JPH03155684A - Gas laser device - Google Patents

Gas laser device

Info

Publication number
JPH03155684A
JPH03155684A JP355090A JP355090A JPH03155684A JP H03155684 A JPH03155684 A JP H03155684A JP 355090 A JP355090 A JP 355090A JP 355090 A JP355090 A JP 355090A JP H03155684 A JPH03155684 A JP H03155684A
Authority
JP
Japan
Prior art keywords
resonator
laser
discharge space
dimension
unstable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP355090A
Other languages
Japanese (ja)
Other versions
JP2700345B2 (en
Inventor
Junichi Nishimae
順一 西前
Kenji Yoshizawa
憲治 吉沢
Masakazu Taki
正和 滝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2003550A priority Critical patent/JP2700345B2/en
Priority to US07/564,517 priority patent/US5048048A/en
Priority to EP90115394A priority patent/EP0412555B1/en
Priority to DE69005393T priority patent/DE69005393T2/en
Publication of JPH03155684A publication Critical patent/JPH03155684A/en
Application granted granted Critical
Publication of JP2700345B2 publication Critical patent/JP2700345B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/02Constructional details
    • H01S3/03Constructional details of gas laser discharge tubes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/02Constructional details
    • H01S3/03Constructional details of gas laser discharge tubes
    • H01S3/0315Waveguide lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/097Processes or apparatus for excitation, e.g. pumping by gas discharge of a gas laser
    • H01S3/0975Processes or apparatus for excitation, e.g. pumping by gas discharge of a gas laser using inductive or capacitive excitation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/08Construction or shape of optical resonators or components thereof
    • H01S3/08059Constructional details of the reflector, e.g. shape
    • H01S3/08068Holes; Stepped surface; Special cross-section
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/08Construction or shape of optical resonators or components thereof
    • H01S3/081Construction or shape of optical resonators or components thereof comprising three or more reflectors
    • H01S3/0818Unstable resonators

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Lasers (AREA)

Abstract

PURPOSE:To obtain a gas laser device which is less sensitive to the tilt of a reflecting mirror, easy to control the tilt of the reflecting mirror and stable in performance by forming a laser resonator on a recessed part and a projected part respectively in terms of one dimension belonging to a longer dimension in a cross section of a discharge space, and constituting an unstable resonator of a negative branch. CONSTITUTION:This resonator is an unstable resonator of a negative branch comprising a combination of mirrors 50 and 51 in terms of one dimension belonging to a longer dimension in a cross section of a discharge space or in the direction of A. In terms of one dimension of a shorter one or in the direction of B, it serves as an optical waveguide resonator. Furthermore, the unstable resonator of negative branch is designed to deviate a laser light axis from the central axis of the discharge space in order to take out a laser beam from one end 671 of a longer dimension of the cross section of the discharge space. The construction of this unstable resonator of negative branch produces a focus point within the resonator wherein the light does not come into focus in one point only but along a line, and thereby prevents the occurrence of any problems induced by the concentration of light and exerts the maximum advantage enjoyed by the unstable reflector of negative branch which is less sensitive to the tilt of the reflecting mirror and improves the stability of the resonator.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、レーザ気体の励起が行なわれる放電空間が
、偏平なスラブ状をしている気体レーザ装置に関し、特
にそのレーザ共振器の安定性の向上に関するものである
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a gas laser device in which a discharge space in which laser gas is excited is in the shape of a flat slab, and particularly relates to a gas laser device in which the stability of the laser resonator is improved. This is related to the improvement of

[従来の技術] 第6図は特開昭83−192285号公報に示された従
来の気体レーザ装置の概略断面図、第7図はこのレーザ
装置の共振器の構成を示す概略平面図である。図におい
て、 (11)は7214Hz高周波発生器、(21)
は電力整合回路、(22)は高周波ケーブル、(23)
は絶縁フィードスルー (71)、(72)は電極、(
73)、 (74)は電極の表面で光学反射面に研摩し
である。(75)は放電用隙間、(7B) 、 (77
)は電極(71)。
[Prior Art] FIG. 6 is a schematic sectional view of a conventional gas laser device disclosed in Japanese Patent Application Laid-Open No. 83-192285, and FIG. 7 is a schematic plan view showing the configuration of a resonator of this laser device. . In the figure, (11) is a 7214Hz high frequency generator, (21)
is a power matching circuit, (22) is a high frequency cable, (23)
are insulated feedthroughs (71), (72) are electrodes, (
73) and (74) are the surfaces of the electrodes polished to optically reflective surfaces. (75) is the discharge gap, (7B), (77
) is an electrode (71).

