JPS5967437A - Quartz vibrator pressure sensor - Google Patents

Quartz vibrator pressure sensor

Info

Publication number
JPS5967437A
JPS5967437A JP17578182A JP17578182A JPS5967437A JP S5967437 A JPS5967437 A JP S5967437A JP 17578182 A JP17578182 A JP 17578182A JP 17578182 A JP17578182 A JP 17578182A JP S5967437 A JPS5967437 A JP S5967437A
Authority
JP
Japan
Prior art keywords
pressure
crystal
crystal resonator
gap
pressure sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17578182A
Other languages
Japanese (ja)
Inventor
Isao Shinoda
篠田 勲夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP17578182A priority Critical patent/JPS5967437A/en
Publication of JPS5967437A publication Critical patent/JPS5967437A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L9/00Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
    • G01L9/0001Transmitting or indicating the displacement of elastically deformable gauges by electric, electro-mechanical, magnetic or electro-magnetic means
    • G01L9/0008Transmitting or indicating the displacement of elastically deformable gauges by electric, electro-mechanical, magnetic or electro-magnetic means using vibrations
    • G01L9/0022Transmitting or indicating the displacement of elastically deformable gauges by electric, electro-mechanical, magnetic or electro-magnetic means using vibrations of a piezoelectric element

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Fluid Pressure (AREA)

Abstract

PURPOSE:To improve the detection accuracy by detecting a pressure with an oscillation frequency of a quartz vibrator corresponding to a clearance which will be varied according to external pressure as set by separating an excitation electrode thereof from the body thereof. CONSTITUTION:The body 12 of a quartz vibrator supported with a support 11 made of an insulator is grasped with excitation electrodes 13a and 13b leaving a clearance. This sensor is sealed into a pressure container 14 and as a gas P to be measured is introduced from a pressure introduction pipe 14a, the excitation electrodes 13a and 13b deflects to vary the clearance with the body 12 of the quartz vibrator whereby a pressure is detected as variation in the oscillation frequency of the quartz vibrator 12. The detection of the pressure is done by reading changes in the oscillation frequency of the quartz vibrator 21 as reference and that of the quartz pressure sensor 22 with a frequency comparator circuit 23 and the results are indicated on a display section 24 as pressure value of a gas. Thus, the detection accuracy of the pressure can be improved.

Description

【発明の詳細な説明】 本発明は水晶振動子の発振周波数の変化により圧力、特
に気体圧力を検出する圧力センサに関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a pressure sensor that detects pressure, particularly gas pressure, by changing the oscillation frequency of a crystal oscillator.

従来、気体圧力検出のセンサとしての代表的なものに歪
ゲージを利用したものがある。これはダイアフラムやベ
ローズがこれらに加えられる圧力の変化によって変化す
る変形量を抵抗線の伸び縮みによる抵抗変化を利用して
検出するものでこの歪ゲージと固定抵抗器とでブリッジ
回路を構成して気体圧力の測定を行なうもので、この方
式のセ/すは次のような欠点がある。
Conventionally, a strain gauge is used as a typical sensor for detecting gas pressure. This detects the amount of deformation that changes due to changes in the pressure applied to the diaphragm or bellows by using resistance changes caused by the expansion and contraction of resistance wires.This strain gauge and fixed resistor constitute a bridge circuit. This method measures gas pressure, and this method has the following drawbacks.

消費電力が大きい。出力信号の大きさが電源電圧に依存
しているため、電源電圧の変動が検出精度に直接影響す
る。また、出力信号がアナログ量のため遠隔測定には、
出力電圧が電送線の長さく抵抗値)、材質、結線の状態
などに大きく影響され精度が低下するのでシステムを構
成する上で種々の制約を受ける。歪ゲージ以外の種々の
形式のセンサにおいても、抵抗値、電流、電圧の変化を
利用してアナログ量で検出を行なっているものが多い。
Power consumption is large. Since the magnitude of the output signal depends on the power supply voltage, fluctuations in the power supply voltage directly affect detection accuracy. In addition, since the output signal is an analog quantity, remote measurement requires
Since the output voltage is greatly affected by the length and resistance of the transmission line, the material, the state of the connections, etc., the accuracy decreases, so there are various restrictions when configuring the system. Many of the various types of sensors other than strain gauges also perform analog detection using changes in resistance, current, and voltage.

これらのセンサは前述のように同様の欠点を持っている
These sensors have similar drawbacks as described above.

