JPS5856488A - Specifying method for resonance mode of gas laser tube - Google Patents

Specifying method for resonance mode of gas laser tube

Info

Publication number
JPS5856488A
JPS5856488A JP56154962A JP15496281A JPS5856488A JP S5856488 A JPS5856488 A JP S5856488A JP 56154962 A JP56154962 A JP 56154962A JP 15496281 A JP15496281 A JP 15496281A JP S5856488 A JPS5856488 A JP S5856488A
Authority
JP
Japan
Prior art keywords
capillary tube
mode
resonance mode
tube
metal cylinder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56154962A
Other languages
Japanese (ja)
Inventor
Kaoru Arai
薫 新井
Kenji Horio
堀尾 研二
Jiro Toyama
外山 二郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP56154962A priority Critical patent/JPS5856488A/en
Publication of JPS5856488A publication Critical patent/JPS5856488A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/02Constructional details
    • H01S3/03Constructional details of gas laser discharge tubes
    • H01S3/034Optical devices within, or forming part of, the tube, e.g. windows, mirrors

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Lasers (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)

Abstract

PURPOSE:To enable to simply specify the resonance mode by inserting a metal cylinder into a capillary tube and disposing a diaphragm having a diameter multiplied by 1.5-2 times of the diameter of a beam determined by a light resonator. CONSTITUTION:A cut split 12 is formed on the side surface of an elastic metal cylinder 11, and is inserted and fixed to a capillary tube 3 by utilizing the elasticity. When an adhesive is used, the split and the elastic metal are not necessary. In this case, the diameter for specifying the mode can be determined by the thickness 13 of the cylinder 11.

Description

【発明の詳細な説明】 本発明は、ガスレーザ管の共振モード規制方法に関する
。ガスレーザ装置はボンピングによシ反転分布状態を形
成しているガス原子と光共振器の態となった位相の揃っ
た光を一定の透過率をもつ反射鏡よシ連続出力として取
に出す装置である。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for regulating resonance modes of a gas laser tube. A gas laser device is a device that extracts gas atoms forming a population inversion state through bombing and phase-aligned light in the form of an optical resonator through a reflector with a constant transmittance as a continuous output. be.

第1図は端部円筒形He * N eレーザの構成でガ
ラス製、の外囲器1の一端に陽極2が埋め込まれておシ
、レーザ発光が生ずる毛細管3の固定と陽。
FIG. 1 shows a configuration of a He*N e laser with a cylindrical end. An anode 2 is embedded in one end of an envelope 1 made of glass, and a capillary tube 3 in which laser emission occurs is fixed and connected.

陰極室の隔離をする隔壁4を隔てて陰極5が円筒状に設
けられておシ、これは端部円筒陰極6に接続されている
A cylindrical cathode 5 is provided across a partition wall 4 that isolates the cathode chamber, and is connected to a cylindrical cathode 6 at the end.

ここで端部円筒陰極6は外囲器1と融着されて仁の一部
を形成している。
Here, the end cylindrical cathode 6 is fused to the envelope 1 to form a part of the core.

次に外囲器1の内部は充分に排気された後HemNeガ
スが減圧状態で封入されている。
Next, the inside of the envelope 1 is sufficiently evacuated, and then HemNe gas is sealed in a reduced pressure state.

かかる構成をとるレーザ管において、陽ai2と陰極5
の間に電圧を印加して放電を起させるとグロー放゛颯は
陽極lよシ毛細管3を通シ陰極5に達する通路に生し、
励起したN・原子により発光が起り、これが反射鏡より
なる光共振器で増幅される結果、発振を起して光共振器
の間に定在波を生じ、その一部が一定の透過率をもつ反
射鏡7からレーザ光として取り出されるのである。
In a laser tube having such a configuration, an anode ai2 and a cathode 5
When a voltage is applied between them to cause a discharge, glow radiation is produced in a path from the anode L through the capillary tube 3 to the cathode 5.
The excited N atoms cause light emission, which is amplified by an optical resonator made of a reflecting mirror, causing oscillation and creating a standing wave between the optical resonators, a part of which has a certain transmittance. The light is extracted as a laser beam from the reflecting mirror 7.