(72)を絶縁するスペーサ、(78)はU字形をした
基部で、電極(71)、(72)とスペーサ(76)、
(77)よりなる組立体が基部(78)上に取付けられ
、U字形の基部(78)は蓋(79)により閉じられ、
セラミック絶縁材(80)がM (79)と電極(71
)との間に配設されている。また、レーザ共振器は第7
図に示すように、凹球面の全反射鏡(52)と凸球面の
全反射鏡(53)とから構成されている。
(72) is a spacer that insulates the electrodes (71), (72) and the spacer (76), (78) is a U-shaped base.
(77) is mounted on the base (78), the U-shaped base (78) being closed by a lid (79);
Ceramic insulator (80) connects M (79) and electrode (71)
). In addition, the laser resonator is the seventh
As shown in the figure, it is composed of a total reflection mirror (52) with a concave spherical surface and a total reflection mirror (53) with a convex spherical surface.

上記のように構成された従来の気体レーザ装置において
は、高周波発生器(11)により発生された高周波は電
力整合器(21)を介して、ケーブル(22)を通って
電極(71) 、 (72)間に印加される。電極(7
1)、(72)間の放電用隙間(75)には1ノ一ザ気
体が充填されており、ff1i(71)、<72)間に
印加された高周波によりレーザ気体が放電励起される。
In the conventional gas laser device configured as described above, the high frequency generated by the high frequency generator (11) passes through the power matching device (21), the cable (22), and the electrodes (71), ( 72) is applied between. Electrode (7
The discharge gap (75) between 1) and (72) is filled with laser gas, and the laser gas is excited to discharge by the high frequency applied between ff1i (71) and <72).

このように、反射鏡(52)とく53)とで構成される
レーザ共振器内に、励起されたレーザ気体が存在するた
め、レーザ発振が行なわれる。このとき、電極(71)
、(72)間を21111にし、電極(71) 、 (
72)の縁と凸面鏡(53)の縁との間の距離を2 +
nとすることにより一辺が、約2龍の方形ビームが得ら
れる。このビームはレーザ共振器から一定距離離れると
ガウス型円形ビーム(8)となる。
In this way, the excited laser gas is present in the laser resonator constituted by the reflecting mirrors (52) and 53), so that laser oscillation is performed. At this time, the electrode (71)
, (72) is set to 21111, and the electrodes (71), (
The distance between the edge of 72) and the edge of convex mirror (53) is 2 +
By setting it to n, a square beam of approximately 2 dragons on one side can be obtained. This beam becomes a Gaussian circular beam (8) at a certain distance from the laser resonator.

[発明が解決しようとする課題] 上記のような従来の気体レーザ装置では、レーザ共振器
が凹面鏡と凸面鏡の組み合わせの、いわゆる正ブランチ
不安定型共振器となっているため、反射鏡の傾きに非常
に敏感で、反射鏡の傾きの調整が行ない難く、しかも温
度による変形等で調整が狂い易いため、共振器の安定性
の確保が難しいといった問題点があった。
[Problems to be Solved by the Invention] In the conventional gas laser device as described above, the laser resonator is a so-called positive branch unstable type resonator, which is a combination of a concave mirror and a convex mirror. This poses a problem in that it is difficult to ensure the stability of the resonator, as it is difficult to adjust the inclination of the reflecting mirror, and the adjustment is easily lost due to deformation due to temperature.

この発明は、かかる問題点を解決するためになされたも
ので、反射鏡の傾きに鈍感で、反射鏡の傾きの調整が容
易で、安定性の良い気体レーザ装置を得ることを目的と
する。
The present invention was made to solve these problems, and aims to provide a gas laser device that is insensitive to the inclination of the reflecting mirror, allows easy adjustment of the inclination of the reflecting mirror, and has good stability.

[課題を解決するための手段] この発明に係る気体レーザ装置は、放電空間をレーザ光
軸方向に垂直な断面の縦と横の寸法が異なる偏平なスラ
ブ状に形成し、この放電空間の両端に夫々レーザ共振器
ミラーを配置して、放電空間断面における寸法の長い方
の1次元については上記レーザ共振器ミラーをそれぞれ
凹面と凹面に形成し、負ブランチの不安定型共振器を構
成して、放電空間断面における寸法の長い方の一端部か
らレーザビームを取り出すようにしたものである。
[Means for Solving the Problems] In the gas laser device according to the present invention, the discharge space is formed in the shape of a flat slab with different vertical and horizontal dimensions in a cross section perpendicular to the laser optical axis direction, and both ends of the discharge space are A laser resonator mirror is arranged at each of the two sides, and the laser resonator mirror is formed into a concave surface and a concave surface, respectively, for the longer one dimension in the cross section of the discharge space, thereby forming an unstable negative branch resonator. The laser beam is taken out from one end of the longer dimension in the cross section of the discharge space.

