WO2008015951A1 - Display device - Google Patents

Display device Download PDF

Info

Publication number
WO2008015951A1
WO2008015951A1 PCT/JP2007/064636 JP2007064636W WO2008015951A1 WO 2008015951 A1 WO2008015951 A1 WO 2008015951A1 JP 2007064636 W JP2007064636 W JP 2007064636W WO 2008015951 A1 WO2008015951 A1 WO 2008015951A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser
light
light source
output
display device
Prior art date
Application number
PCT/JP2007/064636
Other languages
French (fr)
Japanese (ja)
Inventor
Toshifumi Yokoyama
Kiminori Mizuuchi
Kazuhisa Yamamoto
Original Assignee
Panasonic Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2006213165A external-priority patent/JP2009258142A/en
Priority claimed from JP2007111275A external-priority patent/JP2009259854A/en
Application filed by Panasonic Corporation filed Critical Panasonic Corporation
Publication of WO2008015951A1 publication Critical patent/WO2008015951A1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/0035Means for improving the coupling-out of light from the light guide provided on the surface of the light guide or in the bulk of it
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0013Means for improving the coupling-in of light from the light source into the light guide
    • G02B6/0023Means for improving the coupling-in of light from the light source into the light guide provided by one optical element, or plurality thereof, placed between the light guide and the light source, or around the light source
    • G02B6/0028Light guide, e.g. taper
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/3406Control of illumination source
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0013Means for improving the coupling-in of light from the light source into the light guide
    • G02B6/0015Means for improving the coupling-in of light from the light source into the light guide provided on the surface of the light guide or in the bulk of it
    • G02B6/0018Redirecting means on the surface of the light guide
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0066Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form characterised by the light source being coupled to the light guide
    • G02B6/0068Arrangements of plural sources, e.g. multi-colour light sources

Definitions

  • the present invention relates to a display device equipped with an SHG laser using wavelength conversion.
  • FIG. 21 is a view of a conventional display device 51 as viewed from above.
  • the laser light output from the red light source 52, the green light source 53, and the blue light source 54 is guided to the transmissive liquid crystal panel 56 after the light quantity distribution is made uniform using the rod integrator 55.
  • the laser light that has passed through the transmissive liquid crystal panel 56 is combined by a combining prism 57, is transmitted through an output lens 58, and is output as an image.
  • the red light source 52 (oscillation wavelength around 640 nm) and the blue light source 54 (oscillation wavelength around 440 nm).
  • an SHG (Second Harmonic Generation) laser using wavelength conversion is used as the green light source 53.
  • Each light source 52 54 is continuously lit to increase the luminance of the display device 51.
  • the SHG laser is an internal cavity type SHG laser. Specifically, laser light output from the pump semiconductor laser (wavelength 808 nm) is absorbed by the solid-state laser, and laser light (fundamental wave) having a wavelength of 1064 nm is output from the solid-state laser.
  • the fundamental wave output from the solid-state laser is input to the wavelength conversion element, and the wavelength conversion element outputs 532 nm laser light with a wavelength of 1/2, which is the second harmonic.
  • a light source having a limited oscillation wavelength spectrum such as a semiconductor laser or an SHG laser is used as a light source, so that the design of optical components is easier than in the case of using a lamp.
  • the optical system can be miniaturized. Furthermore, power consumption can be reduced compared to display devices that use lamps.
  • the SHG laser (one apparatus of solid-state laser) using the above-described solid-state laser and wavelength conversion element excites a solid-state laser crystal by laser light from a semiconductor laser light source to cause laser oscillation. It has features such as small size, light weight, long life, high electro-optic conversion efficiency, and stable operation, and is used in various industrial fields.
  • laser light from a semiconductor laser light source is incident on a solid-state laser crystal by a coupling lens system, and the solid-state laser crystal sandwiched between mirrors is excited to oscillate fundamental laser light.
  • the fundamental laser beam is made incident on the wavelength conversion element of the nonlinear optical medium to generate the second harmonic component of the incident light, which is then emitted to the outside through the mirror on the output side.
  • G light high-output green light
  • a semiconductor laser light source is used and Nd: YVO or the like is used.
  • a solid-state laser device that has high output and high efficiency and can reduce speckle noise and an image display device using the solid-state laser device are disclosed (for example, see Patent Document 2).
  • This solid-state laser device uses a one-dimensional transverse multimode laser as a laser light source. It has a light source for excitation, a solid-state laser crystal in the optical resonator, and a wavelength conversion element.
  • the solid-state laser crystal is excited with an elliptical transverse mode pattern to obtain a linear beam. It is configured to output linear light by making a linear beam incident on a wavelength conversion element. This makes it possible to realize a high-power and high-efficiency solid-state laser device using an elliptical transverse mode pattern.
  • speckle noise can be reduced by reducing coherence due to excitation in the transverse multimode.
  • the wavelength conversion element is arranged in the optical resonator, the power density of the oscillation light confined inside the optical resonator can be increased, and wavelength conversion can be performed with high efficiency.
  • Patent Document 2 an example in which a solid-state laser device outputs a linear laser beam using a one-dimensional lateral multimode laser and is used in a projection type liquid crystal display device is shown.
  • no countermeasures have been disclosed or suggested for damage caused by overheating of the solid-state laser crystal or the wavelength conversion element of the solid-state laser device. Therefore, solid laser crystals and wavelength conversion elements are damaged when irradiated with high-density laser light, and it is difficult to oscillate harmonic laser light stably for a long time! Have it!
  • a configuration is shown in which a transmission plate for shifting the optical path of one laser beam is disposed on the laser beam incident side of the wavelength conversion element in the optical resonator, and this transmission plate is vibrated.
  • the wavelength conversion element in the optical resonator transmits laser light to generate harmonics and convert the wavelength
  • the optical path of the laser light is shifted by vibrating the transmission plate.
  • the temperature rise can be mitigated.
  • Patent Document 3 the transmission region of the laser beam is expanded to prevent overheating by vibrating the transmission plate while maintaining the laser beam deflection direction and crystal orientation necessary for phase matching. According to this method, it is necessary to always vibrate the transmission plate while operating the solid-state laser device, which makes the device configuration complicated and difficult to reduce the cost. .
  • a solid-state laser crystal and a wavelength conversion element are arranged in an optical resonator composed of a reflection mirror and an output mirror, and the position of the wavelength conversion element is shifted in a direction perpendicular to the optical axis of the laser light.
  • a solid-state laser device having a configuration including a moving mechanism that moves the moving mechanism in conjunction with laser light irradiation (for example, see Patent Document 4). .
  • the entire surface of the wavelength conversion element can be used effectively, the life of the wavelength conversion element can be extended, and as a result, the life of the solid-state laser device can be extended.
  • the wavelength conversion element is electrically moved to prevent damage to the wavelength conversion element, and the entire surface of the wavelength conversion element can be used effectively.
  • a mechanical movement mechanism must be provided in the same manner as described above, the device configuration becomes complicated, and cost reduction is difficult.
  • Patent Document 1 JP-A-6-208089
  • Patent Document 2 Japanese Unexamined Patent Publication No. 2006-100772
  • Patent Document 3 Japanese Patent Laid-Open No. 7-22686
  • Patent Document 4 Japanese Patent Application Laid-Open No. 2004-22946
  • An object of the present invention is to provide a display device capable of increasing the brightness and enlarging the screen by stabilizing the output of the laser light applied to the image display element.
  • a display device includes a semiconductor laser that emits excitation laser light and laser oscillation that is excited by incidence of the excitation laser light and emits fundamental laser light.
  • a resonator having a solid-state laser and first and second mirrors arranged so as to sandwich the solid-state laser, and a wavelength that is arranged inside the resonator and converts the fundamental laser light into harmonic laser light
  • the output of the harmonic laser light is reduced at a period that is an integral multiple of the frame period of the image signal applied to the conversion element, the image display element that displays an image by irradiation of the harmonic laser light, and the image display element.
  • a laser driving section for driving the semiconductor laser.
  • the longitudinal mode of the oscillation state of the harmonic laser beam is changed to the multimode due to the decrease in the output of the harmonic laser beam in the period that is an integral multiple of the frame rate of the video signal. For this reason, the output of the harmonic laser beam is stabilized, the disturbance of the color balance of the image due to the unstable output of the harmonic laser beam is suppressed, and a high-quality image can be displayed.
  • FIG. 1 is a plan view showing a schematic configuration of a display device according to a first embodiment of the present invention.
  • FIG. 2 is a side view showing a schematic configuration of an internal cavity type SHG laser mounted on the green light source of FIG.
  • FIG. 3A is a diagram showing a longitudinal mode spectrum of a fundamental wave when a pump laser diode is continuously turned on
  • FIG. 3B is a diagram showing a state in which the longitudinal mode spectrum of FIG. 3A fluctuates due to disturbance. .
  • FIG. 4 is a diagram for explaining a method of driving a pump semiconductor laser.
  • Fig. 5A shows the fluctuation of the harmonic output when the pump laser diode is continuously turned on
  • Fig. 5B shows the fluctuation of the harmonic output when the pump laser diode is driven with a nozzle.
  • FIG. 6A is a diagram for explaining driving of the liquid crystal panel
  • FIG. 6B is a diagram for explaining a method for inserting the output drop time
  • FIG. 6C is a diagram for explaining another method for inserting the output drop time.
  • FIG. 7A is a diagram showing a zeroth-order transverse mode
  • FIG. 7B is a diagram showing a first-order transverse mode
  • FIG. 7C is a diagram showing a secondary transverse mode
  • FIG. 7D is a diagram showing a transverse mode when the output fluctuates
  • FIG. 7E is a diagram showing a primary transverse mode (vertical transverse mode).
  • FIG. 8] is a plan view showing a schematic configuration of the display device according to the third embodiment of the present invention.
  • FIG. 9 A diagram illustrating a method for driving a pump semiconductor laser.
  • FIG. 10 A side view showing a schematic configuration of the internal cavity type SHG laser according to the fourth embodiment of the present invention.
  • FIG. 11A is a diagram showing a conventional beam shape
  • FIG. 11B is a graph showing the relationship between the amount of pump light and the G light output.
  • FIG. 12B is a graph showing a relationship between the light amount of pump light and the G light output.
  • FIG. 13B is a graph showing a relationship between the light amount of pump light and the G light output.
  • FIG. 16A is a perspective view showing a schematic configuration of the display device according to Embodiment 5 of the present invention
  • FIG. 16B is a plan view thereof
  • FIG. 16C is cut along the 5-5 line in FIG. 16B.
  • FIG. 16A is a perspective view showing a schematic configuration of the display device according to Embodiment 5 of the present invention
  • FIG. 16B is a plan view thereof
  • FIG. 16C is cut along the 5-5 line in FIG. 16B.
  • FIG. 17A is a plan view showing a schematic configuration of the display apparatus according to Embodiment 6 of the present invention
  • FIG. 17B is a cross-sectional view taken along line 6-6-6 in FIG. 17A.
  • FIG. 18A is a plan view showing a schematic configuration of the display apparatus according to Embodiment 7 of the present invention
  • FIG. 18B is a cross-sectional view taken along line 7-7-7 in FIG. 18A.
  • FIG. 19A is a plan view showing a schematic configuration of the display apparatus according to Embodiment 8 of the present invention
  • FIG. 19B is a cross-sectional view taken along line 8-8-8 in FIG. 19A.
  • FIG. 20] is a plan view showing a schematic configuration of the display apparatus according to the ninth embodiment of the present invention.
  • FIG. 21 is a plan view showing a schematic configuration of a conventional display device.
  • FIG. 1 is a top view of the display device 1 according to the first embodiment of the present invention.
  • the laser light output from the green light source 3 and the blue light source 4 is guided to the transmissive liquid crystal panels 6a to 6c after the light quantity distribution is made uniform using the rod integrator 5.
  • the laser beams that have passed through the transmissive liquid crystal panels 6a to 6c are combined by the combining prism 7 and transmitted through the projection lens 8 to be output as an image.
  • Semiconductor lasers were used for red light source 2 (oscillation wavelength around 640 nm) and blue light source 4 (oscillation wavelength around 440 nm).
  • As the green light source 3 an internal cavity type SHG (Second Harmonic Generation) laser that uses wavelength conversion to output green light was used.
  • the control circuit 9 controls each light source and the transmissive liquid crystal panel. Since a light source with high power consumption such as a lamp is not used, it can be driven by battery 21! /.
  • FIG. 2 is a schematic diagram showing a schematic configuration of an internal cavity type SHG laser mounted on the green light source 3 of FIG.
  • the internal resonator type SHG laser 10 used in the present embodiment includes a pump semiconductor laser 11, a rod lens 12, a VBG13, a ball lens 14, and a solid-state laser having an oscillation wavelength of about 808 nm. 15, a wavelength conversion element 16, and a concave mirror 17.
  • the pump light 18 having a wavelength of about 808 nm emitted from the pump semiconductor laser 11 is collimated by the rod lens 12 and incident on the VBG 13.
  • VBG is an abbreviation for Volume Bragg Grating and is a transmissive diffraction grating.
  • the pump light incident on VBG13 is partially reflected and fed back to the pump semiconductor laser 11, and the oscillation wavelength of the pump semiconductor laser 11 is selected by VBG13. Locked to the specified wavelength (808 nm).
  • the VBG13 force and the return light amount are set to 20%.
  • the appropriate amount of light returned from VBG13 is about 10-30%. If it is 10% or less, the wavelength lock is weakened. Further, if it is 30% or more, there is a greater possibility of causing unstable operation due to an increase in the amount of light in the pump semiconductor laser 11 as well as a decrease in the amount of transmitted light. Since the oscillation wavelength of the pump semiconductor laser 11 hardly changes even if the temperature changes by using the VBG13, a highly accurate temperature control device for the pump semiconductor laser 11 is unnecessary. It has become. Since the solid-state laser 15 has high absorption efficiency near 808 nm, it is very important that the wavelength of the semiconductor laser 11 does not change. This has a great effect on cost reduction, power consumption and size reduction of the apparatus.
  • VBG13 is used to lock the oscillation wavelength of pump semiconductor laser 11! /, But a bandpass filter manufactured using a dielectric multilayer film is also used. An effect is obtained.
  • the semiconductor laser 11 itself may be a DFB laser or a DBR laser having a wavelength lock function.
  • the pump light 18 that is wavelength-locked by the VBG 13 is condensed on the solid-state laser 15 by the ball lens 14.
  • the solid laser 15 was YVO doped with 3% Nd.
  • the solid state laser 15 is excited by the pump light 18,
  • a fundamental wave 19 having a wavelength of 1064 nm is generated.
  • the fundamental wave 19 resonates in a resonator formed by the solid-state laser 15 and the concave mirror 17.
  • a part of the fundamental wave 19 is wavelength-converted by the wavelength conversion element 16 installed in the resonator and output to the outside as a harmonic 20 having a wavelength of 532 nm.
  • periodic polarization inversion is formed in Mg: LiNbO in the wavelength conversion element 16
  • a reflection coat for the fundamental wave 19 is formed on the surface of the output side of the force wavelength conversion element 16 constituting the resonator using the concave mirror 17, and the wavelength conversion element 16 is connected to the solid-state laser 15. You may make it the structure (microchip type) to adjoin.
  • the internal cavity type SHG laser 10 is an effective configuration for realizing a compact and high-power green light source.
  • the internal resonator type SHG laser 10 is used for the first reason that pump semiconductor lasers 11 with an oscillation wavelength of around 808 nm are easily available.
  • the wavelength of the fundamental wave 19 output from the solid-state laser 15 is stable, and the solid-state laser The second reason is that high-precision wavelength locking and temperature control are not required.
  • the length of the wavelength conversion element 16 can be shortened, and harmonics output with respect to temperature changes compared to other means (for example, a waveguide type SHG laser). Variation can be reduced.
  • a means to directly convert semiconductor laser light with an oscillation wavelength of about 1064 ⁇ m into green light with a wavelength of around 532 nm is also considered. It is difficult to produce a high-power semiconductor laser with an oscillation wavelength of about 1064 nm. In addition to this, it is often necessary to control the temperature of the semiconductor laser and the wavelength conversion element.
  • FIGS. 3A and 3B show an example of a longitudinal mode spectrum of the fundamental wave output from one solid-state laser when the pumping semiconductor laser is driven by continuous lighting. If high-precision temperature control is not performed on the light source, or if the fundamental wavelength is not controlled using an optical component such as an etalon, the longitudinal mode spectrum changes from the state of Fig. 3A to the state of Fig. 3B. Sometimes. This is thought to be because the heat distribution and oscillation mode in the solid-state laser fluctuate with time due to continuous lighting. When the longitudinal mode spectrum changes, the phase matching state of the wavelength conversion element changes, and the proportion of the fundamental wave that is wavelength converted also changes. As a result, the output of the green light that is output fluctuates.
  • the output of the semiconductor laser 11 for pumps is reduced in order to reduce harmonic output fluctuations while suppressing high-precision temperature control and the increase in the number of parts.
  • the internal cavity type SHG laser 10 is driven by inserting a certain time (hereinafter referred to as “output reduction time”) during which the SHG laser 10 is reduced.
  • output reduction time a certain time
  • FIG. 4 shows a driving method of the pumping semiconductor laser 11 of FIG. Form of this implementation
  • the driving is a repetitive operation between the power P2 of the pump light 18 in the normal driving and the power P1 (P2> P1) of the pump light 18 in the output reduction time.
  • Fig. 5A shows the fluctuation of the output of the SHG laser 10 when the pump semiconductor laser 11 is continuously turned on.
  • Fig. 5A shows the fluctuation of the output of the SHG laser 10 when the pump semiconductor laser 11 is continuously turned on.
  • FIG. 5B shows the output drop time into the output of the pump semiconductor laser 11 and It is a figure which shows the output fluctuation
  • Fig. 5A when pump semiconductor laser 11 is continuously lit, the output fluctuation of SHG laser 10 is about 42%.
  • Fig. 5B pump semiconductor laser 11 is turned off. As shown in the figure, the output fluctuation is reduced to 3.5% or less when the pulse is driven, and the output fluctuation is suppressed to 1 or less of 10 minutes by the insertion of the above-mentioned output drop time.
  • the above effect is realized by constantly converting the longitudinal mode spectrum of the fundamental wave 19 into a multimode by inserting the output reduction time.
  • the internal cavity type SHG laser 10 in the case of multimode oscillation in which multiple longitudinal modes of the fundamental wave 19 exist, the sum frequency between each longitudinal mode is generated simultaneously with the harmonic 20 corresponding to each longitudinal mode. .
  • the longitudinal mode spectrum of the fundamental wave 19 always operates stably in a multi-mode state, and the output of the harmonic 20 output from the SHG laser 10 changes to the human eye. I don't feel like it is. Therefore, it can be used without any problem as a light source for a display device.
  • the longitudinal mode spectrum of the fundamental wave 19 can be converted into a multimode.
  • the fundamental wave 19 is more surely converted into multimode, and at the same time, the green light that is the harmonic 20 is not generated, which is effective in improving the contrast of the display device described later.
  • Pth is the power of the minimum level of pump light 18 necessary for the solid-state laser 15 to oscillate.
  • the multi-mode is likely to occur under the conditions of T1 ⁇ 0.5 s and T2> l ms. Since the output fluctuation is greatly reduced by inserting the output drop time, the internal resonator type SHG laser 10 can be used as the light source for the display.
  • YVO doped with 3% of Nd is added to the solid-state laser 15.
  • the doping amount of Nd is preferably 2% to 3%.
  • the output rise time S of the green light (harmonic 20) output when the output reduction time T2 is changed to the high output time T1 is shortened, so the effect on the video output can be reduced.
  • the doping amount of Nd is less than 2%, not only the above-mentioned rise time is long, but also the absorption efficiency of the pump light 18 is reduced, so that more pump light 18 is required to obtain a high output, so that the power consumption increases. There is a disadvantage of doing. Further, if it exceeds 3%, there is a demerit that it is difficult to produce a crystal of the solid-state laser 15.
  • the internal resonator type SHG laser (green light source) 10 is a force that stabilizes the output by introducing a certain output reduction time S, for display When used as a light source, the timing for inserting the output drop time is important.
  • the internal resonator type SHG laser 10 is applied to a display device using a transmissive liquid crystal panel.
  • the control circuit 9 controls the light sources 2 to 4 and the transmissive liquid crystal panels 6a to 6c.
  • the control circuit 9 is a green light source having a laser drive unit 92 that drives and controls the green light source 3 on which the SHG laser 10 is mounted, and a liquid crystal panel drive unit 93 that drives and controls the liquid crystal panel 6b corresponding to the green light source 3.
  • the laser driving unit 92 controls the driving current applied to the semiconductor laser 11 of the SHG laser 10 mounted on the green light source 3, and executes the above-described output reduction time.
  • the liquid crystal panel driving unit 93 drives the liquid crystal panel 6b by outputting a video signal to the green liquid crystal panel 6b corresponding to the light emission timing of the green light source 3.
  • the control circuit 9 is connected to each of the red light source 2 and the blue light source 4.
  • a corresponding red light source controller 91b and blue light source controller 91c are also provided.
  • FIG. 6A is a diagram for explaining driving of the liquid crystal panels 6a to 6c.
  • the liquid crystal panels 6a to 6c are driven by a non-transparent (display) in which the transmittance of the liquid crystal panel is temporarily made zero between each frame of the video signal in order to reset the liquid crystal state.
  • the transmittance of the liquid crystal panels 6a to 6c is changed in accordance with the video signal while inserting the black state.
  • the output drop time T3 of the drive current of the pump semiconductor laser 11 of the internal cavity type SHG laser 10 is set in accordance with the non-transparent time of the liquid crystal panel 6b as shown in FIG. It is possible to eliminate flicker on the display image.
  • the output drop time T3 needs to be shorter than the non-transmission time of the liquid crystal panel.
  • a reduction in light source driving power is realized with an improvement in contrast.
  • Reducing light source drive power means reducing power consumption and heat generation.
  • the heat generated by the light source is a major factor in downsizing the device. Usually, it is common to increase the size of a device for heat dissipation or to provide a device with high heat dissipation capability.In this embodiment, the amount of heat generation is suppressed by inserting the output reduction time. And heat dissipation is achieved with only a small fan.
  • the output decrease time T3 is inserted every other frame, but the output decrease time T3 may be inserted every integer multiple of one frame.
  • the output stability of the internal resonator type SHG laser 10 is maintained. If it is within the range, output stability is maintained. In this case, the brightness of the display device is improved.
  • the case of a transmissive liquid crystal panel has been described. However, when a reflective liquid crystal panel or an image conversion device such as a DMD is used, it can be optimized according to the driving method of each device. It is obvious that it is good.
  • temperature control devices and optical components are not used to stabilize the output, it is possible to reduce costs, reduce the size of the light source, reduce power consumption, and suppress heat generation.
  • a three-plate display device that uses one image conversion device (liquid crystal panel) for each RGB color as in this embodiment! The output stabilization of the type SHG laser can be realized.
  • Embodiment 2 of the present invention will be described.
  • the output from the SHG laser is stabilized by setting the oscillation state of the fundamental wave in the internal cavity type SHG laser to the multimode oscillation in which a plurality of longitudinal modes exist.
  • the output from the SHG laser is stabilized by setting the oscillation state of the fundamental wave to multimode oscillation in which a plurality of transverse modes exist.
  • control of the transverse mode of the internal cavity type SHG laser according to the present embodiment will be described.
  • the display device which is effective in the present embodiment is the same as that in the first embodiment except for the state of the horizontal mode of green light described below.