本発明は以上の欠点を解決し検出精度のすぐれた圧力セ
ンサを得ることを目的とする。
It is an object of the present invention to solve the above-mentioned drawbacks and to obtain a pressure sensor with excellent detection accuracy.

以下、本発明の詳細を図によって説明する。Hereinafter, details of the present invention will be explained with reference to the drawings.

第1図は本発明の一実施例であり、絶縁材よりなる支持
体11により支持された水晶振動子本体12は空隙を持
って励振電極15cz、15bに挟持されるような構造
となっている。励振電極は全体が薄い金属板でも良いし
、また、ガラスなどの薄い絶縁板に蒸着、スパッタなど
で電極を所定形状に設けても良い。前述のセンサが圧力
容器14に封入され圧力導入パイプ14αより測定気体
が導入され励振電極がたわみ、水晶振動子本体との空隙
が変化し水晶振動子の発振周波数の変化となって圧力が
検出される。ここで励振電極と水晶振動子本体との空隙
変化による発振周波数の変化を第2図、第6図によって
説明する。
FIG. 1 shows an embodiment of the present invention, in which a crystal resonator main body 12 supported by a support 11 made of an insulating material is sandwiched between excitation electrodes 15cz and 15b with a gap between them. . The entire excitation electrode may be a thin metal plate, or the electrode may be provided in a predetermined shape on a thin insulating plate such as glass by vapor deposition, sputtering, or the like. The above-mentioned sensor is sealed in the pressure vessel 14, and the measurement gas is introduced from the pressure introduction pipe 14α, the excitation electrode is deflected, the gap with the crystal oscillator body changes, and the oscillation frequency of the crystal oscillator changes, so that the pressure is detected. Ru. Here, changes in the oscillation frequency due to changes in the air gap between the excitation electrode and the crystal resonator body will be explained with reference to FIGS. 2 and 6.

水晶振動子を電気的等価回路で表すと第2図Aで示され
る。励振電極との空隙が変化する状態の等価回路は第2
図Bで示され、電極間容量COの変化に伴なう発振周波
数変化は第3図に示すように変化する。つまりcoの変
化は、空隙の大きさに連動し変化するため、外部圧力の
変化を発振周波数の変化としてとらえられるわけである
The electrical equivalent circuit of a crystal resonator is shown in FIG. 2A. The equivalent circuit in a state where the gap with the excitation electrode changes is the second one.
As shown in FIG. B, the oscillation frequency changes as the interelectrode capacitance CO changes as shown in FIG. In other words, since the change in co changes in conjunction with the size of the air gap, the change in external pressure can be interpreted as a change in the oscillation frequency.

本発明の圧力センサを使用して気体の圧力を測定する圧
力側を作ったときの構成は第4図に示すように、基準の
水晶振動子21の発振周波数と水晶圧力センサの発振周
波数を比較して水晶圧力センサの発振周波数の変化を読
み取り気体の圧力値として表示する。
When the pressure sensor of the present invention is used to create a pressure side for measuring gas pressure, the configuration is shown in Figure 4, where the oscillation frequency of the standard crystal oscillator 21 and the oscillation frequency of the crystal pressure sensor are compared. The change in the oscillation frequency of the crystal pressure sensor is read and displayed as a gas pressure value.

第5図は本発明の他の実施例であり、水晶振動子本体3
2に励振電極3f6は密着しており、他の励振電極63
αは水晶振動子本体と空隙を持って設置され外部圧力に
対して反応するようになっているる 第6図は本発明の他の実施例であり、測定気体を導入す
る圧力空間を2つ持ち、それぞれの圧力空間に応じて水
晶振動子圧力センサを保有している。本実施例では圧力
空間41にあらかじめ圧力がわかっていず気体を導入し
、圧力を測定したい気体を圧力空間42へ導入する。そ
のとき空隙を持った励振電極46・44がそれぞれ圧力
に応じてたわみ水晶振動子の発振周波数がそれぞれ電極
リード45.46から取出され、両方の水晶振動子の発
振周波数を比較することにより、測定したい気体の圧力
を知ることができる。
FIG. 5 shows another embodiment of the present invention, in which the crystal resonator main body 3
The excitation electrode 3f6 is in close contact with the other excitation electrode 63.
α is installed with a gap between it and the crystal oscillator body so that it reacts to external pressure. Figure 6 shows another embodiment of the present invention, which has two pressure spaces into which the measurement gas is introduced. Each pressure space has a quartz crystal oscillator pressure sensor. In this embodiment, a gas whose pressure is not known in advance is introduced into the pressure space 41, and a gas whose pressure is to be measured is introduced into the pressure space 42. At this time, the excitation electrodes 46 and 44 each having a gap are bent in response to the pressure, and the oscillation frequencies of the crystal oscillators are taken out from the electrode leads 45 and 46, respectively, and the oscillation frequencies of both crystal oscillators are compared, and the measurement is performed. You can find out the pressure of the desired gas.