[作用] この発明においては、放電空間断面における寸法の長い
方の1次元について負ブランチの不安定型共振器を構成
しているから、共振器内に焦点はあるが、光が集中する
のは一点でなく一線となり、通常の円筒軸対称の共振器
を負ブランチとした場合に比し・光の集中の割合が大き
く低減され、光学損傷等光の集中による問題が生じるこ
となり、シかも負ブランチの不安定型共振器の反射鏡の
傾きに鈍感である特長が最大限に発揮される。
[Operation] In this invention, an unstable resonator with a negative branch is constructed in one dimension of the longer dimension in the cross section of the discharge space, so although there is a focal point within the resonator, the light is concentrated at only one point. Compared to the case where a normal cylindrical axially symmetrical resonator is used as a negative branch, the concentration ratio of light is greatly reduced, and problems due to light concentration such as optical damage may occur. The feature of being insensitive to the tilt of the reflector of the unstable resonator is fully utilized.

[実施例] 第1図(a)はこの発明の一実施例における共振器を示
す斜視図、第1図(b)は第1図(a)に示す共振器の
不安定型共振器側の概要を示す平面図、第1図(e)は
第1図(a)に示す共振器の先導波路共振器側の概要を
示す側面図である。
[Example] Fig. 1(a) is a perspective view showing a resonator in an embodiment of the present invention, and Fig. 1(b) is an outline of the unstable resonator side of the resonator shown in Fig. 1(a). FIG. 1(e) is a side view schematically showing the leading waveguide resonator side of the resonator shown in FIG. 1(a).

第1図(a) 、 (b)及び(c)において、(50
)は全反射ミラーで、凹面鏡である。(51)は出口全
反射ミラーで、凹面鏡である。(67)は放電空間で、
第5図における電極(71)、(72)の表面で囲まれ
た放電用隙間(75)に相当する空間である。この放電
空間(B7)は、レーザ光軸方向に垂直な断面の縦と横
の寸法(A及びB)が異なる偏平なスラブ状に形成され
ており、寸法Bはレーザ波長に対し光導波路の寸法とし
である。なお、放電空間(87)の図示は簡略化して輪
郭のみ示しである。
In Figure 1 (a), (b) and (c), (50
) is a total reflection mirror and is a concave mirror. (51) is an exit total reflection mirror, which is a concave mirror. (67) is the discharge space,
This space corresponds to the discharge gap (75) surrounded by the surfaces of the electrodes (71) and (72) in FIG. 5. This discharge space (B7) is formed in the shape of a flat slab in which the vertical and horizontal dimensions (A and B) of the cross section perpendicular to the laser optical axis direction are different, and dimension B is the dimension of the optical waveguide with respect to the laser wavelength. It's Toshide. Note that the illustration of the discharge space (87) is simplified and only the outline is shown.

以上のように構成された共振器は、放電空間断面におけ
る寸法の長い方の1次元については、つまり図示のA方
向についてはミラー(50)、(51)を組み合わせた
負ブランチの不安定型共振器となっており、放電空間断
面における寸法の短い方の1次元については、つまり図
示のB方向については、先導波路共振器となっている。
The resonator configured as described above is a negative branch unstable resonator combining mirrors (50) and (51) in the longer one dimension in the cross section of the discharge space, that is, in the A direction shown in the figure. As for the shorter one dimension in the cross section of the discharge space, that is, for the direction B shown in the figure, it is a leading waveguide resonator.

さらに、負ブランチの不安定型共振器は、放電空間断面
の寸法が長い方の一端部(071)からのみレーザビー
ム(8)を取り出すために、レーザ光軸を放電空間の中
心軸よりずらしである。即ち、ミラー(50)及び(5
1)の少くとも一方は放電空間の中心軸に対し傾けて配
置しである。また、ミラー(51)にはレーザビーム取
り出し部(511)が設けである。このレーザービーム
取り出し部(511)は、この実施例ではミラー(51
)の一部を切欠いて直線状のアパーチャを形成したもの
である。
Furthermore, in the negative branch unstable resonator, the laser optical axis is shifted from the central axis of the discharge space in order to extract the laser beam (8) only from one end (071) where the cross-sectional dimension of the discharge space is longer. . That is, mirrors (50) and (5
At least one of 1) is arranged at an angle with respect to the central axis of the discharge space. Further, the mirror (51) is provided with a laser beam extraction section (511). In this embodiment, the laser beam extraction section (511) is a mirror (51
) is cut out to form a linear aperture.