  • the transverse mode of the output green light is a circular single mode (0th order) beam, as shown in FIG. 7A.
  • the beam instead of the circular opening single beam mode beam shown in FIG. Specifically, as shown in Fig. 7B and Fig. 7C, the beam was output in the form of three (primary mode) or five (secondary mode). In this way, the output variation of green light, which is a higher harmonic, can be further reduced.
  • the force S used in the single mode (0th order) beam in Fig. 7A becomes higher, and it becomes difficult to maintain the single mode.
  • the transverse mode may change from the state of FIG. 7A to the state of FIG. 7D.
  • the output of green light may vary by more than 10%.
  • the state of FIG. 7D is close to the combination of the state of FIG. 7A and the state of FIG. 7B.
  • the first-order transverse mode state of Fig. 7B is more likely to occur at higher output than the 0th-order single mode shape of Fig. 7A.
  • the angle of the concave mirror of the internal cavity type SHG laser is adjusted so that green light is output in the state shown in FIG. 7D (primary mode) in advance. In this case, the change in output is small because the transverse mode does not change.
  • the output fluctuation was suppressed to 3% or less.
  • the horizontal / horizontal mode is changed to the multimode, but the vertical / horizontal mode may be changed to the multimode as shown in FIG. 7E.
  • the present embodiment it is possible to suppress output fluctuations of harmonics without inserting a device for high-precision temperature control and fundamental wave wavelength stabilization into the resonator. Furthermore, since temperature control devices and optical components are not used to stabilize the output, it is possible to reduce costs, reduce the size of the light source, reduce power consumption, and suppress heat generation.
  • Embodiment 3 of the present invention will be described.
  • the image conversion device liquid crystal panel
  • Embodiments 1 and 2 described above an apparatus having three image conversion devices has been described.
  • the display device which is effective in the present embodiment displays an image by driving one image conversion device.
  • FIG. 8 shows an outline of the display device 31 according to the present embodiment.
  • the display device 31 which is effective in the present embodiment, includes a red light source 32, a green light source 33, and a blue light source 34.
  • the red light source 32 and the blue light source 34 use semiconductor lasers.
  • the green light source 33 is an internal cavity type SHG laser and has the same configuration as that used in Embodiment 1 above.
  • the laser beams output from the color light sources 32 to 34 are reflected by the dichroic mirror 40, pass through the homogenizing optical system 35, and enter the polarization beam splitter 37. Thereafter, the light enters the image conversion device (liquid crystal panel) 36.
  • the reflective liquid crystal panel 36 is used as the image conversion device.
  • the laser light incident on the reflective liquid crystal panel 36 is reflected according to the video signal input to the reflective liquid crystal panel 36, passes through the exit lens 38, and is output as an image. Outputs of the light sources 32 to 34 are controlled by a control circuit 39.
  • the power of this embodiment The spray device 31 is provided with a battery 41 so that the battery can be driven. Compared to a display device using three image conversion devices shown in the first embodiment, the single-panel type image conversion device of this embodiment is more suitable for downsizing the display device.
  • FIG. 9 shows a driving method of the internal resonator type SHG laser according to the present embodiment.
  • Figure 9 shows how to drive the pump semiconductor laser in the SHG laser.
  • the video output divides one frame into three colors of red, green, and blue, and sequentially turns on each color light source 32 to 34. Therefore, the green light is lit only for 1/3 period within one frame.
  • the pump laser diode is also lit only for 1/3 of a frame.
  • the output of the semiconductor laser of the SHG laser mounted on the green light source 33 inevitably decreases in the period 2/3 in one frame. Therefore, the output drop time T5 is always inserted in the drive of the internal cavity type SHG laser, and the green light output from the SHG laser is used rather than the three-plate display device described in the first embodiment.
  • the output is inherently stable.
  • the pump light output from the pump semiconductor laser when the green light source 33 is turned on is divided into two stages P3 and P4. It was driven by. P3 and P4 were set so that the average output of the green light output from the SHG laser would be the desired value.
  • the ternary value is obtained. It is obvious that a pump semiconductor laser may be driven by setting a large pump light power. Also in the internal resonator type SHG laser in the three-plate type display device of the first embodiment, a pump light power of three or more values may be set.
  • harmonics can be used without high-precision temperature control or use of a temperature control device, or insertion of optical components into the resonator. It is possible to suppress output fluctuations. In addition, since no optical components are used to stabilize the output, it is possible to reduce costs, reduce the size of the light source, and reduce power consumption. Moreover, since the power consumption of the light source can be reduced and the amount of heat generated can be reduced by inserting the output reduction time, the driving time when the apparatus is driven by a battery can be extended and heat radiation is advantageous. In addition, the contrast of the video is improved by reducing the light source output during the non-display time of the image display device.
  • the output from the SHG laser is stabilized by setting the oscillation state of the fundamental wave in the internal resonator type SHG laser to multi-mode oscillation in which a plurality of transverse modes exist.
  • the fourth embodiment focuses on a specific configuration for making the oscillation state of the fundamental wave in the internal cavity type SHG laser into multi-mode oscillation in which a plurality of transverse modes exist. It is a form.
  • the oscillation state of the fundamental wave can be changed to multi-mode oscillation in which a plurality of transverse modes exist with a simple configuration without providing a complicated mechanism such as a moving mechanism or a vibration mechanism. By doing so, we will realize an internal cavity type SHG laser with excellent thermal stability and high power output.
  • FIG. 10 is a configuration diagram of an internal resonator type SHG laser (solid laser device) according to the fourth exemplary embodiment of the present invention.
  • the internal resonator type SHG laser 101 which is effective in the present embodiment, is disposed inside a semiconductor laser light source 110 that emits laser light 119 for a pump, an optical resonator 114, and an optical resonator 114. And an SHG element 118 that converts the wavelength of the wave laser beam 120.
  • the optical resonator 114 includes a solid-state laser crystal 115 that is excited by the incidence of the laser beam 119 and oscillates the fundamental laser beam 120, and mirrors 116 and 117 that are arranged at positions sandwiching the solid-state laser crystal 115, respectively. is doing.
  • One of the mirrors 116 and 117 is arranged with an inclination angle ⁇ set with respect to the optical axis 122 of the laser beam 119.
  • both the mirrors 116 and 117 may be tilted at a predetermined tilt angle with respect to the optical axis of the laser beam 119.
  • the mirror 117 provided on the side from which the harmonic laser beam 121 converted by the SHG element 118 is emitted is a concave mirror, and this concave mirror is connected to the optical axis 122 of the laser beam 119.
  • the tilt angle ⁇ is set as above.
  • the mirror 117 is referred to as a concave mirror 117.
  • the semiconductor laser light source 110 has means for fixing the oscillation wavelength of the laser light 119.
  • pump light having a transmission wavelength of 808 nm is incident as laser light 119 to generate a fundamental laser light 120 having a wavelength of 1064 nm, and the laser light 120 is generated by a SHG element 118 with a harmonic laser light having a wavelength of 532 nm.
  • the harmonic laser beam 121 is G light.
  • the laser beam 119 is emitted from the semiconductor laser light source 110 and enters the optical resonator 114 via the rod lens 111, the VBG 112 and the ball lens 113. Is done.
  • a laser beam 119 having a wavelength of about 808 nm emitted from the semiconductor laser light source 110 is incident on the VBG 112 after the vertical component is collimated by the rod lens 111.
  • the laser beam 119 incident on the VBG112 The part is reflected and fed back to the semiconductor laser light source 110.
  • the oscillation wavelength of the semiconductor laser light source 110 is locked to the wavelength (808 nm) selected by the VBG 112.
  • the oscillation wavelength of the semiconductor laser light source 110 can be kept substantially constant even when the temperature changes, and the highly accurate temperature control of the semiconductor laser light source 110 can be eliminated.
  • a force S using VBG 112 for locking the oscillation wavelength of the semiconductor laser light source 110, and a bandpass filter constituted by a dielectric multilayer film may be used.
  • the semiconductor laser light source 110 itself may be a DFB (Distributed FeedBack) laser or a DBR (Distributed Bragg Reflector) laser having a wavelength lock function.
  • the laser beam 119 whose wavelength is locked by the VBG 112 is condensed on the solid laser crystal 115 by the Bonore lens 113.
  • Laser light 119 becomes pump light
  • solid laser crystal 115 is excited
  • fundamental laser light 120 having a wavelength of 1064 nm is generated.
  • the fundamental laser beam 120 resonates in the optical resonator 114 by reciprocating between the mirror 116 provided so as to sandwich the solid laser crystal 115 and the concave mirror 117 many times.
  • the SHG element 118 disposed in the optical resonator 114 converts a part of the fundamental laser beam 120 to a wavelength, and outputs the G laser beam having a wavelength of 532 nm, which is the harmonic laser beam 121, to the outside.
  • YV 2 O crystal doped with 3% of Nd is used as solid laser crystal 115.
  • SHG element 118 a LiNbO substrate doped with Mg
  • a quasi-phase-matching type with periodically domain-inverted regions formed in 4 3 was used.
  • the LiNbO substrate doped with Mg has a large nonlinear constant, and the thickness of the SHG element 118 can be reduced.
  • the fundamental wave laser beam 120 generated by the force by which the laser beam 119 that is pump light is incident on the optical resonator 114 is confined in the optical resonator 114, and the harmonic wave from the concave mirror 117 is higher.
  • a dielectric multilayer film is formed on each end face of the mirror 116, the SHG element 118, and the concave mirror 117 formed on the surface of the solid-state laser crystal 115 so that the wave laser beam 121 is emitted.
  • the concave mirror 117 has a laser
  • the light beam 119 is arranged with a predetermined inclination angle ⁇ with respect to the optical axis 122.
  • the angle between the perpendicular line 123 perpendicular to the bottom of the concave surface of the concave mirror 117 and the optical axis 122 of the laser beam 119 is set as ⁇ , and this tilt angle ⁇ is set in advance.
  • the angle is By disposing the tilt angle ⁇ set in this way, the width of the passing region when the fundamental laser beam 120 or the like is transmitted through the solid-state laser crystal 115 and the SHG element 118 is widened.
  • the fundamental laser beam 120 is repeatedly reflected off the optical axis 122 in the optical resonator 114. For this reason, the electric field distribution in the optical resonator 114 changes, and the harmonic laser beam 121 output from the optical resonator 114 becomes multimode oscillation in which a plurality of transverse modes exist. Therefore, similarly to the second embodiment, when it is used as a light source of a backlight unit of a liquid crystal display device, it is thin and can easily realize a large area.
  • FIG. 11A to FIG. 15 are diagrams showing comparison data of G light output between the internal cavity type SHG laser 101 which is effective in the present embodiment and the conventional internal cavity type SHG laser.
  • Fig. 11B is a schematic diagram showing the beam shape of the G light output of a conventional internal cavity type SHG laser, and Fig. 11B shows the amount of laser light that is pump light (hereinafter sometimes referred to as "pump light") It is a graph which shows the relationship between G light output.
  • FIG. 12B is a graph showing the relationship between the amount of pump light 119 and the G light output.
  • FIG. 13A is a schematic diagram showing the beam shape in the case of the internal cavity type SHG laser 101 of the present embodiment when the tilt angle ⁇ is 0.3 °
  • FIG. 13B is the light amount of the pump light 119 and the G light output. It is a graph which shows the relationship.
  • FIG. 6 is a graph showing the relationship between the amount of pump light 119 and the G light output. Note that the measurements in FIGS. In this example, the resonator length L of the optical resonator 114 is 10 mm, and the radius of curvature R of the concave mirror 117 is 2 Omm.
  • the beam shape is circular and single mode.
  • the G light output was saturated when the light amount of the pump light 119 was around 2.5 W, and its maximum value was 0.65 W.
  • the saturation of the G light output occurs when the pump light 119 has a light intensity of about 2.5 W, and the solid laser crystal 115 generates a large amount of heat. This is because the amount of light is saturated.
  • the decrease in output at point P is caused by interference of G light, which is the harmonic laser beam 121, inside the optical resonator 114.
  • the maximum value of the G optical output is 0.665 W in the conventional internal resonator type SHG laser that outputs a single mode, whereas the internal resonator type SHG of this embodiment is With Laser 101, it could be increased to 0.7W.
  • the multiple beam shapes are relatively uniform and the maximum G light output can be obtained stably. It turned out to be more preferred.
  • the radius of curvature R of the concave mirror 117 As a result of studying various shapes of the radius of curvature R of the concave mirror 117, it was found that it becomes difficult to make a multimode if it is larger than 50 mm. Therefore, it is desirable that the radius of curvature R be 50 mm or less.
  • the lower limit value of the radius of curvature R may be set to an optimum value depending on the configuration of the optical resonator 114, that is, the design of the resonator length L and the like.
  • FIG. 16A is a schematic diagram illustrating a schematic configuration of the display apparatus according to the present embodiment using the same, FIG. 16A is a perspective view thereof, FIG. 16B is a plan view viewed from the image conversion device 131 side, and FIG. FIG. 16B is a cross-sectional view taken along line 5A-5A in FIG. 16B.
  • the forces are arranged separately. In the actual configuration, they are installed on a base plate (not shown) and fixed as a whole. .
  • a display device 130 that is effective in the present embodiment basically has an image conversion device 131 and an illumination light source 140 for irradiating the image conversion device 131. And.
  • the image conversion device 131 is composed of a liquid crystal display panel, and the illumination light source 140 is a backlight unit that irradiates the entire surface of the liquid crystal display panel 131 with illumination laser beams 144 and 145 emitted from the R light source, the G light source, and the B light source. Is configured.
  • the illumination light source 140 will be described as the backlight unit 140
  • the image conversion device 131 will be described as the liquid crystal display panel 131.
  • the internal resonator type SHG laser 101 of the fourth embodiment is used as the G light source
  • the semiconductor laser light source 141 is used as the R light source and the B light source.
  • the knock light unit 140 includes a semiconductor laser light source 141 in which an R light source and a B light source are integrated, and an illumination laser in which R light and B light emitted from the semiconductor laser light source 141 are combined.
  • a light guide plate 143 that emits light 144 from one main surface portion 143a.
  • the end face light guide plate For the R light and B light, after being expanded to approximately the same size as the end face portion of the end face light guide plate 142 using a beam expander (not shown) provided in the semiconductor laser light source 141, the end face light guide plate
  • the illumination laser beam 144 is incident on the end surface light guide plate 142 from the end surface portion of the 142.
  • the semiconductor laser light source 141 of the present embodiment integrates a semiconductor laser light source that respectively emits R light and B light, and the R light and B light are combined and emitted as a single laser beam 144 for illumination. It is configured as follows.
  • the end face light guide plate 142 is provided with a semi-transmissive mirror 142a at a constant pitch, and a part of the illumination laser beam 144 having a certain spread is reflected by the semi-transmissive mirror 142a. Light is incident on the end surface 143c of the light guide plate 143, and the rest is incident on the next transflective mirror 142a. To do. Similarly, a part of the semi-transmissive mirror 142a is reflected and is incident on the end surface portion 143c of the light guide plate 143. Thereafter, the laser light 144 for illumination can be incident on the entire surface of the end surface portion 143c of the light guide plate 144 from the end surface light guide plate 142 by sequentially repeating this.
  • the illumination laser beam 144 incident on the light guide plate 143 is reflected and scattered by the side surface portion and the other main surface portion 143b of the light guide plate 143, and the illumination laser beam 144 directed toward one main surface portion 143a is finally one main surface portion 143a.
  • the light is emitted from the surface portion 143a.
  • the internal resonator type SHG laser 101 which is a G light source is disposed on the other end surface portion 143 d side facing the end surface portion 143 c of the light guide plate 143.
  • three internal resonator type SHG lasers 101 are arranged on the other end surface portion 143d side, and these internal resonator type SHG lasers 101 cover the entire surface of the other end surface portion 143d of the light guide plate 143.
  • G light that is, illumination laser light 145 can be incident.
  • the illumination laser beam 145 incident on the light guide plate 143 is transmitted from the side surface portion of the light guide plate 143 and the other main surface portion 143b in the same manner as the illumination laser beam 144 obtained by combining the R light and the B light.
  • the reflected and scattered light is directed toward one main surface portion 143a, and finally, the illumination laser beam 145 is emitted from the one main surface portion 143a.
  • illumination laser beams 144 and 145 composed of R light, B light, and G light are emitted with uniform brightness from the entire surface of one main surface portion 143a of the light guide plate 143.
  • the liquid crystal display panel 131 has a transmissive or transflective configuration, for example, a TFT active matrix configuration, and the display area includes a red pixel portion (R subpixel) R and a green pixel portion as shown in FIG. 16B.
  • R subpixel red pixel portion
  • G subpixel green pixel portion
  • a large number of pixels with G and blue pixel part (B subpixel) B as one pixel 135 are provided and driven by TFT.
  • a liquid crystal 133 is provided between the two glass substrates 132 and 134, and a TFT for driving the liquid crystal 133 is formed on one of the glass substrates 132 and 134.
  • polarizing plates 136 and 137 are provided on the respective surfaces of the glass substrates 1 32 and 134.
  • the liquid crystal display panel 131 of the present embodiment has the same configuration as that conventionally used, and thus further description thereof is omitted.
  • the display device 130 which is effective in the present embodiment, is an internal resonator type SHG that is a G light source. Since the laser 101 is in the transverse mode and the multimode, the laser beam can be easily spread in the length direction of the other end surface portion 143d of the light guide plate 143. As a result, the configuration of the display device 130, in particular, the configuration of the backlight unit 140 can be simplified.
  • FIGS. 17A and 17B are schematic diagrams showing a schematic configuration of a display apparatus that uses the internal cavity type SHG laser according to the above-described Embodiment 4 and that can be applied to the present embodiment.
  • FIG. 17A shows an illumination.
  • FIG. 17B is a plan view seen from the light source 151 side, and is a cross-sectional view taken along line 6A-6A in FIG. 17A.
  • the display device 150 also includes an image conversion device 131 and an illumination light source 151 for irradiating the image conversion device 131 as a basic configuration.
  • the image conversion device 131 includes a liquid crystal display panel
  • the illumination light source 151 includes a backlight unit that irradiates the entire surface of the liquid crystal display panel with illumination laser light 162 emitted from the R light source, the G light source, and the B light source.
  • the power to explain that the illumination light source 151 is the backlight unit 151 and the image conversion device 131 is the liquid crystal display panel 131. Since the liquid crystal display panel 131 is the same as the display device 130 of the fifth embodiment, the description is omitted. To do. In the display device 150 shown in FIGS.
  • the internal cavity type SHG laser of the above-described Embodiment 4 is used as the G light source, and the transverse mode laser light having three beams as shown in FIG. 12A. Is used.
  • the R light source and the B light source use semiconductor laser light sources 152 and 153.
  • the semiconductor laser light sources 152 and 153 are provided with a plurality of active layers, and like the internal resonator type SHG laser of the G light source, It is configured to emit three beams.
  • the backlight unit 151 is disposed on the back side of the liquid crystal display panel 131, and its shape is substantially the same as the shape of the liquid crystal display panel 131.
  • the R light, B light, and G light emitted from the semiconductor laser light sources 152 and 153 and the internal cavity type SHG laser 101 are combined by the dichroic mirror 154 to become the illumination laser light 162, which is reflected by the reflection mirror. Is incident on 155.
  • the illumination laser light 162 reflected by the reflection mirror 155 is spread by the microlens array 156 and enters the light guide plate 161 for the conversion unit.
  • the illumination laser beam 162 incident on the conversion unit light guide plate 161 is reflected and diffused by the outer peripheral surface and is incident on the optical path conversion unit 160.
  • the traveling direction of the laser beam 162 is changed, and the first guide of the end surface incident type light guide plate 157 is converted. Incident on the optical plate 158.
  • the illumination laser light 162 is reflected and diffused in the first light guide plate 158 and enters the second light guide plate 159.
  • the illumination laser light 162 is further diffused by the second light guide plate 159 to have a uniform luminance distribution over the entire surface, and then is emitted from the second light guide plate 159 to illuminate the liquid crystal display panel 131. Thereby, the liquid crystal display panel 131 is illuminated and an image is displayed.
  • the R light, B light, and G light emitted from the semiconductor laser light sources 152, 153 and the internal resonator type SHG laser 101 are transmitted from the light guide plate 161 for the converter. It has three beams each in a direction parallel to the surface. Therefore, it is possible to spread the illumination laser beam 162 with a simpler optical system than before and to make it incident on the entire surface of the light guide plate 161 for the conversion section, and to easily realize a large-screen display device. Furthermore, speckle noise can be effectively reduced.
  • FIGS. 18A and 18B are schematic diagrams showing a schematic configuration of a display device according to the present embodiment using the internal cavity type SHG laser according to the fourth embodiment, and FIG. 18A shows an illumination light source 171.
  • 18B is a cross-sectional view taken along the line 7A-7A in FIG. 18A.
  • the display device 170 that is effective in the present embodiment also includes an image conversion device 131 and an illumination light source 171 for irradiating the image conversion device 131 as a basic configuration.
  • the image conversion device 131 is composed of a liquid crystal display panel, and the illumination light source 171 is composed of a backlight unit that irradiates the entire surface of the liquid crystal display panel with illumination laser light 177 emitted from the R light source, G light source, and B light source. .
  • the illumination light source 171 is described as the backlight unit 171 and the image conversion device 131 is described as the liquid crystal display panel 131. Since 1 is the same as that described in the fifth embodiment, the description thereof is omitted.
  • the internal cavity type SHG laser of the above-described Embodiment 4 is used as the G light source, and the configuration shown in Fig. 12A is shown.
  • a laser that emits a transverse mode laser beam having three beams is used.
  • the R light source and the B light source use the power S that uses a semiconductor laser light source, and the R light source and the semiconductor laser light source that is the B light source are provided with a plurality of active layers. Like a laser, it is configured to emit three beams.
  • the R light source, the semiconductor laser light source that is the B light source, and the internal resonator type SHG laser that is the G light source are mounted on one mounting substrate (not shown).
  • the R light, G light, and B light are all emitted from a relatively small area.
  • this is referred to as an integrated light source 172.
  • the R light, G light, and B light emitted from the integrated light source 172 are guided to the optical path conversion unit 173 disposed at each of the four corners of the corner end surface incident light guide plate 174, and the optical path is converted. Then, the light is incident on the first light guide plate 175 of the corner end face incident type light guide plate 174. As shown in FIG. 18A, the first light guide plate 175 of the corner end surface incident light guide plate 174 has four corners added to a curved surface shape, and the optical path conversion unit 173 is set to a shape along this curved surface shape. Has been. By doing so, the laser light can be emitted from the second light guide plate 176 by diffusing the laser light over the entire corner end face incident type light guide plate 174, and emitted.
  • the backlight unit 171 includes a first light guide plate 175 in which all corners of the four corners are processed into a curved shape, and a corner end surface including the second light guide plate 176 disposed in close contact with the first light guide plate 175.
  • the backlight unit 171 is disposed on the back side of the liquid crystal display panel 131.
  • the R light, B light, and G light emitted from the integrated light source 172 are incident on the optical path conversion unit 173, and the traveling direction thereof is converted, so that the first light guide plate of the corner end face incident type light guide plate 174 is obtained. Incident on 175 The Then, R light, B light, and G light are reflected and diffused in the first light guide plate 175, enter the second light guide plate 176, and further diffused by the second light guide plate 176 to be uniform over the entire surface. After the luminance distribution is obtained, it is emitted as illumination laser light 177 to illuminate the liquid crystal display panel 131. As a result, the liquid crystal display panel 131 is illuminated and an image is displayed.
