56156283A Granted JPS5857761A (en) 1981-10-02 1981-10-02 Photo semiconductor device

Country Status (1)

Country Link
JP (1) JPS5857761A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63182850A (en) * 1987-01-24 1988-07-28 Agency Of Ind Science & Technol Light-receiving device for optical semiconductor device
JPH01135471A (en) * 1987-11-19 1989-05-29 Okuma Mach Works Ltd Constant angle dressing on numerically controlled grinder

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63182850A (en) * 1987-01-24 1988-07-28 Agency Of Ind Science & Technol Light-receiving device for optical semiconductor device
JPH01135471A (en) * 1987-11-19 1989-05-29 Okuma Mach Works Ltd Constant angle dressing on numerically controlled grinder

Also Published As

Publication number Publication date
JPH0410233B2 (en) 1992-02-24

Similar Documents

Publication Publication Date Title
EP0156156A1 (en) Avalanche photodiodes
US4656494A (en) Avalanche multiplication photodiode having a buried structure
JPH02159775A (en) Semiconductor photodetector and manufacture thereof
EP0076495B1 (en) Photodiode
JPS63955B2 (en)
JPS5857761A (en) Photo semiconductor device
JPS6285477A (en) Photosemiconductor device
JPS6222546B2 (en)
JPS61226973A (en) Avalanche photodiode
JP4601129B2 (en) Semiconductor light receiving element manufacturing method
JP2711055B2 (en) Semiconductor photodetector and method of manufacturing the same
JPH02228080A (en) Semiconductor photodetector
JPS63237484A (en) Semiconductor device
JPH0231509B2 (en)
JPS60148177A (en) Semiconductor light-receiving element
JPH0494579A (en) Semiconductor photodetector
JPS6259905B2 (en)
JPS5857760A (en) Photo semiconductor device
JP2991555B2 (en) Semiconductor light receiving element
JPH041740Y2 (en)
JPH0241185B2 (en)
JPH02253666A (en) Semiconductor photodetector
JPS6222545B2 (en)
JPS6112087A (en) Avalanche photodiode
JPS61199675A (en) Semiconductor light-receiving element