JPS5856820B2 - Shinkuudosekutei Souchi - Google Patents

Shinkuudosekutei Souchi

Info

Publication number
JPS5856820B2
JPS5856820B2 JP49146000A JP14600074A JPS5856820B2 JP S5856820 B2 JPS5856820 B2 JP S5856820B2 JP 49146000 A JP49146000 A JP 49146000A JP 14600074 A JP14600074 A JP 14600074A JP S5856820 B2 JPS5856820 B2 JP S5856820B2
Authority
JP
Japan
Prior art keywords
vacuum
tuning fork
crystal resonator
frequency
degree
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP49146000A
Other languages
Japanese (ja)
Other versions
JPS5172380A (en
Inventor
睦人 手塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suwa Seikosha KK
Original Assignee
Suwa Seikosha KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suwa Seikosha KK filed Critical Suwa Seikosha KK
Priority to JP49146000A priority Critical patent/JPS5856820B2/en
Publication of JPS5172380A publication Critical patent/JPS5172380A/en
Publication of JPS5856820B2 publication Critical patent/JPS5856820B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は真空装置の圧力トランスデュ・−サーに関する
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a pressure transducer for a vacuum system.

本発明の目的は、真空装置の圧力トランステユーサーに
音叉型水晶振動子を用い、その発振周波数対真空度特性
および発振周波数の安定性を利用して真空度測定の精度
を上げようとするものである。
The purpose of the present invention is to use a tuning fork type crystal oscillator in a pressure transducer of a vacuum device, and to improve the accuracy of vacuum level measurement by utilizing its oscillation frequency versus vacuum level characteristics and the stability of the oscillation frequency. It is.

従来の真空度測定方法には、カイスラー管で放電させ、
そのグルックス暗部の長さで測る方法、ビラニ真空計で
測る方法、電離真空計で計る方法などがある。
The conventional method of measuring the degree of vacuum involves discharging the air using a Keisler tube.
There are methods to measure it by the length of the Glucks dark part, methods to measure it with a Virani vacuum gauge, and methods to measure it with an ionization vacuum gauge.

しかし、いずれも、そ0カバーできる領域が狭く、真空
度の各段階において、真空装置を取り替える必要があっ
た。
However, in either case, the area that can be covered is narrow, and it is necessary to replace the vacuum device at each vacuum level.

ガイスラー管では10 tor以下、ピラニ真空計で
は1.0 for以下、電離真空計では10 to
r以上という具合で、1o−4forまで測ろうとする
と、2つ以上の真空装置を併置しないと、各段階の真空
度が測れなかった。
Below 10 torr for Geissler tube, below 1.0 for for Pirani vacuum gauge, 10 tor for ionization vacuum gauge
When trying to measure up to 1o-4for, for example, more than r, the degree of vacuum at each stage could not be measured unless two or more vacuum devices were placed side by side.

また、その測定精度も低く、最近のように高精度測定が
要求されている時には不満足な測定器であった。
In addition, its measurement accuracy was low, making it an unsatisfactory measuring instrument when high-precision measurement is required these days.

また振動子を圧力センサーとした圧力測定装置が、特公
昭49−1234号公報に提示されているが、従来用い
られていた振動子はATあるいはGT等の高周波数振動
子であり、これらの振動子は大気中で発振させても周波
数の変動はほとんど無いものであり、本発明の対象とし
ている真空度測定装置−の適用は不可能なものであった
In addition, a pressure measuring device using a pressure sensor as a vibrator is proposed in Japanese Patent Publication No. 49-1234, but the vibrators conventionally used are high frequency vibrators such as AT or GT, and these vibrations Even when oscillating in the atmosphere, there is almost no variation in frequency, making it impossible to apply the degree-of-vacuum measuring device to which the present invention is directed.

本発明はかかる欠点を除去して十数torから、10
torまての広い領域を一台の真空装置と1つの圧カ
ドランスデューサーでカバーし、しかもその測定精度は
水晶振動子の発振周波数の変化を使うため非常に高いも
のとすることができる。
The present invention eliminates such drawbacks and changes the tor to 10 tor.
A wide area up to the tor can be covered with one vacuum device and one pressure transducer, and the measurement accuracy can be very high because it uses changes in the oscillation frequency of a crystal resonator.

以下、本発明を図に従って説明する。The present invention will be explained below with reference to the drawings.

第1図は本発明で圧力トランステユーサーとして用いる
音叉型水晶振動子の外観図である。
FIG. 1 is an external view of a tuning fork type crystal resonator used as a pressure transducer in the present invention.