  • the R light, the B light, and the G light emitted from the integrated light source 172 spread in the length direction of the curved surface of the optical path conversion unit 173, and therefore enter.
  • the light can be guided over a wide area of the first light guide plate 175.
  • the integrated light source 172 and the optical path conversion unit 173 are provided at the four corners of the first light guide plate 175, a uniform luminance distribution can be realized by mixing these laser beams.
  • the liquid crystal display panel 131 can be illuminated by the illumination laser beam 177 having a uniform luminance distribution, the display device 170 that is bright and excellent in color reproducibility can be realized. Furthermore, speckle noise can be effectively reduced.
  • the optical path conversion unit 173 and the integrated light source 172 are respectively arranged at the four corners of the first light guide plate 175.
  • the invention is not limited to this.
  • the optical path conversion unit 173 and the integrated light source 172 may be arranged at only one corner of the first light guide plate 175, or may be arranged at two corners, or arranged at three corners. It may be a configuration.
  • the solid-state laser device and the semiconductor laser light source that emits the R light, the B light, and the G light may be separated from the integrated light source 172.
  • the optical path changer 173 is arranged at at least three corners, and the respective semiconductor laser light sources that emit R light and B light at each position and the internal cavity type SHG laser that emits G light. What is necessary is just to set it as the structure to arrange.
  • the present embodiment is a form that works on a display device in which the internal resonator type SHG laser of the fourth embodiment is mounted as a green light source.
  • FIGS. 19A and 19B are schematic views showing a schematic configuration of the display device according to the present embodiment using the internal cavity type SHG laser according to the fourth embodiment, and FIG. 19A shows the illumination light source 181 side.
  • FIG. 19B is a cross-sectional view taken along the line 8A-8A in FIG. 19A.
  • the power display apparatus 180 includes an image conversion device 131 and an illumination light source 181 for irradiating the image conversion device 131.
  • the image conversion device 131 includes a liquid crystal display panel, and the illumination light source 181 includes a backlight unit that irradiates the entire surface of the liquid crystal display panel with an illumination laser beam 185 emitted from the R light source, the G light source, and the B light source.
  • the liquid crystal display panel 131 is the same as that described in the fifth embodiment. Description is omitted.
  • the internal cavity type SHG laser of the above-described Embodiment 4 is used as the G light source, as shown in FIG. 12A.
  • a laser that emits a transverse mode laser beam having three beams is used.
  • the R light source and the B light source use the power S that uses a semiconductor laser light source, and the R light source and the semiconductor laser light source that is the B light source are provided with a plurality of active layers. Like a laser, it is configured to emit three beams.
  • the semiconductor laser light source as the R light source and the B light source and the internal resonator type SHG laser as the G light source are on one mounting board (not shown).
  • the integrated light source 172 is used, which is mounted closely so that R light, G light, and B light are emitted from a relatively small area.
  • the integrated light source 172 is disposed at a position facing the curved surface portions 183a formed at the four corners of the first light guide plate 183 constituting the corner end face incident type light guide plate 182. Then, R light, G light, and B light emitted from the integrated light source 172 are incident on the first light guide plate 183 from the curved surface portion 183a.
  • the R light, G light, and B light incident on the first light guide plate 183 are further diffused by the second light guide plate 184 and emitted as illumination laser light 185 to illuminate the liquid crystal display panel 131.
  • the backlight unit 181 includes a first light guide plate 183 and a second light guide plate 184 disposed in close contact with the first light guide plate 183 having curved surfaces 183a having concave shapes at all corners of the four corners.
  • the corner end face incident type light guide plate 182 and the first light guide plate 183 are arranged at positions facing the curved surface portion 183a, and the laser light is incident on the first light guide plate 183 through the curved surface portion 183a. Or a light source 172 It becomes.
  • the backlight unit 181 is disposed on the back side of the liquid crystal display panel 131.
  • the R light, B light, and G light emitted from the integrated light source 172 are incident on the first light guide plate 183 from the curved surface portion 183a of the first light guide plate 183.
  • the R light source and the B light source use a semiconductor laser light source that emits three beams by providing a plurality of active layers, and the internal resonator type SHG laser of the G light source also emits three beams. Since it is configured to emit, when these laser beams are incident from the curved surface portion 183a, they are spread over the entire surface of the first light guide plate 183, and are reflected and diffused.
  • these laser beams are incident on the second light guide plate 184 and further diffused by the second light guide plate 184 to obtain a uniform luminance distribution over the entire surface, and then emitted as illumination laser light 185.
  • the liquid crystal display panel 131 is illuminated. As a result, the liquid crystal display panel 131 is illuminated and an image is displayed.
  • the R light, B light, and G light emitted from the integrated light source 172 are incident from the curved surface portion 183a of the first light guide plate 183.
  • the light can be guided over a wide area of the first light guide plate 183.
  • the integrated light source 172 is provided at the four corners of the first light guide plate 183, the laser light 185 for illumination having a more uniform luminance distribution can be emitted by mixing the laser light from these.
  • the liquid crystal display panel 131 can be illuminated by the illumination laser beam 185 having a uniform luminance distribution, the display device 180 that is bright and excellent in color reproducibility can be realized.
  • the power S can effectively reduce speckle noise.
  • the curved portions 183a are provided at the respective corners of the four corners of the first light guide plate 183, and the integrated light source 172 is provided at a position facing the curved portions.
  • the curved surface portion 183a may be provided on only one corner of the first light guide plate 183, and one integrated light source 172 facing the curved surface portion 183a may be disposed.
  • the curved surface portion 183a may be provided at the two corner portions, and the integrated light source 172 may be disposed at a position opposite to the curved surface portion 183a.
  • the curved surface portion 183a may be provided at three corners, and the integrated light source 172 may be disposed at a position facing these.
  • the integrated light source 172 emits R, B, and G light.
  • the body laser light source and the internal cavity type SHG laser may be separated.
  • a curved surface portion 183a is provided at at least three corners, and a semiconductor laser light source that emits R light and B light and an internal cavity type SHG laser that emits G light are respectively provided at positions facing these. If you have a configuration to arrange!
  • FIG. 20 is a schematic diagram showing a schematic configuration of the projection display apparatus according to the present embodiment using the internal resonator type SHG laser of the fourth embodiment.
  • the projection type display apparatus 190 that focuses on the present embodiment includes an image conversion device 202, 203, and 204 and an illumination for irradiating the image conversion device 202, 203, and 204.
  • the illumination light source includes an R light source 191, a G light source 192, and a B light source 193.
  • the G light source 192 includes the internal cavity type SHG laser power of the fourth embodiment.
  • the R light source 191 and the B light source 193 are semiconductor laser light sources, and have a configuration in which a plurality of active layers are provided so as to emit a plurality of beams in the same manner as the internal resonator type SHG laser of the G light source 192.
  • the image conversion devices 202, 203, and 204 are composed of a transmissive liquid crystal display panel that is a kind of two-dimensional spatial modulation device, and constitute an illumination light source.
  • the R light source 191, the G light source 192, and the B light source 193 are arranged corresponding to the laser light emitted from the light source 193.
  • the image light transmitted through the transmissive liquid crystal display panel is combined by the combining prism 205 and then projected. It is configured to be
  • the image conversion devices 202, 203, and 204 will be described as transmissive liquid crystal display panels 202, 203, and 204.
  • the laser light output from the 192 and B light sources 193 is made uniform in light quantity distribution using rod integrators 194, 195 and 196, respectively.
  • the laser light emitted from the R light source 191 and the laser light emitted from the B light source 193 are guided to the reflection mirrors 200 and 201 through the lenses 197 and 199, respectively, and the optical paths are converted by the reflection mirrors 200 and 201, respectively.
  • the transmissive liquid crystal display panel 202 204 is guided respectively.
  • the laser light emitted from the G light source 192 is directly guided to the transmissive liquid crystal display panel 203 through the lens 198.
  • the respective laser beams transmitted through the transmissive liquid crystal display panels 202 203 204 are combined by the combining prism 205, transmitted through the exit lens 206, and output as image light.
  • the light source control circuit 207 controls the light output of the R light source 191 G light source 192 and B light source 193. Then, the display device control circuit 208 drives each of the three transmissive liquid crystal display non-nores 202 203 204 based on the video display signal. That is, based on the video display signal, the transmissive liquid crystal display panel 202 that receives the laser light from the R light source 191 is driven corresponding to the red video signal, and the transmissive liquid crystal display panel that receives the laser light from the G light source 192. The display device control circuit 208 drives 203 corresponding to the green video signal, and the transmissive liquid crystal display panel 204 that receives one laser beam from the B light source 193 drives the blue video signal.
  • the display device control circuit 208 may also control the light source control circuit 207 as necessary. For example, control such as stopping the oscillation of the laser light of the R light source 191 G light source 192 and B light source 193 may be performed in response to black display. Alternatively, the output of the laser light from the R light source 191 G light source 192 or B light source 193 may be varied as necessary. By performing such control, display image quality can be improved and power consumption can be reduced.
  • the transmissive liquid crystal display panels 202 203 204 can use a configuration conventionally used in a transmissive liquid crystal display device, for example, a panel configuration provided with a polysilicon TFT driving circuit, and the description thereof will be omitted.
  • the projection type display device 190 which is effective in the present embodiment, is capable of displaying colors because the light of each RGB light source is monochromatic light and has good color purity! /, And using a laser light source! / The range can be expanded and a vivid image with high color purity can be displayed. In addition, the power consumption can be reduced compared to the case where a lamp is used as the light source. In addition, since a multi-beam internal resonator SHG laser and a semiconductor laser light source are used, the optical system can be simplified and a low-cost display device can be realized.
  • a laser light source that emits R light, G light, and B light is used.
  • a laser light source that emits another color may be added.
  • the internal cavity type SHG laser of the present invention is not limited to the configuration of the display device of the present embodiment, and can be applied without particular limitation as long as it is used for illumination of a display device.
  • a display device sandwiches a semiconductor laser that emits an excitation laser beam, a solid laser that is excited by the incidence of the excitation laser beam and oscillates and emits a fundamental laser beam, and the solid laser.
  • a resonator having first and second mirrors arranged as described above, a wavelength conversion element that is arranged inside the resonator and converts the fundamental laser light into harmonic laser light, and the harmonic laser light
  • the semiconductor laser is driven so that the output of the harmonic laser light decreases at an integer multiple of the frame period of the video signal applied to the image display element and the image signal applied to the image display element.
  • a laser driving unit A laser driving unit.
  • the longitudinal mode of the oscillation state of the harmonic laser beam is changed to the multimode due to the decrease in the output of the harmonic laser beam in the period that is an integral multiple of the frame rate of the video signal. For this reason, the output of the harmonic laser beam is stabilized, the disturbance of the color balance of the image due to the unstable output of the harmonic laser beam is suppressed, and a high-quality image can be displayed.
  • the period during which the output of the harmonic laser beam decreases is included in a period during which the image display element is in a non-display state between consecutive frames of the video signal.
  • the output of the harmonic laser light does not decrease during the image display, and the display image is not affected by the decrease in the output of the harmonic laser light.
  • the period during which the output of the harmonic laser beam decreases is preferably 1 ms or more.
  • the repetition frequency of the output reduction of the harmonic laser beam is preferably 2 Hz or more.
  • the output of the semiconductor laser is modulated to a predetermined low output value during a second predetermined time T2 at intervals of the first predetermined time T1, and the first predetermined time T1 and the second predetermined time T2 are modulated.
  • the given time T2 is preferably Tl ⁇ 0.5s, T2> 1ms! /.
  • the output of the semiconductor laser is alternately modulated between a first output value P1 and a second output value P2, and the first output value P1 and the second output value P2 are P2>
  • the relationship of P1 is satisfied, and the repetition frequency of modulation between the first output value P1 and the second output value P2 is 1 kHz or less.
  • the laser driving unit can be realized with a simple configuration.
  • the first output value P1 and the second output value P2 satisfy a relationship of P2-P1> 0.2 watts.
  • the first output value P1 is less than or equal to the oscillation threshold excitation light power Pth of the solid-state laser. Preferably there is.
  • the output of the semiconductor laser is alternately modulated between a third output value P3 and a fourth output value P4 so that an average output of the harmonic laser beam becomes a desired value
  • the output value P3 of 3 and the fourth output value P4 satisfy the relationship of P4> P3 force, P4—P3> 0.2 watts, and the output time T3 of the third output value P3 is T3> lms It is preferable that
  • the laser medium of the solid-state laser is an Nd: YVO crystal, and the Nd: YVO crystal
  • the Nd doping amount of 4 4 crystals is preferably 2 to 3%.
  • the output of the harmonic laser beam can be improved again in a shorter time. For this reason, the excitation laser beam required for raising the output of the harmonic laser beam is reduced, and as a result, the power consumption by the semiconductor laser can be reduced.
  • a red light source that emits red light a red image display element that displays an image by irradiating the red light, a blue light source that emits blue light, and a blue that displays an image by irradiating the blue light
  • the harmonic laser light is green light
  • the image display element is a green image display element
  • the video light is output during a period when the output of the green light is reduced. It is preferable that the green image display element is included in a non-display state between consecutive frames of signals.
  • a red light source driving unit that drives the red light source so that the output of the red light decreases at a cycle that is an integral multiple of a frame rate of a video signal applied to the red image display element, and the blue image Period that is an integral multiple of the frame rate of the video signal applied to the display element
  • a blue light source driving unit that drives the blue light source so that the output of the blue light is reduced, and a video signal applied to the red image display element during a period in which the output of the red light is reduced
  • the blue image display element is included in a period during which the blue image display element is not displayed between successive frames.
  • the output of red light and blue light also decreases in accordance with the non-display state of each image display element, so that black in the non-display state becomes clearer and the contrast of the image is improved.
  • the amount of heat generated by each light source can be further suppressed, and power consumption is reduced.
  • the apparatus further includes a red light source that emits red light and a blue light source that emits blue light, wherein the harmonic laser light is green light, and the image display element is one frame of the video signal.
  • the image by the red light irradiation, the image by the blue light irradiation and the image by the green light irradiation are sequentially displayed in a frame, and the period during which the output of the green light is reduced is within one frame of the video signal. It is preferable that it is a period in which the red light and blue light are irradiated.
  • the output of the semiconductor laser is between two output values so that the average output of the green light in a period in which the green light is irradiated in one frame of the video signal becomes a desired value. It is preferred that they are modulated alternately.
  • the transverse mode of the oscillation state of the harmonic laser beam is preferably a multimode.
  • the output of the harmonic laser beam is more effectively stabilized by changing the transverse mode of the oscillation state of the harmonic laser beam to the multimode.
  • the order of the transverse mode is preferably 2nd order or less. [0129] In this case, the output of the harmonic laser beam is not reduced.
  • At least one of the first and second mirrors is disposed so as to form a predetermined inclination angle with respect to an optical axis of the fundamental laser beam.
  • the transverse mode of the oscillation state of the harmonic laser beam can be converted into a multimode more effectively. For this reason, the region through which the laser beam passes in the solid laser or the wavelength conversion element is expanded, and the region that generates heat is expanded accordingly. As a result, it is possible to prevent a region where the temperature is locally high, and to output the harmonic laser light stably with high output.
  • the first mirror is disposed on the semiconductor laser side of the solid-state laser
  • the second mirror is disposed on the wavelength conversion element side of the solid-state laser
  • the second mirror is A concave mirror is preferred.
  • the transverse mode can be changed to a multimode without changing the arrangement configuration of the semiconductor laser, the solid-state laser, and the wavelength conversion element.
  • the radius of curvature of the concave mirror is preferably 50 mm or less.
  • the transverse mode can be changed to a multimode without changing the arrangement configuration of the semiconductor laser, the solid-state laser, and the wavelength conversion element.
  • the predetermined inclination angle is preferably in the range of 0.;! To 0.5 °.
  • the transverse mode can be changed to a multimode without changing the arrangement configuration of the semiconductor laser, the solid-state laser, and the wavelength conversion element.
  • the semiconductor laser has a fixing unit that fixes the oscillation wavelength of the excitation laser beam, and the oscillation wavelength of the semiconductor laser is fixed by the fixing unit to cause the temperature change of the semiconductor laser. It is preferable to suppress fluctuations in the oscillation wavelength of the semiconductor laser.
  • the oscillation wavelength of the semiconductor laser is kept substantially constant even when the temperature changes, so that it is not necessary to perform highly accurate temperature control on the semiconductor laser.
  • An example of the fixed part is VBG, which is a transmissive diffraction grating.
  • the laser beam emitted from the semiconductor laser is incident on the VBG, a part of which is reflected and fed back to the semiconductor laser, and is fixed at the wavelength selected by the oscillation wavelength force SVBG of the semiconductor laser. It is.
  • DFB lasers and DBR lasers that have wavelength selectivity for semiconductor lasers, and you can use such lasers!
  • the transverse mode of the green light oscillation state is a multi-mode
  • each of the red light source and the blue light source is a red and blue semiconductor laser
  • each of the red and blue semiconductor lasers is a plurality of It is preferable that a plurality of laser beams are emitted by the stimulated emission of each of the plurality of active layers.
  • the horizontal mode of the green light oscillation state is changed to the multi-mode, and each of the red light and the blue light is a plurality of laser beams, so that the color reproduction range is wide and the image quality is good and the display is bright.
  • An apparatus can be realized.
  • a two-dimensional spatial modulation element as an image display element for example, a projection type display apparatus using an element in which a large number of micromirrors formed by MEMS technology are arranged, and a liquid crystal display panel are two-dimensional spatial modulation.
  • a projection type display device used as an element or a thin television configuration display device using a backlight unit and a liquid crystal display panel.
  • the backlight unit portion includes at least one corner portion of four corners processed into a curved shape, and reflects and diffuses incident laser light to emit the first light guide plate, and the first light guide plate.
  • a second light guide plate that is disposed in close contact with the light guide plate, reflects and diffuses laser light emitted from the first light guide plate, and emits the laser light to the image display element side; and the first light guide plate.
  • an optical path changing unit that is arranged along a curved surface formed at a corner, and that receives the laser light emitted from the red light source, the blue light source, and the green light source and emits the laser light to the first light guide plate. Is preferred.
  • a red light source, a green light source, and a blue light source are arranged on the surface of the first light guide plate. Therefore, the overall shape of the display device can be reduced, and the laser light emitted from the first light guide plate is further diffused by the second light guide plate to the image display element side. Can be emitted.
  • the backlight unit portion has a curved surface portion in which at least one corner portion of the four corners has a concave shape, and reflects and diffuses incident laser light to be emitted.
  • a second light guide plate that is disposed in close contact with the first light guide plate, reflects and diffuses one laser beam emitted from the first light guide plate, and emits the light to the image display element side.
  • the red light source, the blue light source, and the green light source are arranged at positions facing the curved surface portion of the first light guide plate, and the laser light emitted from the red light source, the blue light source, and the green light source. Is preferably incident on the first light guide plate by being reflected by the curved surface portion.
  • laser light can be directly incident on the first light guide plate from the curved surface portion of the first light guide plate without providing an optical path conversion unit, so that a large screen can be obtained while simplifying the configuration of the optical system.
  • the laser light emitted from the first light guide plate can be further diffused by the second light guide plate and emitted to the image display element side.
  • the display device which is effective in the present invention is useful as a projector.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Theoretical Computer Science (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
  • Lasers (AREA)

Abstract

A display device includes: a semiconductor laser for emitting an exciting laser beam; a resonator having a solid-state laser excited by input of the exciting laser beam for emitting laser and a first and a second mirror arranged so as to sandwich the solid-state laser; a wavelength conversion element arranged inside the resonator and converting the basic wave laser beam into a higher harmonic laser beam; an image display element for displaying an image by irradiation of the higher harmonic laser beam; and a laser drive unit for driving the semiconductor laser so as to lower the output of the higher harmonic laser beam at a cycle of frame cycle of the video signal applied to the image display element and multiplied by an integer. It is possible to realize a high luminance and a large screen by stabilizing the output of the laser beam applied to the image display element.

Description

明 細 書  Specification
ディスプレイ装置  Display device
技術分野  Technical field
[0001] 本発明は、波長変換を用いる SHGレーザーを搭載するディスプレイ装置に関する  TECHNICAL FIELD [0001] The present invention relates to a display device equipped with an SHG laser using wavelength conversion.
背景技術 Background art
[0002] 光源としてレーザーを用いたディスプレイ装置が提案されて!/、る(例えば、特許文 献 1参照)。レーザーを用いたディスプレイ装置の一例を図 21に示す。図 21は、従来 のディスプレイ装置 51を上面から見た図である。赤色光源 52、緑色光源 53及び青 色光源 54から出力されたレーザー光は、ロッドインテグレーター 55を用いて光量分 布が均一化された後、透過型液晶パネル 56 導かれる。透過型液晶パネル 56を透 過したレーザー光は、合波プリズム 57により合波され、出射レンズ 58を透過して映像 として出力される。赤色光源 52 (発振波長 640nm近傍)及び青色光源 54 (発振波長 440nm近傍)としては、半導体レーザーが用いられている。緑色光源 53としては、波 長変換を用いる SHG (Second Harmonic Generation)レーザーが用いられて いる。各光源 52 54は、ディスプレイ装置 51の輝度を高めるため、連続点灯して用 いられている。 SHGレーザーは、内部共振器型の SHGレーザーである。具体的に は、ポンプ用半導体レーザー(波長 808nm)から出力されたレーザー光が固体レー ザ一に吸収され、固体レーザーから波長 1064nmのレーザー光(基本波)が出力さ れる。固体レーザーから出力された基本波は、波長変換素子に入力され、波長変換 素子により第 2高調波である波長が 1/2の 532nmのレーザー光が出力される。  [0002] A display device using a laser as a light source has been proposed! (See, for example, Patent Document 1). An example of a display device using a laser is shown in FIG. FIG. 21 is a view of a conventional display device 51 as viewed from above. The laser light output from the red light source 52, the green light source 53, and the blue light source 54 is guided to the transmissive liquid crystal panel 56 after the light quantity distribution is made uniform using the rod integrator 55. The laser light that has passed through the transmissive liquid crystal panel 56 is combined by a combining prism 57, is transmitted through an output lens 58, and is output as an image. Semiconductor lasers are used as the red light source 52 (oscillation wavelength around 640 nm) and the blue light source 54 (oscillation wavelength around 440 nm). As the green light source 53, an SHG (Second Harmonic Generation) laser using wavelength conversion is used. Each light source 52 54 is continuously lit to increase the luminance of the display device 51. The SHG laser is an internal cavity type SHG laser. Specifically, laser light output from the pump semiconductor laser (wavelength 808 nm) is absorbed by the solid-state laser, and laser light (fundamental wave) having a wavelength of 1064 nm is output from the solid-state laser. The fundamental wave output from the solid-state laser is input to the wavelength conversion element, and the wavelength conversion element outputs 532 nm laser light with a wavelength of 1/2, which is the second harmonic.
[0003] 上記のディスプレイ装置 51では、光源として半導体レーザーや SHGレーザーのよ うな発振波長スペクトルの限定された光源を用いているため、光学部品の設計がラン プを用いた場合に比べて容易であり、光学系が小型化できる。さらに、ランプを用い るディスプレイ装置に比べ、低消費電力化が実現できる。  [0003] In the display device 51 described above, a light source having a limited oscillation wavelength spectrum such as a semiconductor laser or an SHG laser is used as a light source, so that the design of optical components is easier than in the case of using a lamp. Yes, the optical system can be miniaturized. Furthermore, power consumption can be reduced compared to display devices that use lamps.