なお、図において、PLOはミラー(51)から取り出
されるレーザ光強度分布を示しており、RTはミラー(
50)の曲率半径、R3はミラー(51)の曲率半径で
ある。また、a及びbはミラーの有効長さを示している
In the figure, PLO indicates the laser light intensity distribution taken out from the mirror (51), and RT indicates the distribution of the laser light intensity taken out from the mirror (51).
50) and R3 is the radius of curvature of the mirror (51). Further, a and b indicate the effective length of the mirror.

次に、不安定型共振器の機械的変動、つまりミラーの傾
き(以下、ミスアライメントと記す)に対する感度につ
いて説明する。
Next, the sensitivity of the unstable resonator to mechanical fluctuations, that is, mirror tilt (hereinafter referred to as misalignment) will be explained.

第2図は正ブランチ不安定型共振器のミスアライメント
感度を説明する説明図、第3図は負ブランチ不安定型共
振器のミスアライメント感度を説明する説明図である。
FIG. 2 is an explanatory diagram for explaining the misalignment sensitivity of the positive branch unstable type resonator, and FIG. 3 is an explanatory diagram for explaining the misalignment sensitivity of the negative branch unstable type resonator.

第2図及び第3図において、(1)及び(2)はミラー
で、第2図では第7図のミラー(52)及びミラー(5
3)を示し、第3図では第1図のミラー(50)及びミ
ラー(51)を示している。eはミラー(2)の曲率中
心、fはもともとのミラー(1)の曲率中心、gはずれ
たミラー(1)の曲率中心、hは焦点、θはミラー(1
)のずれ角、φは光軸のずれ角である。なお、光軸Cは
曲率中心を結んだ線、即ち両方のミラー面に垂直な線で
、ミラー(1)がずれた場合、即ちミラー(1)が傾い
た場合efからegへ変化する。dはずれた光軸を示し
ている。
In Figures 2 and 3, (1) and (2) are mirrors, and in Figure 2, mirror (52) and mirror (5) in Figure 7 are shown.
3), and FIG. 3 shows the mirror (50) and mirror (51) of FIG. 1. e is the center of curvature of the mirror (2), f is the original center of curvature of the mirror (1), g is the center of curvature of the displaced mirror (1), h is the focal point, and θ is the center of curvature of the mirror (1).
) is the deviation angle of the optical axis, and φ is the deviation angle of the optical axis. The optical axis C is a line connecting the centers of curvature, that is, a line perpendicular to both mirror surfaces, and changes from ef to eg when the mirror (1) is shifted, that is, when the mirror (1) is tilted. d indicates a shifted optical axis.

不安定型共振器のミスアライメントに対する感度Mは、
学会誌(IEEE JOURNAL OF QUANT
UMELECTRONIC8、DEOEMBER198
9,P、579)に記載されているように、下記(1)
〜(3)式で表わされる。
The sensitivity M to misalignment of an unstable resonator is
IEEE JOURNAL OF QUANT
UMELECTRONIC8, DEOEMBER198
9, P. 579), below (1)
~(3) Expression.

φ M−・・・(1) θ 二二で、mは拡大率で共焦点(Conf’ocal)共
振器においてはミラーの曲率比で考えられる。
φ M− (1) θ 22, where m is the magnification ratio and can be considered as the curvature ratio of the mirror in a confocal resonator.

2 R1,R2はミラー(1)及び(2)の曲率半径で、凸
曲率と凹曲率を士符号で区別しているため(5)式は負
となる。
2 R1 and R2 are the radii of curvature of mirrors (1) and (2), and since convex curvature and concave curvature are distinguished by the sign, equation (5) is negative.

このmは、幾何(光)学的にはエツジやアパーチャによ
って制限されたミラーの有効長さ(第1図、第7図に示
すa及びb)の比になる。
This m is geometrically (optically) a ratio of the effective length of the mirror (a and b shown in FIGS. 1 and 7) limited by edges and apertures.

m−□                   ・・・
(8)なお、ミラーの有効長さとはエツジやアパーチャ
により制限されて、実際に光の当っているミラーの部分
である。(軸対称の場合は有効径になる)即ち、拡大率
とは、共振器内における拡大される前のビームの大きさ
と拡大後のビームの大きさの比である。
m-□ ・・・
(8) Note that the effective length of the mirror is limited by edges and apertures and is the portion of the mirror that is actually illuminated by light. (In the case of axial symmetry, it becomes the effective diameter.) That is, the magnification ratio is the ratio of the size of the beam before being expanded and the size of the beam after being expanded in the resonator.