1は音叉型の水晶振動子でフォトエツチングによって形
成され、2,3は電極で少なくとも一方の叉の周辺に沿
う電極と叉の中央に沿う電極とで1対の電極対を形成し
ており、図から明らかなように、一方の叉の周辺に沿う
電極が他方の叉の中央に沿う電極となるよう電極配置さ
れ、2端子を形成している。
1 is a tuning fork-shaped crystal resonator formed by photo-etching; 2 and 3 are electrodes; an electrode along the periphery of at least one of the forks and an electrode along the center of the fork, forming a pair of electrodes; As is clear from the figure, the electrodes are arranged such that the electrode along the periphery of one prong becomes the electrode along the center of the other prong, forming two terminals.

上述した振動子は電界を加えることにより電極が付与さ
れた面と平行な方向に各々の叉が相反する方向に振動を
する。
By applying an electric field to the vibrator described above, each prong vibrates in opposite directions parallel to the plane on which the electrodes are provided.

4,5はポンチインク線、6は振動子固定台、tは水晶
薄板の板厚で200μ以下であり、直接には、この振動
子の発振周波数とは関係ない。
4 and 5 are punch ink lines, 6 is a vibrator fixing base, and t is the thickness of a crystal thin plate, which is less than 200 μm, and is not directly related to the oscillation frequency of this vibrator.

第2図は、第1図に示す音叉型水晶振動子の真空1p(
tor)と周波数変化量の関係を示す。
Figure 2 shows the vacuum 1p (
tor) and the amount of frequency change.

第2図のように、一般に真空度が上がると発振周波数は
減少する。
As shown in FIG. 2, the oscillation frequency generally decreases as the degree of vacuum increases.

これは、振動子の振巾特性が主要原因である。This is mainly caused by the amplitude characteristics of the vibrator.

また振巾%性は振動子の厚さtと密接に関係し、第2図
曲線7゜8.9,10に示すごとく、tが小さくなると
真空度変化△pに対して周波数変化△fが大きくなる。
In addition, the amplitude % is closely related to the thickness t of the vibrator, and as shown in curves 7゜8.9 and 10 in Figure 2, as t becomes smaller, the frequency change △f increases with respect to the vacuum change △p. growing.

即ち、振動子を薄くすると△f/△pが大きくなり、測
定感度が上昇する。
That is, when the vibrator is made thinner, Δf/Δp becomes larger, and measurement sensitivity increases.

さらに高真空では発振周波数は飽和して一定値を示すこ
とから、この時の周波数f。
Furthermore, in a high vacuum, the oscillation frequency is saturated and shows a constant value, so the frequency f at this time.

を基準にとり、周波数変化量△fと真空度pとの関係を
求めておけは△fからpがわかる。
If the relationship between the amount of frequency change △f and the degree of vacuum p is found based on △f, then p can be found from △f.

また、測定感度を上げるためには、振動子を薄くして、
△f/△pを大きくすれはよい。
Also, in order to increase measurement sensitivity, the transducer should be made thinner.
It is better to increase △f/△p.

そのため、超薄型の振動子を作らねばならないか、近年
フォトエツチング技術と研摩技術の向上により、25μ
tという超薄型の振動子までできるようになった。
For this reason, it may be necessary to make an ultra-thin resonator, but recent improvements in photo-etching technology and polishing technology have made it possible to make ultra-thin resonators with a thickness of 25 μm.
It has become possible to create ultra-thin oscillators called t.

このような振動子を使えは、十数torから10 f
orまでの広い範囲で周波数が2.5X10”以上変化
するので非常に精度がよく真空度の測定ができる。
Using such a vibrator, it is possible to use a oscillator of 10 or more tors to 10 f.
Since the frequency changes by more than 2.5 x 10'' over a wide range up to or, the degree of vacuum can be measured with very high accuracy.

第3図は、本発明による真空度測定装置の一例である。FIG. 3 is an example of a vacuum degree measuring device according to the present invention.

1は第1図に示す200μを以下の超薄型の音叉型水晶
振動子、4,5はホンティング線、6は固定台、11は
振動子を入れたプローブ、12は発振回路、△fを求め
るための比較回路、△fを真空度pに換算するための回
路、そして表示部分を含んだ本体である。
1 is an ultra-thin tuning fork type crystal resonator of 200μ or less as shown in Fig. 1, 4 and 5 are honting wires, 6 is a fixed stand, 11 is a probe containing the resonator, 12 is an oscillation circuit, △f The main body includes a comparison circuit for determining Δf, a circuit for converting Δf into the degree of vacuum p, and a display section.

このプローブを測定容器に入れて、水晶振動子を発振さ
せ、発振周波数を調べれは測定容器の真空度は簡単に求
まる。
The degree of vacuum in the measurement container can be easily determined by placing this probe in a measurement container, causing the crystal oscillator to oscillate, and checking the oscillation frequency.