[0004] しかしながら、上記の従来のディスプレイ装置 51においては、緑色光源 53として用 いられる内部共振器型の SHGレーザーを連続点灯させた場合、その SHGレーザー に出力変動が発生し、ディスプレイ装置 51から出力される映像の色バランスが乱れる という問題が発生していた。 SHGレーザーから出力される高調波の出力変動を抑え るために、高精度な温度制御素子や温度制御装置を用いたり、共振器にエタロンな どのデバイスを揷入したりする手段が一般的に用いられるが、光源装置としての消費 電力や大きさの増大と高コスト化というデメリットが生じていた。また、共振器内にエタ ロンなどのデバイスを揷入すると基本波の減衰が発生し、結果として高調波の出力が 低下するという問題が発生してしまう。内部共振器型 SHGレーザーを民生用品に使 用することを考慮すると、上記デメリットは大きい。 [0004] However, in the conventional display device 51 described above, when an internal cavity type SHG laser used as the green light source 53 is continuously lit, the SHG laser Output fluctuation occurred, and the color balance of the video output from the display device 51 was disturbed. In order to suppress the output fluctuations of the harmonics output from the SHG laser, it is common to use a high-accuracy temperature control element or temperature control device, or insert a device such as an etalon into the resonator. However, there have been disadvantages such as increased power consumption and size as a light source device and increased cost. In addition, if a device such as an etalon is inserted in the resonator, the fundamental wave is attenuated, resulting in a problem that the output of the harmonics is reduced. Considering the use of internal cavity SHG lasers for consumer products, the above disadvantages are significant.
[0005] ところで、上記の固体レーザ及び波長変換素子を用いた SHGレーザ(固体レーザ 一装置)は、半導体レーザー光源からのレーザー光により固体レーザー結晶を励起 してレーザー発振を行わせるものであり、小型軽量、長寿命、電気光変換効率が高 い、動作が安定等の特徴を有し、種々の産業分野において利用されている。このよう な固体レーザー装置は、半導体レーザー光源からのレーザー光を結合レンズ系によ り固体レーザー結晶に入射させ、ミラーに挟まれた固体レーザー結晶を励起して基 本波レーザー光を発振させ、この基本波レーザー光を非線形光学媒質の波長変換 素子に入射させることにより、入射光の第 2次高調波成分を発生させ、出力側のミラ 一を通して外部に発射させる構成が一般的である。 [0005] By the way, the SHG laser (one apparatus of solid-state laser) using the above-described solid-state laser and wavelength conversion element excites a solid-state laser crystal by laser light from a semiconductor laser light source to cause laser oscillation. It has features such as small size, light weight, long life, high electro-optic conversion efficiency, and stable operation, and is used in various industrial fields. In such a solid-state laser device, laser light from a semiconductor laser light source is incident on a solid-state laser crystal by a coupling lens system, and the solid-state laser crystal sandwiched between mirrors is excited to oscillate fundamental laser light. In general, the fundamental laser beam is made incident on the wavelength conversion element of the nonlinear optical medium to generate the second harmonic component of the incident light, which is then emitted to the outside through the mirror on the output side.
[0006] このような固体レーザー装置を用いれば、高出力の緑色光(G光)を得ることができ る。具体的な構成例としては、例えば半導体レーザー光源を用い、 Nd :YVO等から [0006] If such a solid-state laser device is used, high-output green light (G light) can be obtained. As a specific configuration example, for example, a semiconductor laser light source is used and Nd: YVO or the like is used.
4 なる固体レーザー結晶を励起させ、反射ミラーと出力ミラーとの間で固体レーザー結 晶のレーザー発振を起こさせる。このレーザー発振により波長 1064nmの基本波レ 一ザ一光が得られる。この基本波レーザー光を波長変換素子に入射することにより、 波長 532nmの第 2高調波が得られる。このような構成とすることで高出力の G光が得 られるので、レーザーディスプレイや投射型液晶ディスプレイ等への応用が可能とな ることから開発が活発に行われている。  4 is excited to cause laser oscillation of the solid laser crystal between the reflecting mirror and the output mirror. This laser oscillation produces a fundamental laser beam with a wavelength of 1064 nm. By making this fundamental laser beam incident on the wavelength conversion element, a second harmonic wave having a wavelength of 532 nm can be obtained. With such a configuration, high-output G light can be obtained, so that it can be applied to laser displays, projection-type liquid crystal displays, and the like, and is being actively developed.
[0007] 例えば、高出力、高効率であって、スペックルノイズ低減を可能とする固体レーザー 装置とそれを用いた画像表示装置が示されている(例えば、特許文献 2参照)。この 固体レーザー装置は、レーザー光源として 1次元横マルチモードレーザーを用いる 構成であり、励起用光源、光共振器内の固体レーザー結晶及び波長変換素子を備 え、楕円状の横モードパターンで固体レーザー結晶を励起して線状ビームを得るとと もに、この線状ビームを波長変換素子に入射させることにより線状光を出力する構成 としている。これにより、楕円状の横モードパターンを利用して高出力及び高効率の 固体レーザー装置を実現できる。また、横マルチモードでの励起により干渉性が低 下することでスペックルノイズを低減できる。さらに、光共振器中に波長変換素子が配 置されているので光共振器内部に閉じ込められた発振光のパワー密度を大きくでき 、高効率で波長変換が可能となる。 [0007] For example, a solid-state laser device that has high output and high efficiency and can reduce speckle noise and an image display device using the solid-state laser device are disclosed (for example, see Patent Document 2). This solid-state laser device uses a one-dimensional transverse multimode laser as a laser light source. It has a light source for excitation, a solid-state laser crystal in the optical resonator, and a wavelength conversion element. The solid-state laser crystal is excited with an elliptical transverse mode pattern to obtain a linear beam. It is configured to output linear light by making a linear beam incident on a wavelength conversion element. This makes it possible to realize a high-power and high-efficiency solid-state laser device using an elliptical transverse mode pattern. In addition, speckle noise can be reduced by reducing coherence due to excitation in the transverse multimode. Further, since the wavelength conversion element is arranged in the optical resonator, the power density of the oscillation light confined inside the optical resonator can be increased, and wavelength conversion can be performed with high efficiency.
[0008] 上記の特許文献 2においては、固体レーザー装置は 1次元横マルチモードレーザ 一を用いて線状のレーザー光を出力して、投射型液晶表示装置に用いた例が示さ れている。しかし、この例においては、固体レーザー装置の固体レーザー結晶や波 長変換素子の過熱による損傷にっレ、ての対策は開示されてレ、なレ、し、また示唆もさ れていない。したがって、固体レーザー結晶や波長変換素子が高密度のレーザー光 の照射を受けると損傷してしまい、長時間安定して高調波レーザー光を発振させるこ とが困難であると!/、う課題を有して!/、る。  [0008] In Patent Document 2 described above, an example in which a solid-state laser device outputs a linear laser beam using a one-dimensional lateral multimode laser and is used in a projection type liquid crystal display device is shown. However, in this example, no countermeasures have been disclosed or suggested for damage caused by overheating of the solid-state laser crystal or the wavelength conversion element of the solid-state laser device. Therefore, solid laser crystals and wavelength conversion elements are damaged when irradiated with high-density laser light, and it is difficult to oscillate harmonic laser light stably for a long time! Have it!
[0009] これに対して、光共振器内における波長変換素子のレーザー光の入射側にレーザ 一光の光路シフト用の透過板を配置して、この透過板を振動させる構成が示されて いる(例えば、特許文献 3参照)。光共振器内の波長変換素子にレーザー光を透過さ せて高調波を発生させて波長変換する際に、上記の透過板を振動させることによりレ 一ザ一光の光路をシフトさせることで、波長変換素子におけるレーザー光の通過領 域が拡大する結果、温度上昇を緩和させることができる。  [0009] On the other hand, a configuration is shown in which a transmission plate for shifting the optical path of one laser beam is disposed on the laser beam incident side of the wavelength conversion element in the optical resonator, and this transmission plate is vibrated. (For example, see Patent Document 3). When the wavelength conversion element in the optical resonator transmits laser light to generate harmonics and convert the wavelength, the optical path of the laser light is shifted by vibrating the transmission plate. As a result of the enlargement of the laser light passage region in the wavelength conversion element, the temperature rise can be mitigated.
[0010] 上記の特許文献 3においては、位相整合に必要なレーザー光の偏向方向と結晶 方位とを保持した状態で透過板を振動させることによりレーザー光の通過領域を拡 大させて過熱を防ぐようにしている力 この方式によれば固体レーザー装置を作動さ せている間は、常に透過板を振動させておくことが必要であり、装置構成が複雑にな り低コスト化が困難である。  [0010] In Patent Document 3 described above, the transmission region of the laser beam is expanded to prevent overheating by vibrating the transmission plate while maintaining the laser beam deflection direction and crystal orientation necessary for phase matching. According to this method, it is necessary to always vibrate the transmission plate while operating the solid-state laser device, which makes the device configuration complicated and difficult to reduce the cost. .
[0011] さらに、反射ミラーと出力ミラーで構成される光共振器内に固体レーザー結晶と波 長変換素子とを配置し、波長変換素子の位置をレーザー光の光軸と垂直方向に移 動させる移動機構とを備えた構成にお!/、て、この移動機構をレーザー光の照射に連 動して移動させる構成とした固体レーザー装置も示されている(例えば、特許文献 4 参照)。このような構成により、波長変換素子の全面を有効に使用することができるよ うになり、波長変換素子の寿命を長くすることができ、結果として固体レーザー装置の 寿命を延ばすことができる。 Furthermore, a solid-state laser crystal and a wavelength conversion element are arranged in an optical resonator composed of a reflection mirror and an output mirror, and the position of the wavelength conversion element is shifted in a direction perpendicular to the optical axis of the laser light. There is also shown a solid-state laser device having a configuration including a moving mechanism that moves the moving mechanism in conjunction with laser light irradiation (for example, see Patent Document 4). . With such a configuration, the entire surface of the wavelength conversion element can be used effectively, the life of the wavelength conversion element can be extended, and as a result, the life of the solid-state laser device can be extended.
[0012] 上記の特許文献 4においては、波長変換素子を電気的に移動させるようにすること で、波長変換素子の損傷を防止するとともに、波長変換素子の全面を有効に利用可 能としているが、この方式においても上記と同様に、機械的な移動機構を設けなけれ ばならず、装置構成が複雑となり、低コスト化が困難である。  In Patent Document 4 described above, the wavelength conversion element is electrically moved to prevent damage to the wavelength conversion element, and the entire surface of the wavelength conversion element can be used effectively. In this method as well, a mechanical movement mechanism must be provided in the same manner as described above, the device configuration becomes complicated, and cost reduction is difficult.
[0013] このような高出力の G光を出力できる固体レーザー装置と半導体レーザー装置とを 組み合わせて、液晶パネルの裏面からレーザー光を照射して投射型液晶表示装置 や薄型テレビ等の液晶表示装置に用いることも検討されている。し力、しながら、薄型 テレビ等のバックライトユニットにレーザー光源を用いるためには、比較的広い面積 にわたり均一な輝度分布を有する構成を実現しなければならない。また、スペックル ノイズの抑制も重要である。  [0013] A combination of a solid-state laser device capable of outputting such high-output G light and a semiconductor laser device, and irradiating a laser beam from the back surface of the liquid crystal panel, and a liquid crystal display device such as a projection-type liquid crystal display device or a thin television It is also being considered for use in However, in order to use a laser light source for a backlight unit such as a thin television, a configuration having a uniform luminance distribution over a relatively large area must be realized. It is also important to suppress speckle noise.
[0014] 液晶表示装置のバックライトユニットの光源として用いる場合には、薄型で、かつ大 面積にわたり均一な輝度の照明光源を低コストで実現することが要求される。このよう なバックライトユニットに固体レーザー装置を用いるためには、固体レーザー装置から 出力されるレーザー光をマルチモードにするほうが好ましい。し力もながら、特に G光 を発光するレーザー光源(G光源)では、マルチモード構成につ!/、ては未だ実現され ていない。  When used as a light source of a backlight unit of a liquid crystal display device, it is required to realize an illumination light source that is thin and has a uniform luminance over a large area at a low cost. In order to use a solid-state laser device for such a backlight unit, it is preferable to set the laser beam output from the solid-state laser device to a multimode. However, the multi-mode configuration has not yet been realized, especially with laser light sources that emit G light (G light sources).
特許文献 1 :特開平 6— 208089号公報  Patent Document 1: JP-A-6-208089
特許文献 2:特開 2006— 100772号公報  Patent Document 2: Japanese Unexamined Patent Publication No. 2006-100772
特許文献 3:特開平 7— 22686号公報  Patent Document 3: Japanese Patent Laid-Open No. 7-22686
特許文献 4 :特開 2004— 22946号公報  Patent Document 4: Japanese Patent Application Laid-Open No. 2004-22946
発明の開示  Disclosure of the invention
[0015] 本発明の目的は、画像表示素子に照射されるレーザー光の出力を安定化させるこ とにより高輝度、かつ大画面化が可能なディスプレイ装置を提供することである。 [0016] 本発明の一局面に従うディスプレイ装置は、励起レーザー光を出射する半導体レ 一ザ一と、前記励起レーザー光の入射により励起されてレーザー発振し、基本波レ 一ザ一光を出射する固体レーザー及び、前記固体レーザーを挟むように配置された 第 1及び第 2のミラー、を有する共振器と、前記共振器内部に配置され、前記基本波 レーザー光を高調波レーザー光に変換する波長変換素子と、前記高調波レーザー 光の照射により画像を表示する画像表示素子と、前記画像表示素子に印加される映 像信号のフレーム周期の整数倍の周期で前記高調波レーザー光の出力が低下する ように前記半導体レーザーを駆動するレーザー駆動部とを備える。 [0015] An object of the present invention is to provide a display device capable of increasing the brightness and enlarging the screen by stabilizing the output of the laser light applied to the image display element. [0016] A display device according to one aspect of the present invention includes a semiconductor laser that emits excitation laser light and laser oscillation that is excited by incidence of the excitation laser light and emits fundamental laser light. A resonator having a solid-state laser and first and second mirrors arranged so as to sandwich the solid-state laser, and a wavelength that is arranged inside the resonator and converts the fundamental laser light into harmonic laser light The output of the harmonic laser light is reduced at a period that is an integral multiple of the frame period of the image signal applied to the conversion element, the image display element that displays an image by irradiation of the harmonic laser light, and the image display element. And a laser driving section for driving the semiconductor laser.
[0017] 上記のディスプレイ装置では、映像信号のフレームレートの整数倍の周期における 高調波レーザー光の出力の低下により高調波レーザー光の発振状態の縦モードが マルチモード化される。このため、高調波レーザー光の出力が安定化され、高調波レ 一ザ一光の出力不安定に起因する画像の色バランスを乱れ等を抑制し、高品質の 画像を表示することができる。  [0017] In the above display device, the longitudinal mode of the oscillation state of the harmonic laser beam is changed to the multimode due to the decrease in the output of the harmonic laser beam in the period that is an integral multiple of the frame rate of the video signal. For this reason, the output of the harmonic laser beam is stabilized, the disturbance of the color balance of the image due to the unstable output of the harmonic laser beam is suppressed, and a high-quality image can be displayed.
図面の簡単な説明  Brief Description of Drawings
[0018] [図 1]本発明の実施の形態 1にかかるディスプレイ装置の概略構成を示す平面図で ある。  FIG. 1 is a plan view showing a schematic configuration of a display device according to a first embodiment of the present invention.
[図 2]図 1の緑色光源に搭載された内部共振器型 SHGレーザの概略構成を示す側 面図である。  2 is a side view showing a schematic configuration of an internal cavity type SHG laser mounted on the green light source of FIG.
[図 3]図 3Aは、ポンプ用半導体レーザーを連続点灯させた場合の基本波の縦モード スペクトルを示す図、図 3Bは、図 3Aの縦モードスペクトルが外乱により変動した状態 を示す図である。  FIG. 3A is a diagram showing a longitudinal mode spectrum of a fundamental wave when a pump laser diode is continuously turned on, and FIG. 3B is a diagram showing a state in which the longitudinal mode spectrum of FIG. 3A fluctuates due to disturbance. .
[図 4]ポンプ用半導体レーザーの駆動方法を説明する図である。  FIG. 4 is a diagram for explaining a method of driving a pump semiconductor laser.
[図 5]図 5Aは、ポンプ用半導体レーザーを連続点灯したときの高調波出力の変動を 示す図、図 5Bは、ポンプ用半導体レーザーをノ ルス駆動したときの高調波出力の変 動を示す図である。  [Fig.5] Fig. 5A shows the fluctuation of the harmonic output when the pump laser diode is continuously turned on, and Fig. 5B shows the fluctuation of the harmonic output when the pump laser diode is driven with a nozzle. FIG.
[図 6]図 6Aは、液晶パネルの駆動を説明する図、図 6Bは、出力低下時間の揷入方 法を説明する図、図 6Cは、出力低下時間の他の揷入方法を説明する図である。  [FIG. 6] FIG. 6A is a diagram for explaining driving of the liquid crystal panel, FIG. 6B is a diagram for explaining a method for inserting the output drop time, and FIG. 6C is a diagram for explaining another method for inserting the output drop time. FIG.
[図 7]図 7Aは、 0次の横モードを示す図、図 7Bは、 1次の横モードを示す図、図 7C は、 2次の横モードを示す図、図 7Dは、出力変動時の横モードを示す図、図 7Eは、 1次の横モード(垂直横モード)を示す図である。 [FIG. 7] FIG. 7A is a diagram showing a zeroth-order transverse mode, FIG. 7B is a diagram showing a first-order transverse mode, and FIG. 7C. FIG. 7D is a diagram showing a secondary transverse mode, FIG. 7D is a diagram showing a transverse mode when the output fluctuates, and FIG. 7E is a diagram showing a primary transverse mode (vertical transverse mode).
園 8]本発明の実施の形態 3にかかるディスプレイ装置の概略構成を示す平面図で ある。 FIG. 8] is a plan view showing a schematic configuration of the display device according to the third embodiment of the present invention.
園 9]ポンプ用半導体レーザーの駆動方法を説明する図である。 FIG. 9] A diagram illustrating a method for driving a pump semiconductor laser.
園 10]本発明の実施の形態 4にかかる内部共振器型 SHGレーザーの概略構成を示 す側面図である。 10] A side view showing a schematic configuration of the internal cavity type SHG laser according to the fourth embodiment of the present invention.
[図 11]図 11Aは、従来のビーム形状を示す図、図 11Bは、ポンプ光の光量と G光出 力との関係を示すグラフ図である。  FIG. 11A is a diagram showing a conventional beam shape, and FIG. 11B is a graph showing the relationship between the amount of pump light and the G light output.
[図 12]図 12Aは、傾斜角度 Θ =0. 2° におけるビーム形状を示す図、図 12Bは、ポ ンプ光の光量と G光出力との関係を示すグラフ図である。  FIG. 12A is a diagram showing a beam shape at an inclination angle Θ = 0.2 °, and FIG. 12B is a graph showing a relationship between the light amount of pump light and the G light output.
[図 13]図 13Aは、傾斜角度 Θ =0. 3° におけるビーム形状を示す図、図 13Bは、ポ ンプ光の光量と G光出力との関係を示すグラフ図である。  FIG. 13A is a diagram showing a beam shape at an inclination angle Θ = 0.3 °, and FIG. 13B is a graph showing a relationship between the light amount of pump light and the G light output.
園 14]傾斜角度 Θ =0. 4° におけるポンプ光の光量と G光出力との関係を示すダラ フ図である。 14] A graph showing the relationship between pump light intensity and G light output at an inclination angle of Θ = 0.4 °.
園 15]傾斜角度 θ =0· 5° におけるポンプ光の光量と G光出力との関係を示すダラ フ図である。 15] A graph showing the relationship between the pump light intensity and the G light output at an inclination angle θ = 0 · 5 °.
園 16]図 16Aは、本発明の実施の形態 5にかかるディスプレイ装置の概略構成を示 す斜視図、図 16Bは、その平面図、図 16Cは、図 16Bの 5Α—5Α線に沿って切断し た断面図である。 16] FIG. 16A is a perspective view showing a schematic configuration of the display device according to Embodiment 5 of the present invention, FIG. 16B is a plan view thereof, and FIG. 16C is cut along the 5-5 line in FIG. 16B. FIG.
園 17]図 17Aは、本発明の実施の形態 6にかかるディスプレイ装置の概略構成を示 す平面図、図 17Bは、図 17Aの 6Α— 6Α線に沿って切断した断面図である。 17] FIG. 17A is a plan view showing a schematic configuration of the display apparatus according to Embodiment 6 of the present invention, and FIG. 17B is a cross-sectional view taken along line 6-6-6 in FIG. 17A.
園 18]図 18Aは、本発明の実施の形態 7にかかるディスプレイ装置の概略構成を示 す平面図、図 18Bは、図 18Aの 7Α— 7Α線に沿って切断した断面図である。 18] FIG. 18A is a plan view showing a schematic configuration of the display apparatus according to Embodiment 7 of the present invention, and FIG. 18B is a cross-sectional view taken along line 7-7-7 in FIG. 18A.
園 19]図 19Aは、本発明の実施の形態 8にかかるディスプレイ装置の概略構成を示 す平面図、図 19Bは、図 19Aの 8Α— 8Α線に沿って切断した断面図である。 19] FIG. 19A is a plan view showing a schematic configuration of the display apparatus according to Embodiment 8 of the present invention, and FIG. 19B is a cross-sectional view taken along line 8-8-8 in FIG. 19A.
園 20]本発明の実施の形態 9にかかるディスプレイ装置の概略構成を示す平面図で ある。 [図 21]従来のディスプレイ装置の概略構成を示す平面図である。 FIG. 20] is a plan view showing a schematic configuration of the display apparatus according to the ninth embodiment of the present invention. FIG. 21 is a plan view showing a schematic configuration of a conventional display device.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0019] 以下、本発明の実施の形態について、図面を参照しながら説明する。なお、同じ要 素には同じ符号を付しており、説明を省略する場合がある。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In addition, the same code | symbol is attached | subjected to the same element and description may be abbreviate | omitted.
[0020] (実施の形態 1) [0020] (Embodiment 1)
以下の実施の形態では、主として内部共振器型の SHGレーザーを具備するデイス プレイ装置における内部共振器型 SHGレーザーの構成と駆動方法に関して説明す る。図 1は、本発明の実施の形態 1にかかるディスプレイ装置 1を上面から見た図であ  In the following embodiments, a configuration and a driving method of an internal cavity type SHG laser in a display device including an internal cavity type SHG laser will be mainly described. FIG. 1 is a top view of the display device 1 according to the first embodiment of the present invention.
[0021] 本実施の形態に力、かるディスプレイ装置 1においては、図 1に示すように、赤色光源 [0021] In the display device 1 that is effective in the present embodiment, as shown in FIG.