第1図に従って試作したCO2レーザの例では、放電空
間長400 mus、断面寸法2X2huwであり、適
当な出力結合率10%と出射ビームの対称性が両立する
ように拡大率mは1.1程度に設計されている。
In the example of the CO2 laser prototyped according to Fig. 1, the discharge space length is 400 mus, the cross-sectional dimension is 2 x 2 huw, and the magnification factor m is about 1.1 to achieve both an appropriate output coupling rate of 10% and symmetry of the emitted beam. It is designed to.

この場合M ユ22、M :l:1となる。In this case, M:22, M:l:1.

従って、負ブランチのミスアライメント感度は正ブラン
チのミスアライメント感度のl/22となる。
Therefore, the misalignment sensitivity of the negative branch is 1/22 of the misalignment sensitivity of the positive branch.

即ち、ミラーが傾、いたことによる光軸のずれは負ブラ
ンチの方がはるかに少い。従って、共振器によって作ら
れる光の場と放電により励起された活性媒質とのずれも
はるかに少な(、共振器の安定性が向上する。
That is, the deviation of the optical axis due to the tilting of the mirror is much smaller in the negative branch. Therefore, the deviation between the optical field created by the resonator and the active medium excited by the discharge is much smaller (and the stability of the resonator is improved).

なお、この発明では、拡大率mは不安定側(断面寸法A
の方)のみで定義され、先導波路側(断面寸法Bの方)
については関係がない。
In addition, in this invention, the magnification ratio m is on the unstable side (cross-sectional dimension A
), and the leading waveguide side (cross-sectional dimension B)
It has nothing to do with it.

ところで、負ブランチの不安定型共振器は、共振器内に
焦点があり、通常の円筒軸対称の共振器に用いると共振
器内に光が集中する一点が生じ光学損傷等の問題がある
ため、一般にはほとんど用いられていない。これに対し
、この発明は放電空間断面における寸法の短い方の1次
元は先導波路共振器を構成した通常の円筒軸対称でない
共振器において、負ブランチの不安定型共振器を適用し
たものである。このため、共振器内に焦点があるが、光
が集中するのは一点でなく一線(第1図(b)及び(C
)におけるL)となり、通常の円筒軸対称の共振器に適
用した場合に比し光の集中の割合が大きく低減され、光
学損傷等の光の集中による問題が生じることなく、シか
も負ブランチの不安定型の反射鏡の傾きに鈍感である特
長を最大限に発揮できるものとなる。前記の例では第4
図に示すように正ブランチにおいては出力25W程度か
らミラーの歪によりモードがくずれ、出力が飽和してし
まうが負ブランチでは80W以上が得られた。
By the way, an unstable negative branch resonator has a focal point within the resonator, and when used in a normal cylindrical axially symmetrical resonator, there is a point where light is concentrated within the resonator, causing problems such as optical damage. It is rarely used in general. In contrast, the present invention applies an unstable negative branch resonator to a conventional resonator that is not symmetrical about the cylindrical axis and constitutes a leading waveguide resonator in the shorter one dimension in the cross section of the discharge space. Therefore, although there is a focal point within the resonator, the light is concentrated not at one point but on a line (Fig. 1(b) and (C)
), the rate of light concentration is greatly reduced compared to when applied to a normal cylindrical axially symmetrical resonator, and problems due to light concentration such as optical damage do not occur, and the negative branch can be easily This makes it possible to take full advantage of the unstable reflector's insensitivity to tilt. In the above example, the fourth
As shown in the figure, in the positive branch, the mode is distorted from about 25 W due to the distortion of the mirror, and the output becomes saturated, but in the negative branch, more than 80 W was obtained.

また、負ブランチの方がミラーの曲率半径が小さくなる
ため、曲率としては大きくなり形状誤差に対する曲率誤
差が小となる。同じ形状誤差(精度)に対して曲率半径
の誤差(精度)は目標曲率半径に対してほぼ2乗で大き
くなり、ミラー製作上の精度の良さの点でも負ブランチ
の方が有利である。例えば、前記のC02レーザの例で
±0.5μmの形状誤差でφ30龍程度のミラーを使用
しているが、負ブランチの場合、不安定型の曲率は約4
00で±0.5mmの誤差であるが、正ブランチの場合
曲率が約90QOで±200mmの誤差となり、正ブラ
ンチでは共焦点からのずれが大きく拡大率も目標からず
れ、光の制御が設計通りいかなかった。
Further, since the radius of curvature of the mirror is smaller in the negative branch, the curvature is larger and the curvature error with respect to the shape error is smaller. For the same shape error (accuracy), the error (accuracy) in the radius of curvature increases approximately to the square of the target radius of curvature, and the negative branch is also advantageous in terms of precision in mirror manufacturing. For example, in the example of the C02 laser mentioned above, a mirror with a diameter of about 30mm is used with a shape error of ±0.5μm, but in the case of a negative branch, the curvature of the unstable type is about 4
00, the error is ±0.5mm, but in the case of the positive branch, the curvature is approximately 90QO, resulting in an error of ±200mm, and in the positive branch, the deviation from the confocal position is large, and the magnification rate also deviates from the target, and the light control is not as designed. I did not go.