所で本発明における水晶振動子本体は周波数温度特性が
平担である、例えば、ATカット、または、GTカット
振動子を使うことにより温度補正をすることなく、非常
に精度の良い測定をすることが可能である。
By the way, the crystal resonator body according to the present invention has flat frequency-temperature characteristics. For example, by using an AT cut or GT cut resonator, very accurate measurements can be made without temperature correction. is possible.

以上述べたように本発明によれば、気体圧力の測定にお
いて、デジタル値で検出でき、電源電圧による変動も少
く、また、遠隔測定における誤差もなく、測定でき圧力
測定のシステムを構成する上で非常に高精度の圧力セン
サを提供することができる。
As described above, according to the present invention, gas pressure can be detected as a digital value, there is little variation due to power supply voltage, and there is no error in remote measurement. A very high precision pressure sensor can be provided.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例、第2図は水晶振動子の等価
回路と本発明の等価回路、第6図は本発明における周波
数変化と空隙量の関係を示す図、第4図は本発明にかか
わるシステムのブロック図、第5図、第6図は本発明の
他の実施例を示す図である。 11.31.50・・・・・・支持体 12.32.47.48・・・・・・水晶振動子本体1
3ff、13b、33a、36b、43.44・・・・
・・励振電極 14.25,34,41.43・・・・・・圧力空間1
5.35,45.46・・・・・・電極リード21・・
・・・・基準振動子 22・・・・・・水晶振動子圧力センサ23・・・・・
・周波数比較回路 24・・・・・・表示部 14fZ、341Z、51.52−・−・−気体導入口
以  上 !$1 図 0 第3図      第2図(β) 第4図 1 209− 第5図 第6図 4手  at
FIG. 1 is an example of the present invention, FIG. 2 is an equivalent circuit of a crystal resonator and an equivalent circuit of the present invention, FIG. 6 is a diagram showing the relationship between frequency change and air gap amount in the present invention, and FIG. Block diagrams of the system according to the present invention, FIGS. 5 and 6, are diagrams showing other embodiments of the present invention. 11.31.50...Support body 12.32.47.48...Crystal resonator body 1
3ff, 13b, 33a, 36b, 43.44...
...Excitation electrode 14.25, 34, 41.43...Pressure space 1
5.35, 45.46... Electrode lead 21...
...Reference oscillator 22...Crystal oscillator pressure sensor 23...
・Frequency comparison circuit 24...Display section 14fZ, 341Z, 51.52------Gas inlet or more! $1 Figure 0 Figure 3 Figure 2 (β) Figure 4 1 209- Figure 5 Figure 6 4 moves at

Claims (1)

【特許請求の範囲】 1、 水晶振動子の励振電極を水晶振動子本体と離して
設置し、その空隙を外部圧力に応じて変化させ、空隙に
応じた水晶振動子の発振周波数の変化によって圧力を検
出する水晶振動子圧力センサ。 2、 二個の水晶振動子を同一の支持体に取付け、共に
空隙を持った励振電極構造を有し、それぞれの水晶振動
子に別系統の圧力を導入し、それぞれの空隙を圧力に応
じて変化させて、それぞれの水晶振動子の発振周波数で
圧力を検出する水晶圧力センサ。 3、 特許請求の範囲第1項において、水晶振動子の励
振電極は水晶振動子本体を挟持するごとく形成し、両面
の励振電極が水晶振動子本体と空隙を持ち、共に外部圧
力に反応する構造としたことを特徴とする水晶振動子圧
力センサ。 4、 特許請求の範囲第1項において、水晶振動子の励
振電極は水晶振動子本体を挟持するごとく形成し、片面
の励振電極は水晶振動子本体に密着して形成し、他の片
面の励振電極は水晶振動子本体と空隙を持って形成し、
外部圧力に王座する構造としたことを特徴とする水晶振
動子圧力センサ。
[Claims] 1. The excitation electrode of the crystal resonator is installed separately from the main body of the crystal resonator, and the gap is changed according to the external pressure, and the pressure is increased by changing the oscillation frequency of the crystal resonator according to the gap. Quartz crystal pressure sensor to detect. 2. Two crystal oscillators are attached to the same support, both have an excitation electrode structure with a gap, and a separate system of pressure is introduced to each crystal oscillator, and each gap is adjusted according to the pressure. A crystal pressure sensor that detects pressure by changing the oscillation frequency of each crystal oscillator. 3. In claim 1, the excitation electrodes of the crystal resonator are formed so as to sandwich the crystal resonator main body, and the excitation electrodes on both sides have a gap with the crystal resonator main body, and both react to external pressure. A crystal oscillator pressure sensor characterized by the following. 4. In claim 1, the excitation electrodes of the crystal resonator are formed so as to sandwich the crystal resonator main body, the excitation electrode on one side is formed in close contact with the crystal resonator main body, and the excitation electrode on the other side is formed so as to sandwich the crystal resonator main body. The electrode is formed with a gap between it and the crystal oscillator body.
A quartz crystal oscillator pressure sensor characterized by a structure that responds to external pressure.
JP17578182A 1982-10-06 1982-10-06 Quartz vibrator pressure sensor Pending JPS5967437A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17578182A JPS5967437A (en) 1982-10-06 1982-10-06 Quartz vibrator pressure sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17578182A JPS5967437A (en) 1982-10-06 1982-10-06 Quartz vibrator pressure sensor