2、緑色光源 3及び青色光源 4から出力されたレーザー光は、ロッドインテグレーター 5を用いて光量分布が均一化された後、透過型液晶パネル 6a〜6cへ導かれる。透 過型液晶パネル 6a〜6cを透過したレーザー光は,合波プリズム 7により合波され、出 射レンズ 8を透過して映像として出力される。赤色光源 2 (発振波長 640nm近傍)、 青色光源 4 (発振波長 440nm近傍)には半導体レーザーを用いた。緑色光源 3とし て、波長変換を用いて緑色光を出力させる内部共振器型の SHG (Second Harmo nic Generation)レーザーを用いた。制御回路 9は、各光源の制御や透過型液晶 パネルの制御を行う。ランプのような消費電力の大きな光源を用いないため、電池 21 による駆動も可能となって!/、る。  2. The laser light output from the green light source 3 and the blue light source 4 is guided to the transmissive liquid crystal panels 6a to 6c after the light quantity distribution is made uniform using the rod integrator 5. The laser beams that have passed through the transmissive liquid crystal panels 6a to 6c are combined by the combining prism 7 and transmitted through the projection lens 8 to be output as an image. Semiconductor lasers were used for red light source 2 (oscillation wavelength around 640 nm) and blue light source 4 (oscillation wavelength around 440 nm). As the green light source 3, an internal cavity type SHG (Second Harmonic Generation) laser that uses wavelength conversion to output green light was used. The control circuit 9 controls each light source and the transmissive liquid crystal panel. Since a light source with high power consumption such as a lamp is not used, it can be driven by battery 21! /.
[0022] 図 2は、図 1の緑色光源 3に搭載された内部共振器型 SHGレーザの概略構成を示 す模式図である。本実施の形態で用いた内部共振器型 SHGレーザー 10は、図 2に 示すように、発振波長 808nm近傍のポンプ用半導体レーザー 11と、ロッドレンズ 12 と、 VBG13と、ボールレンズ 14と、固体レーザー 15と、波長変換素子 16と、凹面ミラ 一 17と、を備えている。ポンプ用半導体レーザー 11から出射した波長 808nm近傍 のポンプ光 18は、ロッドレンズ 12により垂直方向の成分がコリメートされて VBG13に 入射する。 VBGは、 Volume Bragg Gratingの略であり、透過型の回折格子であ る。 VBG13に入射したポンプ光は、一部が反射されポンプ用半導体レーザー 11に フィードバックされ、ポンプ用半導体レーザー 11の発振波長は VBG13により選択さ れた波長(808nm)にロックされる。 FIG. 2 is a schematic diagram showing a schematic configuration of an internal cavity type SHG laser mounted on the green light source 3 of FIG. As shown in FIG. 2, the internal resonator type SHG laser 10 used in the present embodiment includes a pump semiconductor laser 11, a rod lens 12, a VBG13, a ball lens 14, and a solid-state laser having an oscillation wavelength of about 808 nm. 15, a wavelength conversion element 16, and a concave mirror 17. The pump light 18 having a wavelength of about 808 nm emitted from the pump semiconductor laser 11 is collimated by the rod lens 12 and incident on the VBG 13. VBG is an abbreviation for Volume Bragg Grating and is a transmissive diffraction grating. The pump light incident on VBG13 is partially reflected and fed back to the pump semiconductor laser 11, and the oscillation wavelength of the pump semiconductor laser 11 is selected by VBG13. Locked to the specified wavelength (808 nm).
[0023] 本実施の形態では、 VBG13力、らの戻り光量を 20%とした。 VBG13からの戻り光 量は、 10〜30%程度が適当である。 10%以下であると波長ロックが弱まる。また、 3 0%以上になると透過光量の減少が大きくなるだけでなぐポンプ用半導体レーザー 11内の光量増加による不安定動作を引き起こす可能性が大きくなる。 VBG13を用 いることで温度変化が発生してもポンプ用半導体レーザー 11の発振波長がほとんど 変化することがない構成となっているのでポンプ用半導体レーザー 11への高精度な 温度制御装置が不要になっている。固体レーザー 15は、 808nm近傍での吸収効率 が高いため、半導体レーザー 11の波長が変化しないことは非常に重要である。これ は装置の低コスト化、低消費電力化、小型化に大きな効果がある。  [0023] In this embodiment, the VBG13 force and the return light amount are set to 20%. The appropriate amount of light returned from VBG13 is about 10-30%. If it is 10% or less, the wavelength lock is weakened. Further, if it is 30% or more, there is a greater possibility of causing unstable operation due to an increase in the amount of light in the pump semiconductor laser 11 as well as a decrease in the amount of transmitted light. Since the oscillation wavelength of the pump semiconductor laser 11 hardly changes even if the temperature changes by using the VBG13, a highly accurate temperature control device for the pump semiconductor laser 11 is unnecessary. It has become. Since the solid-state laser 15 has high absorption efficiency near 808 nm, it is very important that the wavelength of the semiconductor laser 11 does not change. This has a great effect on cost reduction, power consumption and size reduction of the apparatus.
[0024] 本実施の形態では、ポンプ用半導体レーザー 11の発振波長のロックに VBG13を 用いて!/、るが、誘電体多層膜を用いて作製されるバンドパスフィルターを用いても同 様の効果が得られる。半導体レーザー 11自身が波長ロック機能を備えた DFBレー ザ一や DBRレーザーであっても良い。 VBG13により波長ロックされたポンプ光 18は 、ボールレンズ 14により固体レーザー 15へ集光される。固体レーザー 15には Ndが 3 %ドーピングされた YVOを用いた。ポンプ光 18により固体レーザー 15が励起され、  In this embodiment, VBG13 is used to lock the oscillation wavelength of pump semiconductor laser 11! /, But a bandpass filter manufactured using a dielectric multilayer film is also used. An effect is obtained. The semiconductor laser 11 itself may be a DFB laser or a DBR laser having a wavelength lock function. The pump light 18 that is wavelength-locked by the VBG 13 is condensed on the solid-state laser 15 by the ball lens 14. The solid laser 15 was YVO doped with 3% Nd. The solid state laser 15 is excited by the pump light 18,
4  Four
波長 1064nmの基本波 19が発生する。基本波 19は固体レーザー 15と凹面ミラー 1 7により形成される共振器内で共振する。共振器内に設置された波長変換素子 16に より、基本波 19の一部が波長変換され、波長 532nmの高調波 20として外部に出力 される。  A fundamental wave 19 having a wavelength of 1064 nm is generated. The fundamental wave 19 resonates in a resonator formed by the solid-state laser 15 and the concave mirror 17. A part of the fundamental wave 19 is wavelength-converted by the wavelength conversion element 16 installed in the resonator and output to the outside as a harmonic 20 having a wavelength of 532 nm.
[0025] 本実施の形態では、波長変換素子 16に Mg : LiNbOに周期上の分極反転を形成  In the present embodiment, periodic polarization inversion is formed in Mg: LiNbO in the wavelength conversion element 16
3  Three
したものを用いた。本実施の形態では、凹面ミラー 17を用いて共振器を構成している 力 波長変換素子 16の出射側の面に基本波 19用の反射コートを形成し、波長変換 素子 16を固体レーザー 15と近接させる構造 (マイクロチップ型)にしてもよい。内部 共振器型 SHGレーザー 10は、小型で高出力の緑色光源を実現するには有効な構 成である。内部共振器型 SHGレーザー 10の採用は、発振波長が 808nm付近のポ ンプ用半導体レーザー 11は高出力のものが入手しやすいのが第 1の理由である。ま た、固体レーザー 15から出力される基本波 19の波長が安定しており、固体レーザー 15に対して高精度な波長ロックや温度調節が不要である点が第 2の理由である。ま た、共振器内の基本波パワーが大きいため、波長変換素子 16の長さが短くて済み、 他の手段(例えば、導波路型の SHGレーザー)と比較して温度変化に対する高調波 の出力変動を小さくできる。波長 532nm近傍の緑色光を得るには発振波長 1064η m付近の半導体レーザー光を直接 532nm近傍の緑色光に変換する手段も考えられ る力 発振波長が 1064nm近傍の高出力な半導体レーザーは作製が困難であるの に加え、半導体レーザー及び波長変換素子の温度制御が必要になる場合が多い。 また、ファイバーレーザーを用いて高出力の 1064nm帯のレーザー光を得ることも可 能であるが、光源の小型化が困難であるのに加え、高出力化による波長変換素子の 長尺化を伴うため、波長変換素子の高精度な温度制御が必要である。 What was done was used. In the present embodiment, a reflection coat for the fundamental wave 19 is formed on the surface of the output side of the force wavelength conversion element 16 constituting the resonator using the concave mirror 17, and the wavelength conversion element 16 is connected to the solid-state laser 15. You may make it the structure (microchip type) to adjoin. The internal cavity type SHG laser 10 is an effective configuration for realizing a compact and high-power green light source. The internal resonator type SHG laser 10 is used for the first reason that pump semiconductor lasers 11 with an oscillation wavelength of around 808 nm are easily available. In addition, the wavelength of the fundamental wave 19 output from the solid-state laser 15 is stable, and the solid-state laser The second reason is that high-precision wavelength locking and temperature control are not required. In addition, since the fundamental wave power in the resonator is large, the length of the wavelength conversion element 16 can be shortened, and harmonics output with respect to temperature changes compared to other means (for example, a waveguide type SHG laser). Variation can be reduced. In order to obtain green light with a wavelength of around 532 nm, a means to directly convert semiconductor laser light with an oscillation wavelength of about 1064 ηm into green light with a wavelength of around 532 nm is also considered. It is difficult to produce a high-power semiconductor laser with an oscillation wavelength of about 1064 nm. In addition to this, it is often necessary to control the temperature of the semiconductor laser and the wavelength conversion element. It is also possible to obtain high-power 1064nm laser light using a fiber laser, but in addition to making it difficult to reduce the size of the light source, it is accompanied by an increase in the wavelength conversion element due to higher output. Therefore, highly accurate temperature control of the wavelength conversion element is necessary.
[0026] 図 3A及び Bに、ポンプ用半導体レーザーを連続点灯で駆動した際の、固体レーザ 一から出力される基本波の縦モードスペクトルの一例を示す。光源に高精度な温度 制御を実施しなレ、場合や、エタロンなどの光学部品等を用いて基本波の波長を制御 しない場合、縦モードスペクトルが図 3Aの状態から図 3Bの状態に変動することがあ る。これは、連続点灯により固体レーザー内の熱分布や発振モードの状態が時間とと もに変動するためであると考えられる。縦モードスペクトルが変動すると波長変換素 子での位相整合状態が変化することから波長変換される基本波の割合が変動する。 結果として出力される緑色光の出力が揺らぐことになる。内部共振器型 SHGレーザ 一をディスプレイ用の光源として用いる場合、レーザーの出力の揺らぎは致命的とな る力 民生用のディスプレイに用いる場合にはさらに、レーザーが小型で低コストな上 に、制御が容易なものが要求される。また、周囲の温度が変化した状態でも安定した 動作を行うものが要求される。  FIGS. 3A and 3B show an example of a longitudinal mode spectrum of the fundamental wave output from one solid-state laser when the pumping semiconductor laser is driven by continuous lighting. If high-precision temperature control is not performed on the light source, or if the fundamental wavelength is not controlled using an optical component such as an etalon, the longitudinal mode spectrum changes from the state of Fig. 3A to the state of Fig. 3B. Sometimes. This is thought to be because the heat distribution and oscillation mode in the solid-state laser fluctuate with time due to continuous lighting. When the longitudinal mode spectrum changes, the phase matching state of the wavelength conversion element changes, and the proportion of the fundamental wave that is wavelength converted also changes. As a result, the output of the green light that is output fluctuates. Internal resonator type SHG laser When a single light source is used as a display light source, the power fluctuation of the laser is fatal. When used in a consumer display, the laser is small and low-cost, and control is also possible. Is required. In addition, a device that can operate stably even when the ambient temperature changes is required.
[0027] そこで、本実施の形態にかかるディスプレイ装置 1においては、高精度の温度調節 や部品点数の増加を抑えながら、高調波の出力変動を低減するため、ポンプ用半導 体レーザー 11の出力を低下させる或る一定時間(以下、「出力低下時間」と呼ぶ。 ) を揷入して、内部共振器型 SHGレーザー 10を駆動している。図 4、図 5A及び B、図 6A〜Cを用いて出力低下時間の揷入方法とその効果について説明する。  [0027] Therefore, in the display device 1 according to the present embodiment, the output of the semiconductor laser 11 for pumps is reduced in order to reduce harmonic output fluctuations while suppressing high-precision temperature control and the increase in the number of parts. The internal cavity type SHG laser 10 is driven by inserting a certain time (hereinafter referred to as “output reduction time”) during which the SHG laser 10 is reduced. The method for inserting the output drop time and the effect thereof will be described with reference to FIGS. 4, 5A and B, and FIGS.
[0028] 図 4は、図 2のポンプ用半導体レーザー 11の駆動方法を示している。本実施の形 態では、図 4に示すように、半導体レーザー 11を、周期 Tl = 8. 33ms (駆動周波数 120Hz)、出力低下時間 T2 = lmsで駆動した。ここでの駆動は、通常の駆動におけ るポンプ光 18のパワー P2と出力低下時間におけるポンプ光 18のパワー P1 (P2〉P 1)との間の繰り返し動作である。図 5Aは、ポンプ用半導体レーザー 11を連続点灯さ せた場合における SHGレーザー 10の出力変動を示す図、図 5Bは、ポンプ用半導 体レーザー 11の出力に出力低下時間を揷入し、ノ ルス駆動させた場合における SH Gレーザー 10の出力変動を示す図である。図 5Aに示すように、ポンプ用半導体レー ザ一 11を連続点灯させた場合には、 SHGレーザー 10の出力変動が 42%程度あつ た力 図 5Bに示すように、ポンプ用半導体レーザー 11をノ ルス駆動すると、出力変 動は 3. 5%以下に低減され、上記の出力低下時間の揷入によって出力変動が 10分 の 1以下に抑制されていることがわかる。 FIG. 4 shows a driving method of the pumping semiconductor laser 11 of FIG. Form of this implementation In this state, as shown in FIG. 4, the semiconductor laser 11 was driven with a period Tl = 8.33 ms (drive frequency 120 Hz) and an output decrease time T2 = lms. The driving here is a repetitive operation between the power P2 of the pump light 18 in the normal driving and the power P1 (P2> P1) of the pump light 18 in the output reduction time. Fig. 5A shows the fluctuation of the output of the SHG laser 10 when the pump semiconductor laser 11 is continuously turned on. Fig. 5B shows the output drop time into the output of the pump semiconductor laser 11 and It is a figure which shows the output fluctuation | variation of the SHG laser 10 at the time of carrying out a Rus drive. As shown in Fig. 5A, when pump semiconductor laser 11 is continuously lit, the output fluctuation of SHG laser 10 is about 42%. As shown in Fig. 5B, pump semiconductor laser 11 is turned off. As shown in the figure, the output fluctuation is reduced to 3.5% or less when the pulse is driven, and the output fluctuation is suppressed to 1 or less of 10 minutes by the insertion of the above-mentioned output drop time.
[0029] 上記効果は、出力低下時間の揷入により基本波 19の縦モードスペクトルが常にマ ルチモード化されることにより実現されている。内部共振器型 SHGレーザー 10にお いて、複数の基本波 19の縦モードが存在するマルチモード発振の場合、それぞれ の縦モードに対応する高調波 20と同時に各縦モード間の和周波も発生する。このた め、基本波 19の縦モードスペクトルが常にマルチモード化した状態で安定動作され ることになり、 SHGレーザー 10から出力される高調波 20の出力は、人間の目には変 動しているようには感じられない。よって、ディスプレイ装置用の光源としては問題なく 使用できる。 [0029] The above effect is realized by constantly converting the longitudinal mode spectrum of the fundamental wave 19 into a multimode by inserting the output reduction time. In the internal cavity type SHG laser 10, in the case of multimode oscillation in which multiple longitudinal modes of the fundamental wave 19 exist, the sum frequency between each longitudinal mode is generated simultaneously with the harmonic 20 corresponding to each longitudinal mode. . As a result, the longitudinal mode spectrum of the fundamental wave 19 always operates stably in a multi-mode state, and the output of the harmonic 20 output from the SHG laser 10 changes to the human eye. I don't feel like it is. Therefore, it can be used without any problem as a light source for a display device.
[0030] ここで、 P2— P1〉0. 2W以上であれば、基本波 19の縦モードスペクトルのマルチ モード化が実現される。また、 PK Pthであれば、より確実に基本波 19のマルチモ ード化が起こると同時に、高調波 20である緑色光が発生しないため、後述のディスプ レイ装置のコントラスト向上に効果がある。ここで、 Pthは、固体レーザー 15が発振す るために必要な最小レベルのポンプ光 18のパワーとする。また、 T1 < 0. 5s、T2〉l msという条件下で、上記マルチモード化が発生しやすい。出力低下時間の揷入によ り出力変動が大幅に低減されたことで、内部共振器型 SHGレーザー 10をディスプレ ィ用の光源として使用することが可能となった。  [0030] Here, if P2−P1> 0.2 W or more, the longitudinal mode spectrum of the fundamental wave 19 can be converted into a multimode. In addition, if PK Pth is used, the fundamental wave 19 is more surely converted into multimode, and at the same time, the green light that is the harmonic 20 is not generated, which is effective in improving the contrast of the display device described later. Here, Pth is the power of the minimum level of pump light 18 necessary for the solid-state laser 15 to oscillate. In addition, the multi-mode is likely to occur under the conditions of T1 <0.5 s and T2> l ms. Since the output fluctuation is greatly reduced by inserting the output drop time, the internal resonator type SHG laser 10 can be used as the light source for the display.
[0031] 上述のように、内部共振器型 SHGレーザー 10の出力を安定化させるためには、ポ ンプ用半導体レーザー 11に lms以上の出力低下時間を揷入する必要がある。駆動 周波数で表現すると、 1kHz以下にする必要がある。上述のように、 1kHz以下という 、低周波数での駆動が可能であるため、半導体レーザ 11を駆動するための電子回 路でのロスや反射、ノイズなどの対策がほとんど必要なレ、。 [0031] As described above, in order to stabilize the output of the internal cavity type SHG laser 10, It is necessary to insert an output drop time of lms or more into the semiconductor laser 11 for the amplifier. In terms of drive frequency, it must be 1kHz or less. As described above, since it can be driven at a low frequency of 1 kHz or less, measures such as loss, reflection, and noise in the electronic circuit for driving the semiconductor laser 11 are almost necessary.
[0032] また、本実施の形態では、固体レーザー 15に Ndが 3%ドーピングされた YVOを In this embodiment, YVO doped with 3% of Nd is added to the solid-state laser 15.
4 用いているが、 Ndのドープ量は 2%〜3%が好ましい。ドープ量が多いと出力低下時 間 T2から高出力時間 T1への変更時における緑色光(高調波 20)の出力の立ち上 力 Sり時間が短くなるため、映像出力に与える影響を小さくできる。 Ndのドープ量が 2 %未満の場合、前述の立ち上がり時間が長いだけでなくポンプ光 18の吸収効率が 低下するため高出力を得るためにより多くのポンプ光 18を必要とするので消費電力 が増加するというデメリットがある。また、 3%以上になると、固体レーザー 15の結晶の 作製が困難になるというデメリットがある。  4 Although it is used, the doping amount of Nd is preferably 2% to 3%. When the amount of doping is large, the output rise time S of the green light (harmonic 20) output when the output reduction time T2 is changed to the high output time T1 is shortened, so the effect on the video output can be reduced. When the doping amount of Nd is less than 2%, not only the above-mentioned rise time is long, but also the absorption efficiency of the pump light 18 is reduced, so that more pump light 18 is required to obtain a high output, so that the power consumption increases. There is a disadvantage of doing. Further, if it exceeds 3%, there is a demerit that it is difficult to produce a crystal of the solid-state laser 15.
[0033] 次に、上述の内部共振器型 SHGレーザー 10をディスプレイ用光源として使用する 際の駆動方法について説明する。上述のように、本実施の形態における内部共振器 型 SHGレーザー(緑色光源) 10は、或る一定の出力低下時間を揷入して出力の安 定化を実現している力 S、ディスプレイ用の光源として用いる際には出力低下時間の揷 入のタイミングが重要となる。本実施の形態においては、透過型の液晶パネルを用い るディスプレイ装置に内部共振器型 SHGレーザー 10を適用した場合について説明 する。 Next, a driving method when the above-described internal resonator type SHG laser 10 is used as a display light source will be described. As described above, the internal resonator type SHG laser (green light source) 10 according to the present embodiment is a force that stabilizes the output by introducing a certain output reduction time S, for display When used as a light source, the timing for inserting the output drop time is important. In the present embodiment, a case where the internal resonator type SHG laser 10 is applied to a display device using a transmissive liquid crystal panel will be described.
[0034] 本実施の形態に力、かるディスプレイ装置 1においては、図 1及び 2に示すように、制 御回路 9が各光源 2〜4の制御や透過型液晶パネル 6a〜6cの制御を行う。制御回 路 9は、 SHGレーザー 10を搭載する緑色光源 3を駆動制御するレーザ駆動部 92と、 緑色光源 3に対応する液晶パネル 6bを駆動制御する液晶パネル駆動部 93と、を有 する緑色光源用制御部 91aを備えている。レーザ駆動部 92は、緑色光源 3に搭載さ れた SHGレーザー 10の半導体レーザ 11に印加される駆動電流を制御し、上述の 出力低下時間の揷入を実行する。液晶パネル駆動部 93は、緑色光源 3の発光タイミ ングに対応して緑色用の液晶パネル 6bに映像信号を出力することにより液晶パネル 6bを駆動する。もちろん、制御回路 9は、赤色光源 2及び青色光源 4のそれぞれに対 応する赤色光源用制御部 91b及び青色光源用制御部 91cも備えている。 [0034] In the display device 1 that is effective in the present embodiment, as shown in Figs. 1 and 2, the control circuit 9 controls the light sources 2 to 4 and the transmissive liquid crystal panels 6a to 6c. . The control circuit 9 is a green light source having a laser drive unit 92 that drives and controls the green light source 3 on which the SHG laser 10 is mounted, and a liquid crystal panel drive unit 93 that drives and controls the liquid crystal panel 6b corresponding to the green light source 3. Control unit 91a. The laser driving unit 92 controls the driving current applied to the semiconductor laser 11 of the SHG laser 10 mounted on the green light source 3, and executes the above-described output reduction time. The liquid crystal panel driving unit 93 drives the liquid crystal panel 6b by outputting a video signal to the green liquid crystal panel 6b corresponding to the light emission timing of the green light source 3. Of course, the control circuit 9 is connected to each of the red light source 2 and the blue light source 4. A corresponding red light source controller 91b and blue light source controller 91c are also provided.