第5図(a) 、 (b)はいずれもこの発明の他の実
施例における共振器を示すもので、それぞれ第1図(b
) 6(c)相当図である。なお、図示しないがこの実
施例の共振器の斜め方向からみた構成は第1図(a)と
同様である。この実施例のものは、第5図(a)に示す
ように、寸法の長い方の1次元は第1図(b)と同様に
負ブランチの不安定型共振器になっているが、他の1次
元は先導波路共振器ではなく、第5図(b)に示すよう
な通常の開放型の共振器になっており、全反射ミラー(
52)と出口全反射ミラー(53)の放電空間断面の寸
法の長い方の一端部からレーザビーム(8)を取り出す
ようになっている。
5(a) and 5(b) both show resonators in other embodiments of the present invention, and FIG.
) 6(c). Although not shown, the structure of the resonator of this embodiment viewed from an oblique direction is the same as that shown in FIG. 1(a). In this example, as shown in FIG. 5(a), the longer dimension is an unstable resonator with a negative branch, as in FIG. 1(b). The first dimension is not a guiding waveguide resonator, but a normal open-type resonator as shown in Figure 5(b), with a total reflection mirror (
The laser beam (8) is taken out from one end of the longer discharge space cross section of the exit total reflection mirror (52) and the exit total reflection mirror (53).

このような構成の共振器とするためには、寸法の長い方
の1次元については、第5図(a)に示すように、前述
と同様の負ブランチの不安定型共振器となるよう、両ミ
ラーの曲率半径R、RをTl   pi 適当にした凹面にする。他の1次元は、第5図(b)に
示す如く、光が電極表面に当らずにビーム径が放電空間
断面の短い方の寸法B2より小さくなるように両ミラー
の曲率半径R、Rを適当にT2   P2 した凹面にする。すなわち、共振器ミラーは放電空間断
面における寸法の長い方の1次元と短い方の1次元の両
方向で曲率が異なる、いわゆるトロイダルミラーとして
いる。
In order to obtain a resonator with such a configuration, for the longer one dimension, as shown in FIG. The mirror is made into a concave surface with appropriate radii of curvature R, Tl pi . The other one dimension is to set the radius of curvature R, R of both mirrors so that the beam diameter is smaller than the shorter dimension B2 of the discharge space cross section without the light hitting the electrode surface, as shown in Figure 5(b). Make it a concave surface with an appropriate T2 P2. That is, the resonator mirror is a so-called toroidal mirror that has different curvatures in both the longer one dimension and the shorter one dimension in the cross section of the discharge space.

このように構成したものにあっても、第1図のものと同
様に、通常の円筒軸対称でない共振器において、負ブラ
ンチの不安定型共振器を適用したものであるため、共振
器内に焦点があるが、光が集中するのは一点でなく一線
となるので、第1図のものと同様の効果を奏する。
Even with this configuration, like the one in Figure 1, an unstable negative branch resonator is applied to a normal resonator that is not symmetrical about the cylindrical axis. However, since the light is concentrated on a line rather than a single point, the effect is similar to that shown in Figure 1.

なお、上述の各実施例ではこの発明を高周波電界により
放電を発生させレーザ気体を励起する気体レーザ装置に
用いたものを示したが、これを例えば特開昭fi3−1
86483号公報に開示されているような、マイクロ波
回路の一部を構成する導電体壁と、この導電体壁に対向
して設けられた誘電体との間にレーザ光軸方向に垂直な
断面の縦と横の寸法が異なる空間を形成し、この空間に
レーザ気体を封入すると共にマイクロ波電界により放電
破壊させてプラズマを発生させレーザ気体を励起する気
体レーザ装置に適用しても同様の効果が得られる。
In each of the above-mentioned embodiments, the present invention was applied to a gas laser device that generates a discharge using a high-frequency electric field and excites a laser gas.
A cross section perpendicular to the laser optical axis direction between a conductive wall that constitutes a part of a microwave circuit and a dielectric provided opposite to this conductive wall, as disclosed in Japanese Patent No. 86483. The same effect can be obtained even when applied to a gas laser device in which a space with different vertical and horizontal dimensions is formed, a laser gas is sealed in this space, and the laser gas is destroyed by discharge using a microwave electric field to generate plasma and excite the laser gas. is obtained.