ここで全反射鏡8と反射鏡7によシ形成されている光共
振器は毛細管3の断面の中央部に周辺よりもより多く光
ビームが集中するように設計されていが、各種のシ磁界
分布が存在しこれは共振モードと呼ばれている。
Here, the optical resonator formed by the total reflection mirror 8 and the reflection mirror 7 is designed so that more light beams are concentrated in the center of the cross section of the capillary tube 3 than in the periphery. There is a distribution called a resonance mode.

どこで・共振モードには大別して横方向モードと縦方向
モードとがあるが、元の波長に比べて反射鏡の大きさが
はるかに大きく回析損の少い第1図のような構造の場合
は、毛細管の軸方向の電磁界の成分は横方向成分に比べ
て無視できる程少く、そのため光共振器内のビームは横
方向モードだけを考えれは工<、TEM波(横波)のみ
からなると見做すことができる。
Where - Resonant modes can be roughly divided into transverse modes and longitudinal modes, but in the case of a structure like the one shown in Figure 1, where the size of the reflecting mirror is much larger than the original wavelength and there is little diffraction loss. The electromagnetic field component in the axial direction of the capillary is negligible compared to the transverse component, and therefore, if only the transverse mode is considered, the beam in the optical resonator can be considered to consist only of TEM waves (transverse waves). I can do it.

この場合共振モードはT EMm nで指定され、m、
nは横方向モードを指定する整数で横モード数と云われ
るが、このm、Hの数が大きくなる程ビームが拡がり、
また回折損は増大する関係がある。
In this case, the resonant mode is designated by T EMm n, m,
n is an integer that specifies the transverse mode and is called the transverse mode number, and the larger the numbers m and H, the more the beam spreads.
Moreover, there is a relationship in which the diffraction loss increases.

ここでTEM、、 モードはビームの中心で強度が最大
となシ、波面全体が同位相で振動する最も低次の横モー
ト鳴り、それ以外のモードはビーム断面が幾つかに分割
して振動するモードからなっている。
Here, in TEM mode, the intensity is maximum at the center of the beam, the lowest-order transverse mode vibrates in which the entire wavefront vibrates in the same phase, and the other modes vibrate when the beam cross section is divided into several parts. It consists of modes.

それで第1図のように直径の大きな反射鏡を用いるとき
は多数の横モードが重り合った多重モードで発゛振が行
われている。然し現実のレーザ装置においては、モード
規制窓を設けて高次の横モードを出力よシ排除する方法
がとられている。
Therefore, when a reflecting mirror with a large diameter is used as shown in FIG. 1, oscillation is performed in multiple modes in which many transverse modes overlap. However, in actual laser devices, a method is used in which a mode regulation window is provided to exclude higher-order transverse modes from the output.

ここで最も低次のTEMc、cモードはレーザビー ム
の広がり角が最も小さく、また最も小さなスボ雫トに集
光できるため実用的価値が高い。
Here, the lowest-order TEMc and c modes have the smallest spread angle of the laser beam and can be focused on the smallest droplet, so they have high practical value.

すなわちビームの広がシ角θ(ラジアン)は次式で与え
られる。
That is, the beam spread angle θ (radians) is given by the following equation.

2λ θ=□−−・・・・・・・・・・(1)l ここで、J・・・波長 a・・・ビームの半径でその点にお ける強度は中心強度の砂 ここでTEMccモードのビーム断面の強度分布につい
ては、ビーム直径2aの内に全出力の86.8 嘔3a
内に989畳、4a内に9997嘔が含まれるのでレー
ザビームの広がシ角は最も少い。
2λ θ=□−−・・・・・・・・・・(1)l Here, J...Wavelength a...Radius of the beam, the intensity at that point is the center intensity sand, where the TEMcc mode Regarding the intensity distribution of the beam cross section, the total power is 86.8mm within the beam diameter 2a.
4a includes 989 tatami and 4a includes 9997 tatami, so the laser beam spread angle is the smallest.

そこでTEMccモードの発振を得る方法とじて光共振
器により定まるビーム直径の1.5〜2倍の直径の絞シ
を光共振器の中に置くか、毛細管の内径をこの値に選ぶ
ことが行われている。
Therefore, the method to obtain TEMcc mode oscillation is to place an aperture in the optical resonator with a diameter 1.5 to 2 times the beam diameter determined by the optical resonator, or to select the inner diameter of the capillary to this value. It is being said.