Publications (1)

Publication Number Publication Date
JPS5967437A true JPS5967437A (en) 1984-04-17

Family

ID=16002138

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17578182A Pending JPS5967437A (en) 1982-10-06 1982-10-06 Quartz vibrator pressure sensor

Country Status (1)

Country Link
JP (1) JPS5967437A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61201129A (en) * 1985-03-04 1986-09-05 Toyo Commun Equip Co Ltd Gas pressure sensor
EP0238297A2 (en) * 1986-03-20 1987-09-23 Seiko Instruments Inc. Gas pressure gauge
EP0483498A2 (en) * 1990-10-31 1992-05-06 Sumitomo Metal Mining Company Limited Piezoelectric air pressure variation detector
US5546810A (en) * 1993-07-06 1996-08-20 Seiko Epson Corporation Pressure measuring device and method using quartz resonators
JPH09105U (en) * 1991-10-29 1997-02-25 東洋通信機株式会社 Gas pressure sensor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS502986A (en) * 1973-05-09 1975-01-13
JPS54158275A (en) * 1978-04-26 1979-12-13 Ebauches Electroniques Sa Electronic timepiece with atmospheric pressure or altitude display

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS502986A (en) * 1973-05-09 1975-01-13
JPS54158275A (en) * 1978-04-26 1979-12-13 Ebauches Electroniques Sa Electronic timepiece with atmospheric pressure or altitude display

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61201129A (en) * 1985-03-04 1986-09-05 Toyo Commun Equip Co Ltd Gas pressure sensor
EP0238297A2 (en) * 1986-03-20 1987-09-23 Seiko Instruments Inc. Gas pressure gauge
EP0483498A2 (en) * 1990-10-31 1992-05-06 Sumitomo Metal Mining Company Limited Piezoelectric air pressure variation detector
JPH09105U (en) * 1991-10-29 1997-02-25 東洋通信機株式会社 Gas pressure sensor
US5546810A (en) * 1993-07-06 1996-08-20 Seiko Epson Corporation Pressure measuring device and method using quartz resonators

Similar Documents

Publication Publication Date Title
US4295376A (en) Force responsive transducer
US4432238A (en) Capacitive pressure transducer
US4490773A (en) Capacitive pressure transducer
US4507970A (en) Pressure sensitive element and a sensor comprising such an element
JP3757984B2 (en) Stabilized pressure sensor
JPH0546488B2 (en)
US4603371A (en) Capacitive sensing cell made of brittle material
US4433580A (en) Pressure transducer
JPS6356935B2 (en)
JPH0454165B2 (en)
US4435986A (en) Pressure transducer of the vibrating element type
US4498344A (en) Sensitive element for use in a strain sensor and a sensor comprising such an element
US4229776A (en) Capacitive capsule for aneroid pressure gauge
JPS5967437A (en) Quartz vibrator pressure sensor
JP3171410B2 (en) Vacuum sensor
JPH0515975B2 (en)
US4458292A (en) Multiple capacitor transducer
US4134304A (en) Air pressure transducer of diffusion type
JPH0587665A (en) Differential pressure measuring device
JPH07103838A (en) Micromanometer
JPH03239938A (en) Capacity type pressure sensor
JPH0358459B2 (en)
JPH0517632Y2 (en)
US4703657A (en) Gas pressure sensor
RU1783333C (en) Capacity pressure gauge and method of its making