[0035] 図 6Aは、液晶パネル 6a〜6cの駆動を説明する図である。図 6Aに示すように、液 晶パネル 6a〜6cの駆動には、液晶の状態をリセットするために映像信号の各フレー ム間に一時的に液晶パネルの透過率をゼロにする無透過(ディスプレイ上で黒)の状 態を揷入しつつ、映像信号に合わせて液晶パネル 6a〜6cの透過率を変化させるの が一般的である。ここで、内部共振器型 SHGレーザー 10のポンプ用半導体レーザ 一 11の駆動電流の出力低下時間 T3を、図 6Bに示すように、液晶パネル 6bの無透 過時間に合わせて揷入すれば、表示画像上でちらつきが無いようにすることができる 。さらに、液晶パネル 6bを透過する緑色光の光量が確実に低減されるため、コントラ ストの向上が実現される。出力低下時間 T3は、液晶パネルの無透過時間よりも短く する必要がある。コントラストの向上とともに光源駆動電力の低減も実現される。光源 駆動電力の低減は消費電力の低減とともに、発熱の低減も実現されることを意味す る。光源の発熱は装置の小型化には大きな要素である。通常、放熱のため装置の大 型化を図ったり放熱能力の高い装置を備えたりするのが一般的である力 本実施の 形態のように出力低下時間の揷入により発熱量が抑制されるため、小型のファンだけ での放熱が実現される。本実施の形態では、 1フレームおきに出力低下時間 T3を揷 入したが、 1フレームの整数倍おきに出力低下時間 T3を揷入してもよい。例えば、図 6Cに示すように、 2フレームに 1回出力低下時間 T3を揷入しても、内部共振器型 SH Gレーザー 10の出力安定性が維持されるので、実用上問題なぐ 2Hzを下回らない 範囲であれば出力安定性が維持される。この場合、ディスプレイ装置の輝度が向上 することになる。また、本実施の形態では透過型の液晶パネルの場合について説明 したが、反射型の液晶パネルや、 DMDなどの画像変換デバイスを用いる場合にお いても各デバイスの駆動方法によって最適化して用いればよいのは自明である。 FIG. 6A is a diagram for explaining driving of the liquid crystal panels 6a to 6c. As shown in Fig. 6A, the liquid crystal panels 6a to 6c are driven by a non-transparent (display) in which the transmittance of the liquid crystal panel is temporarily made zero between each frame of the video signal in order to reset the liquid crystal state. In general, the transmittance of the liquid crystal panels 6a to 6c is changed in accordance with the video signal while inserting the black state. Here, if the output drop time T3 of the drive current of the pump semiconductor laser 11 of the internal cavity type SHG laser 10 is set in accordance with the non-transparent time of the liquid crystal panel 6b as shown in FIG. It is possible to eliminate flicker on the display image. Furthermore, since the amount of green light transmitted through the liquid crystal panel 6b is reliably reduced, an improvement in contrast is realized. The output drop time T3 needs to be shorter than the non-transmission time of the liquid crystal panel. A reduction in light source driving power is realized with an improvement in contrast. Reducing light source drive power means reducing power consumption and heat generation. The heat generated by the light source is a major factor in downsizing the device. Usually, it is common to increase the size of a device for heat dissipation or to provide a device with high heat dissipation capability.In this embodiment, the amount of heat generation is suppressed by inserting the output reduction time. And heat dissipation is achieved with only a small fan. In this embodiment, the output decrease time T3 is inserted every other frame, but the output decrease time T3 may be inserted every integer multiple of one frame. For example, as shown in Fig. 6C, even if the output drop time T3 is inserted once every two frames, the output stability of the internal resonator type SHG laser 10 is maintained. If it is within the range, output stability is maintained. In this case, the brightness of the display device is improved. In this embodiment, the case of a transmissive liquid crystal panel has been described. However, when a reflective liquid crystal panel or an image conversion device such as a DMD is used, it can be optimized according to the driving method of each device. It is obvious that it is good.
[0036] また、緑色光の出力低下時間の揷入と同様にして、赤色光源や青色光源でも液晶 パネルの無透過時間に合わせて出力低下時間を設ければ、液晶パネルを透過する 光量が低下するため、出射レンズを透過する光量が低下する。このため、黒色がより 鮮明となり、映像のコントラストが向上するという効果がある。光源の発熱量もより抑制 でき、消費電力の低減により電池での駆動時間を延ばすことが可能となる。 [0037] 本実施の形態によれば、高精度な温度制御や基本波の波長安定化用のデバイス を共振器内に揷入することなぐ高調波の出力変動を抑制することが可能となる。さら に、出力安定化に温度制御デバイスや光学部品を用いないため、低コスト化や光源 の小型化、低消費電力化、発熱の抑制の実現が可能となる。特に、本実施の形態の ような RGBのそれぞれの色に対し 1枚ずつ画像変換デバイス(液晶パネル)を用いる 3板式のディスプレイ装置にお!/、ては、輝度の低下を抑えて内部共振器型 SHGレー ザ一の出力安定化が実現できる。 [0036] Similarly to the insertion of the green light output reduction time, even if a red light source or a blue light source is provided with an output reduction time that matches the non-transmission time of the liquid crystal panel, the amount of light transmitted through the liquid crystal panel is reduced. Therefore, the amount of light transmitted through the exit lens is reduced. For this reason, there is an effect that black becomes clearer and the contrast of the image is improved. The amount of heat generated by the light source can be further suppressed, and the battery driving time can be extended by reducing power consumption. [0037] According to the present embodiment, it is possible to suppress output fluctuations of harmonics without inserting a device for high-precision temperature control and fundamental wave wavelength stabilization into the resonator. Furthermore, since temperature control devices and optical components are not used to stabilize the output, it is possible to reduce costs, reduce the size of the light source, reduce power consumption, and suppress heat generation. In particular, in a three-plate display device that uses one image conversion device (liquid crystal panel) for each RGB color as in this embodiment! The output stabilization of the type SHG laser can be realized.
[0038] (実施の形態 2)  [0038] (Embodiment 2)
次に、本発明の実施の形態 2について説明する。上記の実施の形態 1では、内部 共振器型 SHGレーザーにおける基本波の発振状態を複数の縦モードが存在するマ ルチモード発振とすることにより SHGレーザーからの出力を安定化させるものであつ た。一方、本実施の形態では、基本波の発振状態を複数の横モードが存在するマル チモード発振とすることにより SHGレーザーからの出力を安定化させるものである。 以下、本実施の形態に係る内部共振器型 SHGレーザーの横モードの制御について 説明する。本実施の形態に力、かるディスプレイ装置は、下記に示す緑色光の横モー ドの状態以外は上記の実施の形態 1と同じである。  Next, Embodiment 2 of the present invention will be described. In the first embodiment described above, the output from the SHG laser is stabilized by setting the oscillation state of the fundamental wave in the internal cavity type SHG laser to the multimode oscillation in which a plurality of longitudinal modes exist. On the other hand, in this embodiment, the output from the SHG laser is stabilized by setting the oscillation state of the fundamental wave to multimode oscillation in which a plurality of transverse modes exist. Hereinafter, control of the transverse mode of the internal cavity type SHG laser according to the present embodiment will be described. The display device which is effective in the present embodiment is the same as that in the first embodiment except for the state of the horizontal mode of green light described below.
[0039] 上記の実施の形態 1において、出力される緑色光(高調波)の横モードは、図 7Aに 示すように、円形のシングルモード(0次)のビームであった。一方、本実施の形態で は、図 7Aの円开乡のシングノレモードのビームに代えて、マノレチモードのビームを用い ている。具体的には、図 7Bや図 7Cに示すように、ビームが 3つ(1次のモード)や 5つ (2次のモード)の形状で出力させた。このようにマルチモード化させると高調波である 緑色光の出力変動はさらに低減できる。通常、図 7Aのシングルモード(0次)のビー ムで用いられる力 S、高出力化に伴いシングルモードを維持するのが困難となる。具体 的には、図 7Aの状態から図 7Dの状態に横モードが変形する場合がある。このとき、 緑色光の出力は 10%以上変動する場合がある。図 7Dの状態は図 7Aの状態と図 7 Bの状態との組み合わせの状態に近い。図 7Bの 1次の横モード状態は、図 7Aの 0次 のシングルモード形状より高出力時に発生しやすいため、低出力時には図 7Aの 0次 のシングルモードであった横モードカ、高出力時には 0次 + 1次の横モードである図 7Dの状態になるのである。本実施の形態では、内部共振器型 SHGレーザーの凹面 ミラーの角度を調整し、あらかじめ図 7Dの状態(1次のモード)で緑色光が出力される ようにしてあるため、高出力化を行った場合にも横モードの変化が発生しないため出 力変動が小さくなつている。図 7Bの 1次の横モードでは出力変動が 3%以下に抑え られた。図 7B及び 7Cでは、水平横モードをマルチモード化させているが、図 7Eに示 すように、垂直横モードをマルチモード化させてもよい。ただし、垂直横モードにおい ては 2次モードまでのマルチモード化が好ましい。 2次モードよりさらにマルチモード 化を進めると、出力の低下を招くからである。 In Embodiment 1 described above, the transverse mode of the output green light (harmonic) is a circular single mode (0th order) beam, as shown in FIG. 7A. On the other hand, in this embodiment, instead of the circular opening single beam mode beam shown in FIG. Specifically, as shown in Fig. 7B and Fig. 7C, the beam was output in the form of three (primary mode) or five (secondary mode). In this way, the output variation of green light, which is a higher harmonic, can be further reduced. Normally, the force S used in the single mode (0th order) beam in Fig. 7A becomes higher, and it becomes difficult to maintain the single mode. Specifically, the transverse mode may change from the state of FIG. 7A to the state of FIG. 7D. At this time, the output of green light may vary by more than 10%. The state of FIG. 7D is close to the combination of the state of FIG. 7A and the state of FIG. 7B. The first-order transverse mode state of Fig. 7B is more likely to occur at higher output than the 0th-order single mode shape of Fig. 7A. Figure that is next + primary horizontal mode It becomes a 7D state. In this embodiment, the angle of the concave mirror of the internal cavity type SHG laser is adjusted so that green light is output in the state shown in FIG. 7D (primary mode) in advance. In this case, the change in output is small because the transverse mode does not change. In the first-order transverse mode in Fig. 7B, the output fluctuation was suppressed to 3% or less. In FIGS. 7B and 7C, the horizontal / horizontal mode is changed to the multimode, but the vertical / horizontal mode may be changed to the multimode as shown in FIG. 7E. However, in vertical and horizontal modes, it is preferable to use multimode up to the secondary mode. This is because if the multimode is further advanced than the secondary mode, the output is reduced.
[0040] 本実施の形態によれば、高精度な温度制御や基本波の波長安定化用のデバイス を共振器内に揷入することなぐ高調波の出力変動を抑制することが可能となる。さら に、出力安定化に温度制御デバイスや光学部品を用いないため、低コスト化や光源 の小型化、低消費電力化、発熱の抑制の実現が可能となる。  [0040] According to the present embodiment, it is possible to suppress output fluctuations of harmonics without inserting a device for high-precision temperature control and fundamental wave wavelength stabilization into the resonator. Furthermore, since temperature control devices and optical components are not used to stabilize the output, it is possible to reduce costs, reduce the size of the light source, reduce power consumption, and suppress heat generation.
[0041] (実施の形態 3)  [Embodiment 3]
次に、本発明の実施の形態 3について説明する。本実施の形態では、画像変換デ ノ イス(液晶パネル)が 1枚のディスプレイ装置の場合について説明する。上記の実 施の形態 1及び 2では、画像変換デバイスが 3枚の装置について説明した。本実施の 形態に力、かるディスプレイ装置は、 1枚の画像変換デバイスの駆動により画像表示を 行っている。図 8に、本実施の形態にかかるディスプレイ装置 31の概略を示す。  Next, Embodiment 3 of the present invention will be described. In the present embodiment, a case where the image conversion device (liquid crystal panel) is a single display device will be described. In Embodiments 1 and 2 described above, an apparatus having three image conversion devices has been described. The display device which is effective in the present embodiment displays an image by driving one image conversion device. FIG. 8 shows an outline of the display device 31 according to the present embodiment.
[0042] 本実施の形態に力、かるディスプレイ装置 31は、赤色光源 32、緑色光源 33及び青 色光源 34が備えられている。赤色光源 32及び青色光源 34は、半導体レーザーを用 いている。緑色光源 33は、内部共振器型の SHGレーザーであり、上記の実施の形 態 1で用いたものと同様の構成である。各色光源 32〜34から出力されたレーザー光 は、ダイクロイツクミラー 40で反射された後、均一化光学系 35を透過し、偏光ビーム スプリツター 37へ入射する。その後、画像変換デバイス(液晶パネル) 36へ入射され る。本実施の形態では、画像変換デバイスに反射型液晶パネル 36を用いている。反 射型液晶パネル 36へ入射したレーザー光は、反射型液晶パネル 36に入力される映 像信号に応じて反射され、出射レンズ 38を透過し映像として出力される。各光源 32 〜34の出力は、制御回路 39により制御されている。また、本実施の形態に力、かるデ イスプレイ装置 31には電池 41が具備されており、電池駆動が可能になっている。上 記の実施の形態 1で示した画像変換デバイスを 3枚用いるディスプレイ装置よりも、本 実施の形態の画像変換デバイス力 1枚の単板式のほうがディスプレイ装置の小型化 に適している。 [0042] The display device 31, which is effective in the present embodiment, includes a red light source 32, a green light source 33, and a blue light source 34. The red light source 32 and the blue light source 34 use semiconductor lasers. The green light source 33 is an internal cavity type SHG laser and has the same configuration as that used in Embodiment 1 above. The laser beams output from the color light sources 32 to 34 are reflected by the dichroic mirror 40, pass through the homogenizing optical system 35, and enter the polarization beam splitter 37. Thereafter, the light enters the image conversion device (liquid crystal panel) 36. In the present embodiment, the reflective liquid crystal panel 36 is used as the image conversion device. The laser light incident on the reflective liquid crystal panel 36 is reflected according to the video signal input to the reflective liquid crystal panel 36, passes through the exit lens 38, and is output as an image. Outputs of the light sources 32 to 34 are controlled by a control circuit 39. In addition, the power of this embodiment The spray device 31 is provided with a battery 41 so that the battery can be driven. Compared to a display device using three image conversion devices shown in the first embodiment, the single-panel type image conversion device of this embodiment is more suitable for downsizing the display device.
[0043] 図 9に、本実施の形態の内部共振器型 SHGレーザーの駆動方法を示す。図 9は、 SHGレーザー内のポンプ用半導体レーザーの駆動方法を示している。本実施の形 態では、画像変換デバイスを 1枚しか用いていないため、映像出力は 1フレームを赤 、緑、青色の 3色用に分割し各色光源 32〜34を順次点灯している。よって、 1フレー ム内で緑色光は 1/3の期間しか点灯しない。ポンプ用半導体レーザーも 1フレーム の 1/3の期間しか点灯しないことになる。すなわち、 1フレーム内の 2/3の期間では 必然的に緑色光源 33に搭載された SHGレーザの半導体レーザーの出力は低下す る。ゆえに、内部共振器型 SHGレーザーの駆動に出力低下時間 T5が常に挿入され ており、上記の実施の形態 1で説明した 3板式のディスプレイ装置で用いるよりも SH Gレーザーから出力される緑色光の出力はもともと安定である。  FIG. 9 shows a driving method of the internal resonator type SHG laser according to the present embodiment. Figure 9 shows how to drive the pump semiconductor laser in the SHG laser. In this embodiment, since only one image conversion device is used, the video output divides one frame into three colors of red, green, and blue, and sequentially turns on each color light source 32 to 34. Therefore, the green light is lit only for 1/3 period within one frame. The pump laser diode is also lit only for 1/3 of a frame. In other words, the output of the semiconductor laser of the SHG laser mounted on the green light source 33 inevitably decreases in the period 2/3 in one frame. Therefore, the output drop time T5 is always inserted in the drive of the internal cavity type SHG laser, and the green light output from the SHG laser is used rather than the three-plate display device described in the first embodiment. The output is inherently stable.
[0044] 緑色光源 33の非点灯時である出力低下時間 T5でのポンプ用半導体レーザーの 出力 P1は、固体レーザーが発振する最小レベルのポンプ光パワー Pthよりも確実に 小さくなければならない。 P1が Pthを超えると、緑色光が出力され、他色光源が点灯 している際に緑色光が出力されるとノイズとなってしまうためである。よって、 P1 = 0と した。本実施の形態では、緑色光出力のさらなる安定化を目的として、図 9に示すよう に、緑色光源 33の点灯時におけるポンプ用半導体レーザーから出力されるポンプ光 出力を、 P3及び P4の 2段階にして駆動した。 P3及び P4は、 SHGレーザーから出力 される緑色光の平均出力が所望の値となるように設定した。上記の実施の形態 1で述 ベたように、高調波である緑色光出力の安定化を図るためには、固体レーザーから 出力される基本波の縦モードをマルチモード化することが重要である。本実施の形態 のように、ポンプ用半導体レーザーの点灯時間内でさらに、ポンプ光強度を変化させ ると基本波の縦モードのマルチモード化がより確実になる。上記の実施の形態 1と同 様に、 P4— P3〉0. 2W以上であればマルチモード化に寄与する。また、出力低下 時間 T4〉 lmsであれば縦モードがマルチモード化しやすい。本実施の形態のように 、ポンプ用半導体レーザーの出力を 3値にして駆動することで緑色光出力の変動を 3 %以下にすることが実現された。 [0044] The output P1 of the pumping semiconductor laser at the output reduction time T5 when the green light source 33 is not lit must be surely smaller than the minimum level of pumping light power Pth at which the solid-state laser oscillates. This is because when P1 exceeds Pth, green light is output, and when green light is output while the other color light sources are lit, noise is generated. Therefore, P1 = 0. In this embodiment, for the purpose of further stabilizing the green light output, as shown in FIG. 9, the pump light output from the pump semiconductor laser when the green light source 33 is turned on is divided into two stages P3 and P4. It was driven by. P3 and P4 were set so that the average output of the green light output from the SHG laser would be the desired value. As described in Embodiment 1 above, in order to stabilize the green light output, which is a harmonic, it is important to change the longitudinal mode of the fundamental wave output from the solid-state laser to multimode. . If the pump light intensity is further changed within the lighting time of the pump semiconductor laser as in this embodiment, the fundamental mode of the longitudinal mode becomes more reliable. As in the first embodiment, if P4−P3> 0.2 W or more, it contributes to the multimode. In addition, if the output drop time T4> lms, the vertical mode is easily converted to the multimode. Like this embodiment It was realized that the fluctuation of the green light output was reduced to 3% or less by driving the pump semiconductor laser with ternary output.
[0045] なお、本実施の形態では、ポンプ用半導体レーザーの出力を 3値にした力 0. 2W 以上のポンプ光パワーの変化と lms以上の出力低下時間を与える条件であれば、 3 値よりも多いポンプ光パワーを設定してポンプ用半導体レーザーを駆動してもよいの は自明である。上記の実施の形態 1の 3板式のディスプレイ装置内の内部共振器型 SHGレーザーにおいても 3値以上のポンプ光パワーを設定してもよい。  [0045] In this embodiment, if the condition that gives a change in pump light power of 0.2W or more and an output reduction time of lms or more when the output of the pumping semiconductor laser is made ternary, the ternary value is obtained. It is obvious that a pump semiconductor laser may be driven by setting a large pump light power. Also in the internal resonator type SHG laser in the three-plate type display device of the first embodiment, a pump light power of three or more values may be set.
[0046] また、本実施の形態では、反射型の液晶パネルの場合について説明した力 透過 型の液晶パネルや、 DMDなどの画像変換デバイスを用いる場合にお!/、ても各デバ イスの駆動方法によって最適化して用いればよいのは自明である。  [0046] In this embodiment, when using a force transmission type liquid crystal panel described in the case of a reflection type liquid crystal panel or an image conversion device such as DMD! /, Each device is driven. It is obvious that the method should be optimized and used.
[0047] 本実施の形態によれば、高精度な温度制御や基本波の波長安定化用のデバイス を共振器内に揷入することなしに高調波の出力変動を抑制することが可能となる。さ らに、出力安定化に温度制御デバイスや光学部品を用いないため低コスト化や光源 の小型化、低消費電力化が可能となる。  [0047] According to the present embodiment, it is possible to suppress harmonic output fluctuations without inserting a device for high-accuracy temperature control and fundamental wavelength stabilization into the resonator. . In addition, since temperature control devices and optical components are not used to stabilize the output, it is possible to reduce costs, reduce the size of the light source, and reduce power consumption.
[0048] 以上説明したように、本発明の実施の形態 1〜3によれば、高精度な温度制御や温 度制御装置の使用や、共振器内への光学部品の揷入無しに高調波の出力変動を 抑制することが可能となる。さらに、出力安定化に光学部品を用いないため低コスト 化や光源の小型化、低消費電力化の実現が可能となる。また、出力低下時間の揷入 により光源の消費電力の低減が実現されるとともに発熱量も低減できるため、装置を 電池駆動する際の駆動時間を延長できるとともに、放熱が有利になる。加えて画像表 示デバイスの非表示時間に光源の出力を低下させることで映像のコントラストが向上 する。  [0048] As described above, according to the first to third embodiments of the present invention, harmonics can be used without high-precision temperature control or use of a temperature control device, or insertion of optical components into the resonator. It is possible to suppress output fluctuations. In addition, since no optical components are used to stabilize the output, it is possible to reduce costs, reduce the size of the light source, and reduce power consumption. Moreover, since the power consumption of the light source can be reduced and the amount of heat generated can be reduced by inserting the output reduction time, the driving time when the apparatus is driven by a battery can be extended and heat radiation is advantageous. In addition, the contrast of the video is improved by reducing the light source output during the non-display time of the image display device.
[0049] (実施の形態 4)  [0049] (Embodiment 4)
次に、本発明の実施の形態 4について説明する。上記の実施の形態 2は、内部共 振器型 SHGレーザーにおける基本波の発振状態を複数の横モードが存在するマル チモード発振とすることにより SHGレーザーからの出力を安定化させるものであった 。本実施の形態 4は、内部共振器型 SHGレーザーにおける基本波の発振状態を複 数の横モードが存在するマルチモード発振にするための具体的な構成に力、かる実施 の形態である。本実施の形態によれば、移動機構や振動機構といった複雑な機構を 設けることなく簡単な構成により、基本波の発振状態を複数の横モードが存在するマ ルチモード発振にすることができる。そうすることにより、熱的安定性に優れ、高出力 を安定して得られる内部共振器型 SHGレーザーを実現する。 Next, a fourth embodiment of the present invention will be described. In the second embodiment, the output from the SHG laser is stabilized by setting the oscillation state of the fundamental wave in the internal resonator type SHG laser to multi-mode oscillation in which a plurality of transverse modes exist. The fourth embodiment focuses on a specific configuration for making the oscillation state of the fundamental wave in the internal cavity type SHG laser into multi-mode oscillation in which a plurality of transverse modes exist. It is a form. According to the present embodiment, the oscillation state of the fundamental wave can be changed to multi-mode oscillation in which a plurality of transverse modes exist with a simple configuration without providing a complicated mechanism such as a moving mechanism or a vibration mechanism. By doing so, we will realize an internal cavity type SHG laser with excellent thermal stability and high power output.