然し乍ら、後者の方法は毛細管内部の真直角の確保や光
軸調整が難しいなどの問題点がある。
However, the latter method has problems such as difficulty in ensuring a straight angle inside the capillary tube and difficulty in adjusting the optical axis.

本発明は前者の方法に係シ、本発明の目的は比較的簡単
な構成により共振モードの規制を行うにある。
The present invention relates to the former method, and an object of the present invention is to regulate resonance modes with a relatively simple configuration.

第2図および第3図は、従来の共振モード規制方法であ
る。すなわち第2図は毛細管3を熱的に加工し内径部9
を絞ることによりモード規制を行うものであるが、加工
性が悪くまた毛細管3の真直度の確保などが難しいなど
の欠点がおる。また第3図は毛細管3の端面に金属キヤ
ダプからなるモード規制窓10を固定後、これに反射鏡
を接着する方法で、この場合は反射鏡の光軸を合わせる
ために予め毛細管3の端面或は規制窓10の端面を光学
的に研磨する必要があ夛、多大の工数を要すると云う欠
点がある。
FIGS. 2 and 3 show conventional resonance mode regulation methods. In other words, in FIG. 2, the capillary tube 3 is thermally processed to form an inner diameter portion 9.
However, it has drawbacks such as poor workability and difficulty in ensuring the straightness of the capillary tube 3. FIG. 3 shows a method in which a mode regulating window 10 made of a metal cap is fixed to the end face of the capillary tube 3, and then a reflecting mirror is glued to this. In this case, in order to align the optical axis of the reflecting mirror, the end face of the capillary tube 3 or However, the disadvantage is that it is necessary to optically polish the end face of the regulating window 10, which requires a large amount of man-hours.

本発明は従来に較べて超かに簡単な方法でモード規制を
行うもので、切シ割り部をもつ弾性金属円筒或はフラン
ジ付き金属円筒を毛細管に挿入してモード規制を行うも
のである。
The present invention regulates the mode using a much simpler method than the conventional method, and regulates the mode by inserting an elastic metal cylinder having a cut portion or a flanged metal cylinder into a capillary tube.

第4図は弾性金属円筒を用いてモード規制を行う場曾で
、第4図■は毛細管3に挿入した状態の断面図、同図の
)は弾性金属円筒の斜視図である。
FIG. 4 shows a case in which mode regulation is performed using an elastic metal cylinder. FIG.

この構造においては、弾性金属円筒11の側面に切シ割
り部12を有しており、弾性を利用して毛細管3に挿入
固定できるようになっている。なお接着剤を用いる場合
は切シ割シ部および弾性金属の使用は不要となる。
In this structure, the elastic metal cylinder 11 has a cut section 12 on its side surface, and can be inserted and fixed into the capillary tube 3 by utilizing its elasticity. Note that when adhesive is used, there is no need to use the cut portion or elastic metal.

この第4図の構造をとる場合、モード規制のための直径
は弾性金属円筒11の肉厚13により決められる。
In the case of the structure shown in FIG. 4, the diameter for mode regulation is determined by the wall thickness 13 of the elastic metal cylinder 11.

次に第5図は7ランジ付き金属円筒14によシモード規
制を行うもので、第5図囚は挿入状態を示し、同図03
)はこの斜視図である。
Next, Fig. 5 shows the mode regulation by the metal cylinder 14 with 7 flange, and Fig. 5 shows the inserted state.
) is this perspective view.

この構造においては、モード規制窓の寸法は金属円筒1
4の内径によシ決り、この円筒部を毛細管3の内部に挿
入しフランジ部15で毛細管3と接着固定し、以後は従
来の方法で反射鏡との接続が行われる。
In this structure, the dimensions of the mode regulation window are 1
The cylindrical portion is inserted into the capillary tube 3 according to the inner diameter of the capillary tube 3, and fixed to the capillary tube 3 by adhesive at the flange portion 15, and thereafter connected to a reflecting mirror using a conventional method.