尚、本発明にかかる真空度測定装置のシステムの概略を
、第4図にブロック図で示す。
The system of the vacuum degree measuring device according to the present invention is schematically shown in a block diagram in FIG.

メモリ14に記憶させた基準周波数f。Reference frequency f stored in memory 14.

と、センサーとなる音叉型水晶振動子1の発振回路13
の出力fを比較回路15て比較し、ビート回路16て周
波数面差△foを得る。
and the oscillation circuit 13 of the tuning fork crystal resonator 1 which becomes the sensor.
The comparator circuit 15 compares the outputs f, and the beat circuit 16 obtains a frequency difference Δfo.

換算回路17は△f。と圧力値を変換させるための回路
であり、その出力を通常用いられるデコーダ18、表示
体19によって表示し、一目で圧力値が判るように構成
されている。
The conversion circuit 17 is △f. This is a circuit for converting pressure values, and its output is displayed by a commonly used decoder 18 and display 19, so that the pressure value can be seen at a glance.

本発明によれは、厚さ200μ以下の音叉型水晶振動子
が、雰囲気圧力に応じて連続的に変化することに着目し
、真空容器の雰囲気中に露呈させた音叉型水晶振動子の
周波数の変化量を比較回路を用いて測定し、その出力を
周波数照準△fの大きさと圧力値を換算するための換算
回路を通過させ、最終的にデコーダ部表示部を用いて一
目で真空度が判かるように構成しであるので、次のよう
な効果を有する。
According to the present invention, focusing on the fact that a tuning fork type crystal resonator with a thickness of 200 μm or less changes continuously according to the atmospheric pressure, the frequency of the tuning fork type crystal resonator exposed to the atmosphere of a vacuum container changes. The amount of change is measured using a comparison circuit, and the output is passed through a conversion circuit to convert the magnitude of the frequency aim △f and the pressure value, and finally the degree of vacuum can be determined at a glance using the decoder display. This configuration has the following effects.

a)センサーとして厚さ200μ以下の音叉型水晶振動
子を用い、その周波数面差を真空度として固定するもの
であるので、たいへん小型で、高精度の真空度測定装置
が提供できる。
a) Since a tuning fork type crystal oscillator with a thickness of 200 μm or less is used as the sensor, and the difference in frequency plane is fixed as the degree of vacuum, a very compact and highly accurate degree of vacuum measuring device can be provided.

何故なら、音叉型水晶振動子は屈曲モードで振動するた
めに、雰囲気圧力の影響を極めて敏感に受は易く、大き
な周波数変動を発生するためセンサーとして最適であり
、また同じ屈曲振動子でも、音叉型水晶振動子は対称性
かあるために、振動子が小型になっても安定した振動が
得られるものである。
This is because a tuning fork type crystal resonator vibrates in a bending mode, so it is extremely sensitive to the influence of atmospheric pressure and generates large frequency fluctuations, making it ideal as a sensor. Because the type crystal resonator has symmetry, stable vibration can be obtained even if the resonator is made smaller.

b)また測定量として周波数扁差を用いているために、
検出表示回路はすべて簡単なデジタル回路によって構成
することができ、安価で高精度の真空度測定装置を提供
できる。
b) Also, since the frequency difference is used as the measured quantity,
All of the detection and display circuits can be constructed from simple digital circuits, making it possible to provide an inexpensive and highly accurate degree of vacuum measuring device.

C)更に音叉型水晶振動子が真空容器に対して着脱自在
に装着されるプローブに固定される構成なので、間+定
真空度の範囲に応じて、最適な厚さの水晶振動子に簡単
に取替えられる利点を有する。
C) Furthermore, since the tuning fork type crystal oscillator is fixed to a probe that is detachably attached to the vacuum vessel, it is easy to adjust the thickness of the crystal oscillator to the optimum thickness depending on the range of vacuum + constant vacuum. Has the advantage of being replaced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、厚さtの音叉型水晶振動子。 第2図は水晶振動子の真空度pと周期変化△Tとの関係
を示す。 第3図は本発明によって構成された真空度測定装置であ
る。 第4図は本発明による真空度測定装置のシステムのフロ
ック図。 1・・・・・・音叉型水晶振動子、2,3・・・・・・
電極、4゜5・・・・・・ホンティング線、6・・・・
・・振動子固定台、7・・・・・・板厚200μの振動
子のp−△f/f曲線、8・・・・・・板厚100μの
振動子のp−△f/f曲線、9・・・・・・板厚50μ
の振動子のp−△f/f曲線、10・・・・・・板厚2
5μの振動子のp−△f/f曲線、11・・・・・・プ
ローブ、12・・・・・・真空度測定装置本体。
Figure 1 shows a tuning fork crystal resonator with a thickness of t. FIG. 2 shows the relationship between the degree of vacuum p of the crystal resonator and the periodic change ΔT. FIG. 3 shows a vacuum degree measuring device constructed according to the present invention. FIG. 4 is a block diagram of the vacuum degree measuring device system according to the present invention. 1... Tuning fork type crystal oscillator, 2, 3...
Electrode, 4゜5...Honting wire, 6...
... Vibrator fixing table, 7... p-△f/f curve of a vibrator with a plate thickness of 200μ, 8... p-△f/f curve of a vibrator with a plate thickness of 100μ , 9...Plate thickness 50μ
p-△f/f curve of the resonator, 10...Plate thickness 2
p-Δf/f curve of a 5μ vibrator, 11... Probe, 12... Vacuum degree measuring device main body.