[0050] 図 10は、本発明の実施の形態 4にかかる内部共振器型 SHGレーザー(固体レー ザ装置)の構成図である。本実施の形態に力、かる内部共振器型 SHGレーザー 101 は、ポンプ用のレーザー光 119を出射する半導体レーザー光源 110と、光共振器 11 4と、光共振器 114の内部に配置され、基本波レーザー光 120の波長を変換する SH G素子 118と、を備えている。光共振器 114は、レーザー光 119の入射により励起さ れ基本波レーザー光 120を発振する固体レーザー結晶 115と、固体レーザー結晶 1 15を挟む位置にそれぞれ配置されたミラー 116及び 117と、を有している。そして、ミ ラー 116及び 117のうちの 1つがレーザー光 119の光軸 122に対して設定した傾斜 角度 Θを設けて配置されている。もちろん、ミラー 116及び 117のいずれもレーザー 光 119の光軸に対して所定の傾斜角度で傾けても構わない。本実施の形態では、 S HG素子 118により変換された高調波レーザー光 121を出射する側に設けたミラー 1 17が凹面型ミラーであり、この凹面型ミラーをレーザー光 119の光軸 122に対して設 定した傾斜角度 Θとしている。以下では、ミラー 117を凹面型ミラー 117と呼ぶ。さら に、半導体レーザー光源 110は、レーザー光 119の発振波長を固定する手段を有し ている。 FIG. 10 is a configuration diagram of an internal resonator type SHG laser (solid laser device) according to the fourth exemplary embodiment of the present invention. The internal resonator type SHG laser 101, which is effective in the present embodiment, is disposed inside a semiconductor laser light source 110 that emits laser light 119 for a pump, an optical resonator 114, and an optical resonator 114. And an SHG element 118 that converts the wavelength of the wave laser beam 120. The optical resonator 114 includes a solid-state laser crystal 115 that is excited by the incidence of the laser beam 119 and oscillates the fundamental laser beam 120, and mirrors 116 and 117 that are arranged at positions sandwiching the solid-state laser crystal 115, respectively. is doing. One of the mirrors 116 and 117 is arranged with an inclination angle Θ set with respect to the optical axis 122 of the laser beam 119. Of course, both the mirrors 116 and 117 may be tilted at a predetermined tilt angle with respect to the optical axis of the laser beam 119. In the present embodiment, the mirror 117 provided on the side from which the harmonic laser beam 121 converted by the SHG element 118 is emitted is a concave mirror, and this concave mirror is connected to the optical axis 122 of the laser beam 119. The tilt angle Θ is set as above. Hereinafter, the mirror 117 is referred to as a concave mirror 117. Further, the semiconductor laser light source 110 has means for fixing the oscillation wavelength of the laser light 119.
[0051] 本実施の形態では、レーザー光 119として発信波長 808nmのポンプ光を入射し、 1064nmの基本波レーザー光 120を発生させ、レーザー光 120を SHG素子 118に より 532nmの高調波レーザー光 121として出射する内部共振器型 SHGレーザー 10 1の構成を例として説明する。したがって、高調波レーザー光 121が G光である。  In this embodiment, pump light having a transmission wavelength of 808 nm is incident as laser light 119 to generate a fundamental laser light 120 having a wavelength of 1064 nm, and the laser light 120 is generated by a SHG element 118 with a harmonic laser light having a wavelength of 532 nm. As an example, the configuration of an internal cavity type SHG laser 101 that emits as will be described. Therefore, the harmonic laser beam 121 is G light.
[0052] 本実施の形態に力、かる内部共振器型 SHGレーザー 101では、レーザー光 119は 半導体レーザー光源 110から出射してロッドレンズ 111、 VBG112及びボールレン ズ 113を介して光共振器 114に入射される。半導体レーザー光源 110から出射した 波長 808nm近傍のレーザー光 119は、ロッドレンズ 111により垂直方向の成分がコリ メートされた後に VBG112に入射する。 VBG112に入射したレーザー光 119は、一 部が反射されて半導体レーザー光源 110にフィードバックされる。これにより、半導体 レーザー光源 110の発振波長は VBG112により選択された波長(808nm)にロック される。このように、 VBG112を用いることで、温度変化が生じても半導体レーザー光 源 110の発振波長をほぼ一定に保持でき、半導体レーザー光源 110の高精度の温 度制御を不要にすることができる。 [0052] In the internal resonator type SHG laser 101 which is effective in the present embodiment, the laser beam 119 is emitted from the semiconductor laser light source 110 and enters the optical resonator 114 via the rod lens 111, the VBG 112 and the ball lens 113. Is done. A laser beam 119 having a wavelength of about 808 nm emitted from the semiconductor laser light source 110 is incident on the VBG 112 after the vertical component is collimated by the rod lens 111. The laser beam 119 incident on the VBG112 The part is reflected and fed back to the semiconductor laser light source 110. As a result, the oscillation wavelength of the semiconductor laser light source 110 is locked to the wavelength (808 nm) selected by the VBG 112. As described above, by using the VBG 112, the oscillation wavelength of the semiconductor laser light source 110 can be kept substantially constant even when the temperature changes, and the highly accurate temperature control of the semiconductor laser light source 110 can be eliminated.
[0053] 本実施の形態では、半導体レーザー光源 110の発振波長のロックに VBG112を用 いている力 S、誘電体多層膜により構成されるバンドパスフィルターを用いてもよい。あ るいは、半導体レーザー光源 110自体が波長ロック機能を備えた DFB (Distribute d FeedBack)レーザーや DBR (Distributed Bragg Reflector)レーザーであつ てもよい。 In the present embodiment, a force S using VBG 112 for locking the oscillation wavelength of the semiconductor laser light source 110, and a bandpass filter constituted by a dielectric multilayer film may be used. Alternatively, the semiconductor laser light source 110 itself may be a DFB (Distributed FeedBack) laser or a DBR (Distributed Bragg Reflector) laser having a wavelength lock function.
[0054] VBG112により波長がロックされたレーザー光 119は、ボーノレレンズ 113により固 体レーザー結晶 115へ集光される。レーザー光 119がポンプ光となり、固体レーザー 結晶 115が励起され、波長 1064nmの基本波レーザー光 120が発生する。基本波 レーザー光 120は、固体レーザー結晶 115を挟むように設けられたミラー 116と凹面 型ミラー 117との間を何度も往復することにより光共振器 114内で共振する。そして、 光共振器 114内に配置された SHG素子 118により、基本波レーザー光 120の一部 が波長変換され、高調波レーザー光 121である波長 532nmの G光が外部に出力さ れる。  The laser beam 119 whose wavelength is locked by the VBG 112 is condensed on the solid laser crystal 115 by the Bonore lens 113. Laser light 119 becomes pump light, solid laser crystal 115 is excited, and fundamental laser light 120 having a wavelength of 1064 nm is generated. The fundamental laser beam 120 resonates in the optical resonator 114 by reciprocating between the mirror 116 provided so as to sandwich the solid laser crystal 115 and the concave mirror 117 many times. Then, the SHG element 118 disposed in the optical resonator 114 converts a part of the fundamental laser beam 120 to a wavelength, and outputs the G laser beam having a wavelength of 532 nm, which is the harmonic laser beam 121, to the outside.
[0055] 本実施の形態では、固体レーザー結晶 115として、 Ndが 3%ドーピングされた YV O結晶を用いた。また、 SHG素子 118としては、 Mgをドーピングした LiNbO基板 In the present embodiment, YV 2 O crystal doped with 3% of Nd is used as solid laser crystal 115. In addition, as the SHG element 118, a LiNbO substrate doped with Mg
4 3 に周期的に分極反転領域を形成した擬似位相整合型のものを用いた。 Mgをドーピ ングした LiNbO基板は非線形定数が大きぐ SHG素子 118の厚みを小さくできる。 A quasi-phase-matching type with periodically domain-inverted regions formed in 4 3 was used. The LiNbO substrate doped with Mg has a large nonlinear constant, and the thickness of the SHG element 118 can be reduced.
3  Three
また、上記したように、光共振器 114にはポンプ光であるレーザー光 119が入射され る力 発生した基本波レーザー光 120が光共振器 114内に閉じ込められ、凹面型ミ ラー 117からは高調波レーザー光 121が出射されるように、固体レーザー結晶 115 の表面に形成したミラー 116、 SHG素子 118及び凹面型ミラー 117のそれぞれの端 面には、誘電体多層膜が形成されている。  Further, as described above, the fundamental wave laser beam 120 generated by the force by which the laser beam 119 that is pump light is incident on the optical resonator 114 is confined in the optical resonator 114, and the harmonic wave from the concave mirror 117 is higher. A dielectric multilayer film is formed on each end face of the mirror 116, the SHG element 118, and the concave mirror 117 formed on the surface of the solid-state laser crystal 115 so that the wave laser beam 121 is emitted.
[0056] 本実施の形態の内部共振器型 SHGレーザー 101では、凹面型ミラー 117がレー ザ一光 119の光軸 122に対して、所定の傾斜角度 Θを設けて配置されている。すな わち、図 10に示すように、凹面型ミラー 117の凹面の底部に垂直な垂線 123とレー ザ一光 119の光軸 122とのなす角度を Θとして、この傾斜角度 Θをあらかじめ設定し た角度としている。このように設定した傾斜角度 Θを設けて配置することで、基本波レ 一ザ一光 120等が固体レーザー結晶 115及び SHG素子 118内を透過する場合に おける通過領域の幅が広がる。これにより、局部的に過熱される領域がなくなり、熱 分布の急峻性が改善され、比較的緩やかな熱分布とすることができる。したがって、 固体レーザー結晶 115や SHG素子 118の損傷の発生を抑制でき、長期的に安定し て高出力を保持することができる。 In the internal resonator type SHG laser 101 of the present embodiment, the concave mirror 117 has a laser The light beam 119 is arranged with a predetermined inclination angle Θ with respect to the optical axis 122. In other words, as shown in Fig. 10, the angle between the perpendicular line 123 perpendicular to the bottom of the concave surface of the concave mirror 117 and the optical axis 122 of the laser beam 119 is set as Θ, and this tilt angle Θ is set in advance. The angle is By disposing the tilt angle Θ set in this way, the width of the passing region when the fundamental laser beam 120 or the like is transmitted through the solid-state laser crystal 115 and the SHG element 118 is widened. As a result, there is no locally overheated region, the steepness of the heat distribution is improved, and a relatively gentle heat distribution can be achieved. Therefore, the occurrence of damage to the solid-state laser crystal 115 and the SHG element 118 can be suppressed, and a high output can be maintained stably for a long time.
[0057] また、本実施の形態に力、かる内部共振器型 SHGレーザー 101においては、基本 波レーザー光 120は光共振器 114内を光軸 122から外れて繰り返し反射される。こ のため、光共振器 114内の電界分布に変化が生じ、光共振器 114から出力される高 調波レーザー光 121は複数の横モードが存在するマルチモード発振となる。したが つて、上記の実施の形態 2と同様、液晶表示装置のバックライトユニットの光源等に用 いる場合に薄型で、かつ大面積化を容易に実現できる。  Further, in the internal resonator type SHG laser 101 which is effective in the present embodiment, the fundamental laser beam 120 is repeatedly reflected off the optical axis 122 in the optical resonator 114. For this reason, the electric field distribution in the optical resonator 114 changes, and the harmonic laser beam 121 output from the optical resonator 114 becomes multimode oscillation in which a plurality of transverse modes exist. Therefore, similarly to the second embodiment, when it is used as a light source of a backlight unit of a liquid crystal display device, it is thin and can easily realize a large area.
[0058] 図 11A〜図 15は、本実施の形態に力、かる内部共振器型 SHGレーザー 101と従来 の内部共振器型 SHGレーザーとの G光出力の比較データを示す図である。図 11A は、傾斜角度 Θ =0。 の場合、すなわち従来の内部共振器型 SHGレーザーの G光 出力のビーム形状を示す模式図、図 11Bは、ポンプ光であるレーザー光(以下、「ポ ンプ光」と呼ぶ場合もある)の光量と G光出力との関係を示すグラフ図である。図 12A は、本実施の形態の内部共振器型 SHGレーザー 101において、傾斜角度 Θ =0. 2 。 とした場合のビーム形状を示す模式図、図 12Bは、ポンプ光 119の光量と G光出 力との関係を示すグラフ図である。図 13Aは、本実施の形態の内部共振器型 SHG レーザー 101において、傾斜角度 Θ =0. 3° とした場合のビーム形状を示す模式図 、図 13Bは、ポンプ光 119の光量と G光出力との関係を示すグラフ図である。さらに、 図 14は、傾斜角度 Θ =0. 4° とした場合のポンプ光 119の光量と G光出力との関係 を示すグラフ図、図 15は、傾斜角度 Θ =0. 5° とした場合のポンプ光 119の光量と G光出力との関係を示すグラフ図である。なお、図 11A〜図 15における測定におい ては、光共振器 114の共振器長 Lを 10mmとし、凹面型ミラー 117の曲率半径 Rを 2 Ommとした。 FIG. 11A to FIG. 15 are diagrams showing comparison data of G light output between the internal cavity type SHG laser 101 which is effective in the present embodiment and the conventional internal cavity type SHG laser. Figure 11A shows the tilt angle Θ = 0. Fig. 11B is a schematic diagram showing the beam shape of the G light output of a conventional internal cavity type SHG laser, and Fig. 11B shows the amount of laser light that is pump light (hereinafter sometimes referred to as "pump light") It is a graph which shows the relationship between G light output. FIG. 12A shows an inclination angle Θ = 0.2 in the internal resonator type SHG laser 101 of the present embodiment. FIG. 12B is a graph showing the relationship between the amount of pump light 119 and the G light output. FIG. 13A is a schematic diagram showing the beam shape in the case of the internal cavity type SHG laser 101 of the present embodiment when the tilt angle Θ is 0.3 °, and FIG. 13B is the light amount of the pump light 119 and the G light output. It is a graph which shows the relationship. Furthermore, Fig. 14 is a graph showing the relationship between the amount of pump light 119 and the G light output when the tilt angle Θ = 0.4 °, and Fig. 15 shows the case where the tilt angle Θ = 0.5 °. FIG. 6 is a graph showing the relationship between the amount of pump light 119 and the G light output. Note that the measurements in FIGS. In this example, the resonator length L of the optical resonator 114 is 10 mm, and the radius of curvature R of the concave mirror 117 is 2 Omm.
[0059] 図 11Aに示すように、傾斜角度 Θ =0° (従来の内部共振器型 SHGレーザー)の 場合には、ビーム形状は円形状で、シングルモードとなる。また、図 11Bに示すように 、 G光出力はポンプ光 119の光量が 2. 5W付近で飽和し、その最大値が 0. 65Wと なった。さらに、ポンプ光 119の光量が飽和するまでの光量範囲において、ポンプ光 119の光量の増加にもかかわらず G光出力が減少する点 Pが発生する現象も生じた 。 G光出力の飽和は、ポンプ光 119の光量が 2. 5W付近になると固体レーザー結晶 115の発熱が大きくなり、熱的飽和が発生するために発振の効率が低下して基本波 レーザー光 120の光量が飽和することによる。また、点 Pでの出力の低下は、光共振 器 114の内部で高調波レーザー光 121である G光が干渉するために発生するもので ある。  [0059] As shown in FIG. 11A, in the case of the tilt angle Θ = 0 ° (conventional internal resonator type SHG laser), the beam shape is circular and single mode. In addition, as shown in FIG. 11B, the G light output was saturated when the light amount of the pump light 119 was around 2.5 W, and its maximum value was 0.65 W. Further, in the light amount range until the light amount of the pump light 119 is saturated, a phenomenon that the point P where the G light output decreases despite the increase of the light amount of the pump light 119 occurs. The saturation of the G light output occurs when the pump light 119 has a light intensity of about 2.5 W, and the solid laser crystal 115 generates a large amount of heat. This is because the amount of light is saturated. The decrease in output at point P is caused by interference of G light, which is the harmonic laser beam 121, inside the optical resonator 114.
[0060] これに対して、本実施の形態の内部共振器型 SHGレーザー 101では、傾斜角度  In contrast, in the internal resonator type SHG laser 101 of the present embodiment, the tilt angle
Θを設けて!/、るので上記のような現象を抑制できる。  Since Θ is provided! /, The above phenomenon can be suppressed.
[0061] 例えば、凹面型ミラー 117の傾斜角度 Θ =0. 1° とすると、光共振器 114内の電 界分布に変化が生じて横モードがマルチ化する。  For example, if the inclination angle Θ = 0.1 ° of the concave mirror 117 is changed, the electric field distribution in the optical resonator 114 is changed, and the transverse mode is multiplied.
[0062] さらに、凹面型ミラー 117の傾斜角度 Θ =0. 2° にすると、図 12Aに示すように、 3 個のビームを有する横モードとなる。このとき、 G光出力の出力飽和が起こるポンプ光 119の光量は 2. 8Wとなり、 G光出力の最大値も 0. 7Wが得られた。さらに、光共振 器 114の内部での高調波レーザー光 121である G光の干渉による出力変動も抑制で きた。これは、横モードがマルチ化することにより、固体レーザー結晶 115の内部で の熱分布が図 11A及び Bに示すシングルモードの場合に比べて広がり、局部的に過 熱を生じる領域をなくすことができ、この結果、全体として緩やかな熱分布が得られる ことによる。そして、横モードがマルチ化すると、光共振器 114の内部での G光の干 渉も生じ難くなるため、図 11Bの点 Pに示すような G光出力の変動も発生し難くできる 。なお、 Θ =0. 2° とした場合でも、ポンプ光 119の光量に対する G光出力の発生効 率 (スロープ効率)は図 11Bに示すようなシングルモードの場合とほとんど変わらなか つた。 [0063] さらに、傾斜角度 Θ =0. 3° とした場合には、図 13Aに示すように、 5つのビームを 有する横モードとなった。この場合、 G光出力の出力飽和の生じるポンプ光 119の光 量は、図 13Bに示すように、 3Wまで大きくできたが、 G光出力の最大値は 0. 7Wで あり、 Θ =0. 2° の場合と同じであった。また、スロープ効率は Θ =0. 2° の場合に 比べてやや低下した。これは、 SHG素子 118を透過する際の基本波レーザー光 12 0の断面積が拡がるために SHG素子 118の変換効率がやや低下することによる。な お、この傾斜角度 Θ =0. 3° の場合にも、 G光出力の変動も観測されなかった。 [0062] Further, when the tilt angle Θ = 0.2 ° of the concave mirror 117, a transverse mode having three beams is obtained as shown in Fig. 12A. At this time, the amount of pump light 119 where output saturation of the G light output occurs was 2.8 W, and the maximum value of the G light output was also 0.7 W. Furthermore, output fluctuation due to interference of G light, which is the harmonic laser light 121 inside the optical resonator 114, has also been suppressed. This is because the heat distribution inside the solid-state laser crystal 115 is broadened compared to the single mode shown in FIGS. 11A and 11B, and the region where local overheating occurs is eliminated due to the multiple transverse modes. This results in a gentle heat distribution as a whole. When the transverse mode is multi- pleted, it becomes difficult for G light interference to occur inside the optical resonator 114, so that it is also difficult for G light output fluctuations as shown at point P in FIG. 11B to occur. Even when Θ = 0.2 °, the G light output generation efficiency (slope efficiency) with respect to the amount of pump light 119 was almost the same as that in the single mode as shown in Fig. 11B. [0063] Further, when the tilt angle Θ = 0.3 °, as shown in Fig. 13A, a transverse mode having five beams was obtained. In this case, the amount of pump light 119 where output saturation of the G light output occurs can be increased to 3 W, as shown in Fig. 13B, but the maximum value of the G light output is 0.7 W, and Θ = 0. Same as 2 °. In addition, the slope efficiency was slightly lower than when Θ = 0.2 °. This is because the conversion efficiency of the SHG element 118 is slightly lowered because the cross-sectional area of the fundamental wave laser beam 120 passing through the SHG element 118 is enlarged. Even when the tilt angle was Θ = 0.3 °, no change in the G light output was observed.
[0064] さらに、図 14及び図 15に示すように、傾斜角度 Θ =0. 4° 及び 0· 5° の測定を行 つたところ、スロープ効率は徐々に低下するものの、 G光出力の最大値として 0. 7W を得ること力 Sでさた。  Further, as shown in FIGS. 14 and 15, when the inclination angles Θ = 0.4 ° and 0.5 ° were measured, the slope efficiency gradually decreased, but the maximum value of the G light output As the power S to get 0.7W.
[0065] 以上の結果からわかるように、 G光出力の最大値はシングルモードを出力する従来 の内部共振器型 SHGレーザーでの 0. 65Wに対して、本実施の形態の内部共振器 型 SHGレーザー 101では 0. 7Wに大きくすることができた。なお、傾斜角度 Θを種 々変化させてビーム形状と G光出力とを測定した結果、傾斜角度 Θ =0. 5° よりも大 きくしても発振状態は維持されるが、発振効率が低下し、この結果 G光出力が低下す ることが見出された。したがって、傾斜角度 Θの最適範囲としては、 Θ =0. ;!〜 0. 5 ° が望ましいことが見出された。さらに、 Θ =0. 2〜0. 4° の範囲とすることで、マル チビームのそれぞれのビーム形状が比較的そろい、かつ G光出力の最大ィ直も安定し て得られること力、ら、より好ましレ、範囲であることがわかった。  [0065] As can be seen from the above results, the maximum value of the G optical output is 0.665 W in the conventional internal resonator type SHG laser that outputs a single mode, whereas the internal resonator type SHG of this embodiment is With Laser 101, it could be increased to 0.7W. As a result of measuring the beam shape and the G light output with various tilt angles Θ, the oscillation state is maintained even if the tilt angle Θ is greater than 0.5 °, but the oscillation efficiency decreases. As a result, it was found that the G light output decreased. Accordingly, it has been found that the optimum range of the inclination angle Θ is preferably Θ = 0 .;! -0.5 °. Furthermore, by setting the range of Θ = 0.2 to 0.4 °, the multiple beam shapes are relatively uniform and the maximum G light output can be obtained stably. It turned out to be more preferred.
[0066] また、凹面型ミラー 117の曲率半径 Rについても種々の形状について検討した結 果、 50mmより大きくするとマルチモード化し難くなることが見出された。したがって、 曲率半径 Rは 50mm以下とすることが望ましい。また、曲率半径 Rの下限値について は、光共振器 114の構成、すなわち共振器長 L等の設計により最適な値を設定すれ ばよい。  [0066] As a result of studying various shapes of the radius of curvature R of the concave mirror 117, it was found that it becomes difficult to make a multimode if it is larger than 50 mm. Therefore, it is desirable that the radius of curvature R be 50 mm or less. The lower limit value of the radius of curvature R may be set to an optimum value depending on the configuration of the optical resonator 114, that is, the design of the resonator length L and the like.
[0067] (実施の形態 5)  [Embodiment 5]
次に、本発明の実施の形態 5について説明する。本実施の形態は、上記の実施の 形態 4の内部共振器型 SHGレーザーを緑色光源として搭載するディスプレイ装置に かかる形態である。図 16A〜Cは、上記の実施の形態 4の内部共振器型 SHGレー ザ一を用いた、本実施の形態にかかるディスプレイ装置の概略構成を示す模式図で あり、図 16Aは、その斜視図、図 16Bは、画像変換デバイス 131側から見た平面図、 図 16Cは、図 16Bの 5A— 5A線に沿って切断した断面図である。なお、図 16A〜C においては、それぞれの構成を理解しやすくするために分離して配置している力 実 際の構成においては図示しないベースプレート等に設置して全体を一体的に固定し ている。 Next, a fifth embodiment of the present invention will be described. The present embodiment is an embodiment relating to a display device in which the internal resonator type SHG laser of the fourth embodiment is mounted as a green light source. FIGS. 16A to 16C show the internal resonator type SHG array of Embodiment 4 above. FIG. 16A is a schematic diagram illustrating a schematic configuration of the display apparatus according to the present embodiment using the same, FIG. 16A is a perspective view thereof, FIG. 16B is a plan view viewed from the image conversion device 131 side, and FIG. FIG. 16B is a cross-sectional view taken along line 5A-5A in FIG. 16B. In FIGS. 16A to 16C, in order to make it easy to understand the respective configurations, the forces are arranged separately. In the actual configuration, they are installed on a base plate (not shown) and fixed as a whole. .