本発明はガスレーザ管の共振モード規制を比較的簡単な
方法によシ行うもので、第4図または第5図に示す金属
円筒を毛細管中に挿入することにより容易にモード規制
ができるようになっている。
The present invention regulates the resonance mode of a gas laser tube using a relatively simple method.The mode can be easily controlled by inserting a metal cylinder shown in FIG. 4 or 5 into a capillary tube. ing.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は端部円筒形He*Neレーザの構成図、第2図
と第3図は従来の共振モード規制方法の説明図、第4図
と第5図は本発明に係る共振モード規制方法を示すもの
で、囚は断面図、@はモード規制用構成体の斜視図であ
る。 図において、3は毛細管、11は弾性金属円筒、12は
切り割り部、13は肉厚、14は金属円筒、15はフラ
ンジ。 第 1 @
Figure 1 is a configuration diagram of a He*Ne laser with a cylindrical end shape, Figures 2 and 3 are explanatory diagrams of a conventional resonance mode regulation method, and Figures 4 and 5 are resonance mode regulation methods according to the present invention. In this figure, the figure is a cross-sectional view, and the figure @ is a perspective view of the mode regulating structure. In the figure, 3 is a capillary tube, 11 is an elastic metal cylinder, 12 is a cut portion, 13 is a wall thickness, 14 is a metal cylinder, and 15 is a flange. 1st @

Claims (1)

【特許請求の範囲】[Claims] 低圧ガスを封入した管内の両端に陽極および陰極からな
る放電電極があり、管内中央部に位置してレーザの活性
領域となる毛細管を挾み、該毛細管の延長線上に光共振
器を備えてなるガスレーザ管において、共振モード規制
用の小孔が切p割p部をもつ金属円筒またはフランジ付
き金属円筒を毛細管中に挿入することにより形成される
ことを特徴とするガスレーザ管の共振モード規制方法。
A discharge electrode consisting of an anode and a cathode is located at both ends of a tube filled with low-pressure gas, sandwiching a capillary tube that is located in the center of the tube and serves as the active region of the laser, and an optical resonator is provided on an extension of the capillary tube. A method for regulating a resonance mode in a gas laser tube, characterized in that a small hole for regulating the resonance mode is formed by inserting a metal cylinder having a cut p-split part or a flanged metal cylinder into a capillary tube.
JP56154962A 1981-09-30 1981-09-30 Specifying method for resonance mode of gas laser tube Pending JPS5856488A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56154962A JPS5856488A (en) 1981-09-30 1981-09-30 Specifying method for resonance mode of gas laser tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56154962A JPS5856488A (en) 1981-09-30 1981-09-30 Specifying method for resonance mode of gas laser tube

Publications (1)

Publication Number Publication Date
JPS5856488A true JPS5856488A (en) 1983-04-04

Family

ID=15595705

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56154962A Pending JPS5856488A (en) 1981-09-30 1981-09-30 Specifying method for resonance mode of gas laser tube

Country Status (1)

Country Link
JP (1) JPS5856488A (en)

Similar Documents

Publication Publication Date Title
JP5517434B2 (en) Gas laser apparatus and laser generation method
JPH10500250A (en) laser
US4177435A (en) Optically pumped laser
JPS5856488A (en) Specifying method for resonance mode of gas laser tube
JPS6342427B2 (en)
US4375688A (en) Gas laser tube
JPS5856487A (en) Specifying method for resonance mode of gas laser tube
US5764680A (en) Folded internal beam path for gas stable/unstable resonator laser
US3739296A (en) Laser systems and laser control systems
JPH0371683A (en) Gas laser device
US4425655A (en) Direct focussed gas laser
JPS5878479A (en) Optical adjusting mechanism for gas laser tube
JPH05152651A (en) Laser oscillator apparatus
US3942133A (en) Gas laser tube with stray light restriction
JPH06216445A (en) Laser oscillator
Marczak Designs of the resonators increasing the efficiency of laser oscillators
JPH03155684A (en) Gas laser device
JPS5932185A (en) Silent discharge type gas laser device
JPH08191166A (en) Gas laser device
JPH047110B2 (en)
JPH03230587A (en) Waveguide type gas laser oscillator
JPH02281671A (en) Gas laser oscillation device
JPH05283788A (en) Narrow band laser oscillation device
JPH0342887A (en) Laser resonator
JPS6097682A (en) Discharge tube excited laser