また、ミラー(51)のレーザビーム取り出し部(51
1)は、直線状のアパーチャを形成しているが、放電空
間断面の短い方の寸法より充分大きな直径のミラーであ
れば、円形ミラーを用いても問題ない。
In addition, the laser beam extraction portion (51) of the mirror (51)
1) forms a linear aperture, but there is no problem in using a circular mirror as long as it has a diameter sufficiently larger than the shorter dimension of the cross section of the discharge space.

[発明の効果] この発明は以上説明したとおり、放電空間断面における
寸法の長い方の1次元についてのみ負ブランチの不安定
型共振器を構成しているから、共振器内に焦点はあるが
、光が集中するのは一点ではなく一線となり、光学損傷
等光の集中による問題が生じることなく、負ブランチの
不安定型共振器の反射鏡の傾きに鈍感である特長が最大
限に発揮され、共振器の安定性が向上するという効果が
ある。
[Effects of the Invention] As explained above, this invention constitutes an unstable resonator with a negative branch only in the longer one dimension in the cross section of the discharge space, so although there is a focal point within the resonator, the light The light is concentrated in a line rather than at one point, and there are no optical damage or other problems caused by the concentration of light, and the feature of being insensitive to the tilt of the reflector of the negative branch unstable resonator is maximized, and the resonator This has the effect of improving the stability of.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)はこの発明の一実施例における共振器を示
す斜視図、第1図(b)は第1図(a)に示す共振器の
不安定型共振器側の概要を示す平面図、第1図<c>は
第1図(a)に示す共振器の先導波路共振器側の概要を
示す側面図、第2図は正ブランチ不安定型共振器のミス
アライメント感度を説明する説明図、第3図は負ブラン
チ不安定型共振器のミスアライメント感度を説明する説
明図、第4図は正ブランチおよび負ブランチ不安定型共
振器によるCO2レーザ共振器の特性を示すグラフ、第
5図(a)はこの発明の他の実施例による共振器の不安
定型共振器側の概要を示す平面図、第5図(b)は同じ
く共振器の開放型共振器側の概要を示す側面図、第6図
は従来の気体レーザ装置の概略断面図、第7図は第6図
に示す気体レーザ装置の共振器の構成を示す概略平面図
である。 図において、(50) 、 (52)は全反射ミラー(
凹面鏡) 、(51)、(53)は出口全反射ミラー(
凹面鏡)、(511)、 (531)はレーザビーム取
り出し部、(67)は放電空間、(8)はレーザビーム
、A、A2は放電空間断面における長い方の寸法、B、
B2は放電空間断面における短い方の寸法である。 なお、図中、同一符号は同一、又は相当部分を示す。
FIG. 1(a) is a perspective view showing a resonator according to an embodiment of the present invention, and FIG. 1(b) is a plan view showing an outline of the unstable resonator side of the resonator shown in FIG. 1(a). , FIG. 1<c> is a side view showing the outline of the leading wavepath resonator side of the resonator shown in FIG. 1(a), and FIG. 2 is an explanatory diagram illustrating the misalignment sensitivity of the positive branch unstable resonator , Fig. 3 is an explanatory diagram explaining the misalignment sensitivity of the negative branch unstable type resonator, Fig. 4 is a graph showing the characteristics of the CO2 laser resonator with the positive branch and negative branch unstable type resonators, and Fig. 5 (a ) is a plan view schematically showing the unstable resonator side of a resonator according to another embodiment of the present invention, FIG. 5(b) is a side view schematically showing the open resonator side of the resonator, and FIG. This figure is a schematic sectional view of a conventional gas laser device, and FIG. 7 is a schematic plan view showing the configuration of a resonator of the gas laser device shown in FIG. 6. In the figure, (50) and (52) are total reflection mirrors (
concave mirror), (51), and (53) are the exit total reflection mirrors (
concave mirror), (511), (531) are the laser beam extraction part, (67) is the discharge space, (8) is the laser beam, A, A2 are the longer dimensions in the cross section of the discharge space, B,
B2 is the shorter dimension in the cross section of the discharge space. In addition, in the figures, the same reference numerals indicate the same or equivalent parts.