Claims (1)

【特許請求の範囲】 1 板厚200μ以下の水晶薄板からなる音叉型水晶振
動子を真空容器の圧カドランスジューサーとして用い、
且つ基準周波数f。 と前記音叉型水晶振動子の測定周波数fとを比較する比
較回路を含み発振周波数重着を検出する手段と、前記検
出結果に応じて応力値を設定する換算回路を含み該換算
回路の出力に接続され圧力を表示する手段とを備えると
ともに、前記真空容器に対して着脱自存なグローブに備
えられた固定台に前記音叉型水晶振動子の基部を固定し
、前記音叉水晶振動子を真空容器の雰囲気中に露呈させ
るよう配置したことを特徴とする真空度測定装置。
[Scope of Claims] 1. A tuning fork type crystal resonator made of a thin crystal plate with a thickness of 200 μm or less is used as a pressure quadrangle juicer in a vacuum container,
and a reference frequency f. and means for detecting oscillation frequency overlap, including a comparison circuit for comparing the measured frequency f of the tuning fork type crystal resonator, and a conversion circuit for setting a stress value according to the detection result. A base of the tuning fork crystal resonator is fixed to a fixing base provided in a glove which is connected to the vacuum container and is detachable from the vacuum container, and the tuning fork crystal resonator is attached to the vacuum container. A degree of vacuum measuring device characterized in that it is arranged so as to be exposed in an atmosphere of
JP49146000A 1974-12-19 1974-12-19 Shinkuudosekutei Souchi Expired JPS5856820B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP49146000A JPS5856820B2 (en) 1974-12-19 1974-12-19 Shinkuudosekutei Souchi

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP49146000A JPS5856820B2 (en) 1974-12-19 1974-12-19 Shinkuudosekutei Souchi

Publications (2)

Publication Number Publication Date
JPS5172380A JPS5172380A (en) 1976-06-23
JPS5856820B2 true JPS5856820B2 (en) 1983-12-16

Family

ID=15397825

Family Applications (1)

Application Number Title Priority Date Filing Date
JP49146000A Expired JPS5856820B2 (en) 1974-12-19 1974-12-19 Shinkuudosekutei Souchi

Country Status (1)

Country Link
JP (1) JPS5856820B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2529670A1 (en) * 1982-07-01 1984-01-06 Asulab Sa SENSITIVE ELEMENT FOR CONSTRAINTS SENSOR AND SENSOR BY APPLYING

Also Published As

Publication number Publication date
JPS5172380A (en) 1976-06-23

Similar Documents

Publication Publication Date Title
JPS5924230A (en) Detecting element
US3888115A (en) Strain sensor
JPS5913901A (en) Detecting element for strain sensor
US6448513B1 (en) Electronic weighing apparatus utilizing surface acoustic waves
CN109883581A (en) A kind of differential resonance pressure sensor chip of beam type
JPS5856820B2 (en) Shinkuudosekutei Souchi
US3503263A (en) Sonic altimeter
JPS62190905A (en) Surface acoustic wave device
JPS6033057A (en) Acceleration sensor
JPH07103838A (en) Micromanometer
SU1435968A1 (en) Pressure transducer
JPS5967437A (en) Quartz vibrator pressure sensor
JPS59141026A (en) Vacuum gauge
JPH035876Y2 (en)
JPS61212737A (en) Power detector
JPH03252537A (en) Manometer
SU498561A1 (en) Voltage measuring device
SU437918A1 (en) Microbalances
SU1610275A1 (en) Barometric method of determining height
JPS5818133A (en) Pressure sensor
SU684437A2 (en) Ultrasonic digital interferometer
SU1631252A1 (en) Measuring head
SU847094A1 (en) Piezoelectric manometer
SU497483A1 (en) Precision ferrite resonance temperature meter
JPH0242190B2 (en)