Claims (1)

【特許請求の範囲】[Claims] レーザ気体の励起を放電により行なう気体レーザ装置に
おいて、放電によるレーザ気体の励起が行なわれる放電
空間を、レーザ光軸方向に垂直な断面の縦と横の寸法が
異なる偏平なスラブ状に形成し、この放電空間の両端に
夫々レーザ共振器ミラーを配置して、放電空間断面にお
ける寸法の長い方の1次元については負ブランチの不安
定型共振器を構成し、さらに放電空間断面における寸法
の長い方の一端部からレーザビームを取り出すようにし
たことを特徴とする気体レーザ装置。
In a gas laser device in which laser gas is excited by discharge, a discharge space in which laser gas is excited by discharge is formed in the shape of a flat slab with different vertical and horizontal dimensions in a cross section perpendicular to the laser optical axis direction, Laser resonator mirrors are arranged at both ends of this discharge space, and an unstable negative branch resonator is constructed for the one dimension with the longer dimension in the cross section of the discharge space. A gas laser device characterized in that a laser beam is extracted from one end.
JP2003550A 1989-08-11 1990-01-12 Gas laser device Expired - Lifetime JP2700345B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2003550A JP2700345B2 (en) 1989-08-11 1990-01-12 Gas laser device
US07/564,517 US5048048A (en) 1989-08-11 1990-08-09 Gas laser device
EP90115394A EP0412555B1 (en) 1989-08-11 1990-08-10 Gas laser device
DE69005393T DE69005393T2 (en) 1989-08-11 1990-08-10 Gas laser device.

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP1-206978 1989-08-11
JP20697889 1989-08-11
JP2003550A JP2700345B2 (en) 1989-08-11 1990-01-12 Gas laser device

Publications (2)

Publication Number Publication Date
JPH03155684A true JPH03155684A (en) 1991-07-03
JP2700345B2 JP2700345B2 (en) 1998-01-21

Family

ID=26337164

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003550A Expired - Lifetime JP2700345B2 (en) 1989-08-11 1990-01-12 Gas laser device

Country Status (1)

Country Link
JP (1) JP2700345B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008015951A1 (en) * 2006-08-04 2008-02-07 Panasonic Corporation Display device
KR100822967B1 (en) * 2001-09-11 2008-04-16 주식회사 포스코 Apparatus for regulating an angle of reflection degree of a laser reflection mirror
JP2009105408A (en) * 2007-10-25 2009-05-14 Rofin-Sinar Uk Ltd Gas laser device
JP2010535418A (en) * 2007-07-31 2010-11-18 コヒーレント・インク Compensation for thermal deformation in laser mirrors

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63192285A (en) * 1987-01-08 1988-08-09 ジョン チューリップ Slab gas laser

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63192285A (en) * 1987-01-08 1988-08-09 ジョン チューリップ Slab gas laser

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100822967B1 (en) * 2001-09-11 2008-04-16 주식회사 포스코 Apparatus for regulating an angle of reflection degree of a laser reflection mirror
WO2008015951A1 (en) * 2006-08-04 2008-02-07 Panasonic Corporation Display device
JP2010535418A (en) * 2007-07-31 2010-11-18 コヒーレント・インク Compensation for thermal deformation in laser mirrors
JP2009105408A (en) * 2007-10-25 2009-05-14 Rofin-Sinar Uk Ltd Gas laser device

Also Published As

Publication number Publication date
JP2700345B2 (en) 1998-01-21

Similar Documents

Publication Publication Date Title
US5048048A (en) Gas laser device
EP0708996B1 (en) Slab laser with folded resonator structure
EP0275023B1 (en) Carbon dioxide slab laser
US5023886A (en) High power laser with focusing mirror sets
US6850544B2 (en) Optical resonators with orthogonally polarized modes
US6810062B2 (en) Passive optical resonator with mirror structure suppressing higher order transverse spatial modes
EP1583185A2 (en) Laser with axially symmetric laser beam profile
US5260964A (en) Graded reflectivity mirror resonators for lasers with a gain medium having a non-circular cross-section
JP3292466B2 (en) Laser resonator
US6813286B1 (en) Optical resonators with discontinuous phase elements
JP2002540607A (en) Laser device
CN105870770B (en) Flat folded ceramic slab laser
JPH03155684A (en) Gas laser device
KR100458795B1 (en) Cylindrical straight type gas laser
JP2700822B2 (en) Gas laser device
JP3427442B2 (en) Solid state laser device
EP0388402A1 (en) Pentagonal ring laser gyro.
JP3086090B2 (en) Gas laser equipment
JP3760111B2 (en) Cylindrical straight slab type gas laser
US11251578B2 (en) Output coupling from unstable laser resonators
JPH0799358A (en) Solid state-laser system
RU2150773C1 (en) High-power laser with stable-unstable resonator
JP2937441B2 (en) He-Ne gas laser device
JPH073896B2 (en) Gas laser oscillator
CA2072470C (en) Graded reflectivity mirror resonators for lasers with a gain medium having a non-circular cross-section

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071003

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081003

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091003

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091003

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101003

Year of fee payment: 13

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101003

Year of fee payment: 13