[0068] 図 16A〜Cに示すように、本実施の形態に力、かるディスプレイ装置 130は、基本的 な構成として、画像変換デバイス 131と、画像変換デバイス 131を照射するための照 明光源 140と、を備えている。そして、画像変換デバイス 131は液晶表示パネルから なり、照明光源 140は、 R光源、 G光源及び B光源から出射した照明用レーザー光 1 44及び 145を液晶表示パネル 131の全面にわたり照射するバックライトユニットを構 成する。以下、照明光源 140をバックライトユニット 140とし、画像変換デバイス 131を 液晶表示パネル 131として説明する。なお、図 16A〜Cに示すディスプレイ装置 130 では、 G光源に上記実施の形態 4の内部共振器型 SHGレーザー 101を用いており、 R光源と B光源とは半導体レーザー光源 141を用いている。  [0068] As shown in FIGS. 16A to 16C, a display device 130 that is effective in the present embodiment basically has an image conversion device 131 and an illumination light source 140 for irradiating the image conversion device 131. And. The image conversion device 131 is composed of a liquid crystal display panel, and the illumination light source 140 is a backlight unit that irradiates the entire surface of the liquid crystal display panel 131 with illumination laser beams 144 and 145 emitted from the R light source, the G light source, and the B light source. Is configured. Hereinafter, the illumination light source 140 will be described as the backlight unit 140, and the image conversion device 131 will be described as the liquid crystal display panel 131. In the display device 130 shown in FIGS. 16A to 16C, the internal resonator type SHG laser 101 of the fourth embodiment is used as the G light source, and the semiconductor laser light source 141 is used as the R light source and the B light source.
[0069] 最初に、照明光源であるバックライトユニット 140の構成について説明する。ノ ックラ イトユニット 140は、 R光源と B光源とを一体化して構成してなる半導体レーザー光源 141と、半導体レーザー光源 141から出射した R光と B光とが合波された照明用レー ザ一光 144を一方の主面部 143aから出射する導光板 143と、を備えている。 R光と B 光については、半導体レーザー光源 141内に設けられているビームエキスパンダー( 図示せず)を用いて端面導光板 142の端面部の大きさとほぼ同じ程度に拡げられた 後、端面導光板 142の端面部から端面導光板 142に照明用レーザー光 144が入射 される。なお、本実施の形態の半導体レーザー光源 141は、 R光と B光とをそれぞれ 発光する半導体レーザー光源を一体化し、 R光と B光とが合波されて照明用レーザ 一光 144として出射するように構成されている。  [0069] First, the configuration of the backlight unit 140, which is an illumination light source, will be described. The knock light unit 140 includes a semiconductor laser light source 141 in which an R light source and a B light source are integrated, and an illumination laser in which R light and B light emitted from the semiconductor laser light source 141 are combined. A light guide plate 143 that emits light 144 from one main surface portion 143a. For the R light and B light, after being expanded to approximately the same size as the end face portion of the end face light guide plate 142 using a beam expander (not shown) provided in the semiconductor laser light source 141, the end face light guide plate The illumination laser beam 144 is incident on the end surface light guide plate 142 from the end surface portion of the 142. The semiconductor laser light source 141 of the present embodiment integrates a semiconductor laser light source that respectively emits R light and B light, and the R light and B light are combined and emitted as a single laser beam 144 for illumination. It is configured as follows.
[0070] 端面導光板 142には、一定のピッチで半透過ミラー 142aが設けられており、一定 の拡がりを有して入射した照明用レーザー光 144は半透過ミラー 142aにより一部が 反射して導光板 143の端面部 143cに入射し、残りは次の半透過ミラー 142aに入射 する。そして、この半透過ミラー 142aでも同様に一部が反射して導光板 143の端面 部 143cに入射する。以下、これを順次繰り返すことで、端面導光板 142から導光板 1 43の端面部 143cの全面にわたり照明用レーザー光 144を入射させることができる。 導光板 143に入射した照明用レーザー光 144は、導光板 143の側面部や他方の主 面部 143bで反射及び散乱し、一方の主面部 143aに向かう照明用レーザー光 144 が最終的に一方の主面部 143aから出射する。 [0070] The end face light guide plate 142 is provided with a semi-transmissive mirror 142a at a constant pitch, and a part of the illumination laser beam 144 having a certain spread is reflected by the semi-transmissive mirror 142a. Light is incident on the end surface 143c of the light guide plate 143, and the rest is incident on the next transflective mirror 142a. To do. Similarly, a part of the semi-transmissive mirror 142a is reflected and is incident on the end surface portion 143c of the light guide plate 143. Thereafter, the laser light 144 for illumination can be incident on the entire surface of the end surface portion 143c of the light guide plate 144 from the end surface light guide plate 142 by sequentially repeating this. The illumination laser beam 144 incident on the light guide plate 143 is reflected and scattered by the side surface portion and the other main surface portion 143b of the light guide plate 143, and the illumination laser beam 144 directed toward one main surface portion 143a is finally one main surface portion 143a. The light is emitted from the surface portion 143a.
[0071] これに対して、 G光源である内部共振器型 SHGレーザー 101は、導光板 143の端 面部 143cに対向する他方の端面部 143d側に配置されている。本実施の形態では 、 3つの内部共振器型 SHGレーザー 101を他方の端面部 143d側に配置しており、 これらの内部共振器型 SHGレーザー 101により導光板 143の他方の端面部 143d の全面にわたり G光、すなわち照明用レーザー光 145を入射させることができる。そ して、導光板 143内に入射した照明用レーザー光 145は、 R光と B光とを合波した照 明用レーザー光 144と同様に導光板 143の側面部や他方の主面部 143bで反射及 び散乱し、一方の主面部 143aに向力、う照明用レーザー光 145が最終的に一方の主 面部 143aから出射する。これにより、導光板 143の一方の主面部 143aの全面から R 光、 B光及び G光からなる照明用レーザー光 144及び 145が均一な輝度を有して出 射する。 On the other hand, the internal resonator type SHG laser 101 which is a G light source is disposed on the other end surface portion 143 d side facing the end surface portion 143 c of the light guide plate 143. In the present embodiment, three internal resonator type SHG lasers 101 are arranged on the other end surface portion 143d side, and these internal resonator type SHG lasers 101 cover the entire surface of the other end surface portion 143d of the light guide plate 143. G light, that is, illumination laser light 145 can be incident. Then, the illumination laser beam 145 incident on the light guide plate 143 is transmitted from the side surface portion of the light guide plate 143 and the other main surface portion 143b in the same manner as the illumination laser beam 144 obtained by combining the R light and the B light. The reflected and scattered light is directed toward one main surface portion 143a, and finally, the illumination laser beam 145 is emitted from the one main surface portion 143a. As a result, illumination laser beams 144 and 145 composed of R light, B light, and G light are emitted with uniform brightness from the entire surface of one main surface portion 143a of the light guide plate 143.
[0072] 次に、液晶表示パネル 131の構成について説明する。液晶表示パネル 131は、透 過型または半透過型構成で、例えば TFTアクティブマトリクス型構成からなり、表示 領域には、図 16Bに示すように、赤色画素部(Rサブピクセル) R、緑色画素部(Gサ ブピクセル) G及び青色画素部(Bサブピクセル) Bを 1つの画素 135とする多数の画 素が設けられており、 TFTにより駆動される。そして、 2枚のガラス基板 132及び 134 の間に液晶 133が設けられており、液晶 133を駆動するための TFTはガラス基板 13 2及び 134のいずれか一方に形成されている力 図示していない。また、ガラス基板 1 32及び 134のそれぞれの面には偏光板 136及び 137が設けられている。以上のよう に、本実施の形態の液晶表示パネル 131は、従来から用いられている構成と同じで あるので、これ以上の説明を省略する。  Next, the configuration of the liquid crystal display panel 131 will be described. The liquid crystal display panel 131 has a transmissive or transflective configuration, for example, a TFT active matrix configuration, and the display area includes a red pixel portion (R subpixel) R and a green pixel portion as shown in FIG. 16B. (G subpixel) A large number of pixels with G and blue pixel part (B subpixel) B as one pixel 135 are provided and driven by TFT. A liquid crystal 133 is provided between the two glass substrates 132 and 134, and a TFT for driving the liquid crystal 133 is formed on one of the glass substrates 132 and 134. . Further, polarizing plates 136 and 137 are provided on the respective surfaces of the glass substrates 1 32 and 134. As described above, the liquid crystal display panel 131 of the present embodiment has the same configuration as that conventionally used, and thus further description thereof is omitted.
[0073] 本実施の形態に力、かるディスプレイ装置 130は、 G光源である内部共振器型 SHG レーザー 101が横モードで、かつマルチモードであることから、そのレーザー光を導 光板 143の他方の端面部 143dの長さ方向に容易に拡げることができる。この結果、 ディスプレイ装置 130の構成、特に、バックライトユニット 140の構成を簡略化できる。 [0073] The display device 130, which is effective in the present embodiment, is an internal resonator type SHG that is a G light source. Since the laser 101 is in the transverse mode and the multimode, the laser beam can be easily spread in the length direction of the other end surface portion 143d of the light guide plate 143. As a result, the configuration of the display device 130, in particular, the configuration of the backlight unit 140 can be simplified.
[0074] (実施の形態 6)  [0074] (Embodiment 6)
次に、本発明の実施の形態 6について説明する。本実施の形態も、上記の実施の 形態 5と同様、上記の実施の形態 4の内部共振器型 SHGレーザーを緑色光源として 搭載するディスプレイ装置に力、かる形態である。図 17A及び Bは、上記の実施の形 態 4の内部共振器型 SHGレーザーを用いた、本実施の形態に力、かるディスプレイ装 置の概略構成を示す模式図であり、図 17Aは、照明光源 151側から見た平面図、図 17Bは、図 17Aの 6A— 6A線に沿って切断した断面図である。本実施の形態にかか るディスプレイ装置 150も基本的な構成として、画像変換デバイス 131と、画像変換 デバイス 131を照射するための照明光源 151と、を備えている。そして、画像変換デ バイス 131は液晶表示パネルからなり、照明光源 151は R光源、 G光源及び B光源か ら出射した照明用レーザー光 162を液晶表示パネルの全面にわたり照射するバック ライトユニットからなる。以下、照明光源 151をバックライトユニット 151とし、画像変換 デバイス 131を液晶表示パネル 131として説明する力 液晶表示パネル 131につい ては上記の実施の形態 5のディスプレイ装置 130と同じであるので説明を省略する。 なお、図 17A及び Bに示すディスプレイ装置 150では、 G光源に上記の実施の形態 4の内部共振器型 SHGレーザーを用いており、図 12Aに示すような 3つのビームを 有する横モードのレーザー光を出射するものを用いている。そして、 R光源と B光源と は半導体レーザー光源 152及び 153を用いている力 半導体レーザー光源 152及 び 153は複数の活性層を設けており、 G光源の内部共振器型 SHGレーザーと同様 に、 3つのビームを出射する構成としている。  Next, Embodiment 6 of the present invention will be described. In the present embodiment, as in the fifth embodiment described above, the present embodiment is a form that works on a display device in which the internal resonator type SHG laser of the fourth embodiment is mounted as a green light source. FIGS. 17A and 17B are schematic diagrams showing a schematic configuration of a display apparatus that uses the internal cavity type SHG laser according to the above-described Embodiment 4 and that can be applied to the present embodiment. FIG. 17A shows an illumination. FIG. 17B is a plan view seen from the light source 151 side, and is a cross-sectional view taken along line 6A-6A in FIG. 17A. The display device 150 according to the present embodiment also includes an image conversion device 131 and an illumination light source 151 for irradiating the image conversion device 131 as a basic configuration. The image conversion device 131 includes a liquid crystal display panel, and the illumination light source 151 includes a backlight unit that irradiates the entire surface of the liquid crystal display panel with illumination laser light 162 emitted from the R light source, the G light source, and the B light source. Hereinafter, the power to explain that the illumination light source 151 is the backlight unit 151 and the image conversion device 131 is the liquid crystal display panel 131. Since the liquid crystal display panel 131 is the same as the display device 130 of the fifth embodiment, the description is omitted. To do. In the display device 150 shown in FIGS. 17A and B, the internal cavity type SHG laser of the above-described Embodiment 4 is used as the G light source, and the transverse mode laser light having three beams as shown in FIG. 12A. Is used. The R light source and the B light source use semiconductor laser light sources 152 and 153. The semiconductor laser light sources 152 and 153 are provided with a plurality of active layers, and like the internal resonator type SHG laser of the G light source, It is configured to emit three beams.
[0075] 次に、ディスプレイ装置 150に用いるバックライトユニット 151の構成について説明 する。バックライトユニット 151は、液晶表示パネル 131の背面側に配置されており、 その形状は液晶表示パネル 131の形状と概略同じである。半導体レーザー光源 152 、 153及び内部共振器型 SHGレーザー 101からそれぞれ出射した R光、 B光及び G 光は、ダイクロイツクミラー 154により合波されて照明用レーザー光 162となり、反射ミ ラー 155に入射する。反射ミラー 155により反射した照明用レーザー光 162は、マイ クロレンズアレイ 156により拡げられて変換部用導光板 161に入射する。変換部用導 光板 161に入射した照明用レーザー光 162は、外周面で反射、拡散して光路変換 部 160に入射し、その進行方向が変換されて端面入射型導光板 157の第 1の導光 板 158に入射する。そして、照明用レーザー光 162は、第 1の導光板 158中で反射、 拡散して第 2の導光板 159に入射する。照明用レーザー光 162は、さらに第 2の導光 板 159で拡散して面全体として均一な輝度分布となった後、第 2の導光板 159から出 射して液晶表示パネル 131を照明する。これにより、液晶表示パネル 131が照明され 、画像が表示される。 Next, the configuration of the backlight unit 151 used in the display device 150 will be described. The backlight unit 151 is disposed on the back side of the liquid crystal display panel 131, and its shape is substantially the same as the shape of the liquid crystal display panel 131. The R light, B light, and G light emitted from the semiconductor laser light sources 152 and 153 and the internal cavity type SHG laser 101 are combined by the dichroic mirror 154 to become the illumination laser light 162, which is reflected by the reflection mirror. Is incident on 155. The illumination laser light 162 reflected by the reflection mirror 155 is spread by the microlens array 156 and enters the light guide plate 161 for the conversion unit. The illumination laser beam 162 incident on the conversion unit light guide plate 161 is reflected and diffused by the outer peripheral surface and is incident on the optical path conversion unit 160. The traveling direction of the laser beam 162 is changed, and the first guide of the end surface incident type light guide plate 157 is converted. Incident on the optical plate 158. Then, the illumination laser light 162 is reflected and diffused in the first light guide plate 158 and enters the second light guide plate 159. The illumination laser light 162 is further diffused by the second light guide plate 159 to have a uniform luminance distribution over the entire surface, and then is emitted from the second light guide plate 159 to illuminate the liquid crystal display panel 131. Thereby, the liquid crystal display panel 131 is illuminated and an image is displayed.
[0076] 本実施の形態に力、かるディスプレイ装置では、半導体レーザー光源 152、 153及 び内部共振器型 SHGレーザー 101から出射する R光、 B光及び G光は、変換部用 導光板 161の面に平行な方向にそれぞれ 3つのビームを有している。したがって、照 明用レーザー光 162を従来よりも簡単な光学系で拡げて変換部用導光板 161の全 面にわたり入射させることが可能となり、容易に大画面のディスプレイ装置を実現でき る。さらに、スペックルノイズも有効に低減することができる。  [0076] In the display device that is effective in the present embodiment, the R light, B light, and G light emitted from the semiconductor laser light sources 152, 153 and the internal resonator type SHG laser 101 are transmitted from the light guide plate 161 for the converter. It has three beams each in a direction parallel to the surface. Therefore, it is possible to spread the illumination laser beam 162 with a simpler optical system than before and to make it incident on the entire surface of the light guide plate 161 for the conversion section, and to easily realize a large-screen display device. Furthermore, speckle noise can be effectively reduced.
[0077] (実施の形態 7)  [0077] (Embodiment 7)
次に、本発明の実施の形態 7について説明する。本実施の形態も、上記の実施の 形態 5及び 6と同様、上記の実施の形態 4の内部共振器型 SHGレーザーを緑色光 源として搭載するディスプレイ装置に力、かる形態である。図 18A及び Bは、上記の実 施の形態 4の内部共振器型 SHGレーザーを用いた、本実施の形態にかかるデイス プレイ装置の概略構成を示す模式図であり、図 18Aは、照明光源 171側から見た平 面図、図 18Bは、図 18Aの 7A— 7A線に沿って切断した断面図である。本実施の形 態に力、かるディスプレイ装置 170も基本的な構成として、画像変換デバイス 131と、 画像変換デバイス 131を照射するための照明光源 171と、を備えている。そして、画 像変換デバイス 131は液晶表示パネルからなり、照明光源 171は R光源、 G光源及 び B光源から出射した照明用レーザー光 177を液晶表示パネルの全面にわたり照射 するバックライトュュットからなる。以下、照明光源 171をバックライトュュット 171とし、 画像変換デバイス 131を液晶表示パネル 131として説明するが、液晶表示パネル 13 1については上記の実施の形態 5で説明したものと同じであるので説明を省略する。 Next, Embodiment 7 of the present invention will be described. In the present embodiment, as in the fifth and sixth embodiments described above, the present embodiment is a form that works on a display device in which the internal resonator type SHG laser of the fourth embodiment is mounted as a green light source. FIGS. 18A and 18B are schematic diagrams showing a schematic configuration of a display device according to the present embodiment using the internal cavity type SHG laser according to the fourth embodiment, and FIG. 18A shows an illumination light source 171. 18B is a cross-sectional view taken along the line 7A-7A in FIG. 18A. The display device 170 that is effective in the present embodiment also includes an image conversion device 131 and an illumination light source 171 for irradiating the image conversion device 131 as a basic configuration. The image conversion device 131 is composed of a liquid crystal display panel, and the illumination light source 171 is composed of a backlight unit that irradiates the entire surface of the liquid crystal display panel with illumination laser light 177 emitted from the R light source, G light source, and B light source. . Hereinafter, the illumination light source 171 is described as the backlight unit 171 and the image conversion device 131 is described as the liquid crystal display panel 131. Since 1 is the same as that described in the fifth embodiment, the description thereof is omitted.
[0078] 本実施の形態に力、かるディスプレイ装置 170では、図 18A及び Bに示すように、 G 光源に上記の実施の形態 4の内部共振器型 SHGレーザーを用いており、図 12Aに 示す 3つのビームを有する横モードのレーザー光を出射するものを用いている。そし て、 R光源と B光源とは半導体レーザー光源を用いている力 S、この R光源と B光源であ る半導体レーザー光源は複数の活性層を設けており、 G光源の内部共振器型 SHG レーザーと同様に 3つのビームを出射する構成としている。そして、本実施の形態に 力、かるディスプレイ装置 170においては、 R光源と B光源である半導体レーザー光源 及び G光源である内部共振器型 SHGレーザーは、 1枚の実装基板(図示せず)上に 密接して実装され、 R光、 G光及び B光がともに比較的小さな領域から出射するように 配置している。以下では、これを一体化光源 172と呼ぶ。 [0078] In display device 170, which is effective in the present embodiment, as shown in Figs. 18A and B, the internal cavity type SHG laser of the above-described Embodiment 4 is used as the G light source, and the configuration shown in Fig. 12A is shown. A laser that emits a transverse mode laser beam having three beams is used. The R light source and the B light source use the power S that uses a semiconductor laser light source, and the R light source and the semiconductor laser light source that is the B light source are provided with a plurality of active layers. Like a laser, it is configured to emit three beams. In the display device 170 which is effective in the present embodiment, the R light source, the semiconductor laser light source that is the B light source, and the internal resonator type SHG laser that is the G light source are mounted on one mounting substrate (not shown). The R light, G light, and B light are all emitted from a relatively small area. Hereinafter, this is referred to as an integrated light source 172.
[0079] 一体化光源 172から出射する R光、 G光及び B光は、角部端面入射型導光板 174 の四隅にそれぞれ配置されている光路変換部 173に導光されて、その光路を変換さ れた後、角部端面入射型導光板 174の第 1の導光板 175に入射される。角部端面入 射型導光板 174の第 1の導光板 175は、図 18Aに示すように、四隅が曲面形状に加 ェされており、光路変換部 173はこの曲面形状に沿った形状に設定されている。この ようにすることにより、角部端面入射型導光板 174の全体にレーザー光を拡散させて 、第 2の導光板 176から均一な輝度の照明用レーザー光 177を射出することができる [0079] The R light, G light, and B light emitted from the integrated light source 172 are guided to the optical path conversion unit 173 disposed at each of the four corners of the corner end surface incident light guide plate 174, and the optical path is converted. Then, the light is incident on the first light guide plate 175 of the corner end face incident type light guide plate 174. As shown in FIG. 18A, the first light guide plate 175 of the corner end surface incident light guide plate 174 has four corners added to a curved surface shape, and the optical path conversion unit 173 is set to a shape along this curved surface shape. Has been. By doing so, the laser light can be emitted from the second light guide plate 176 by diffusing the laser light over the entire corner end face incident type light guide plate 174, and emitted.
[0080] 以下、本実施の形態に力、かるディスプレイ装置 170に用いるバックライトユニット 17 1の構成について説明する。バックライトユニット 171は、四隅の角部のすべてが曲面 形状に加工された第 1の導光板 175及び第 1の導光板 175に密接して配置された第 2の導光板 176からなる角部端面入射型導光板 174と、第 1の導光板 175の上記角 部に形成された曲面形状に沿って配置された光路変換部 173と、光路変換部 173 にレーザー光を入射させる一体化光源 172と、を備えた構成からなる。そして、バック ライトユニット 171は、液晶表示パネル 131の背面側に配置されている。 Hereinafter, the configuration of the backlight unit 171 used in the display device 170 that is effective in the present embodiment will be described. The backlight unit 171 includes a first light guide plate 175 in which all corners of the four corners are processed into a curved shape, and a corner end surface including the second light guide plate 176 disposed in close contact with the first light guide plate 175. An incident light guide plate 174, an optical path conversion unit 173 arranged along the curved surface formed at the corner of the first light guide plate 175, an integrated light source 172 that makes laser light incident on the optical path conversion unit 173, and , Comprising. The backlight unit 171 is disposed on the back side of the liquid crystal display panel 131.
[0081] 一体化光源 172から出射した R光、 B光及び G光は、光路変換部 173に入射し、そ の進行方向が変換されて角部端面入射型導光板 174の第 1の導光板 175に入射す る。そして、 R光、 B光及び G光は第 1の導光板 175中で反射、拡散して第 2の導光板 176に入射し、第 2の導光板 176でさらに拡散して面全体として均一な輝度分布とな つた後、照明用レーザー光 177として出射し、液晶表示パネル 131を照明する。これ により、液晶表示パネル 131が照明され、画像が表示される。 [0081] The R light, B light, and G light emitted from the integrated light source 172 are incident on the optical path conversion unit 173, and the traveling direction thereof is converted, so that the first light guide plate of the corner end face incident type light guide plate 174 is obtained. Incident on 175 The Then, R light, B light, and G light are reflected and diffused in the first light guide plate 175, enter the second light guide plate 176, and further diffused by the second light guide plate 176 to be uniform over the entire surface. After the luminance distribution is obtained, it is emitted as illumination laser light 177 to illuminate the liquid crystal display panel 131. As a result, the liquid crystal display panel 131 is illuminated and an image is displayed.
[0082] 本実施の形態に力、かるディスプレイ装置 170では、一体化光源 172から出射する R 光、 B光及び G光は、光路変換部 173の曲面の長さ方向に拡がって入射するので、 第 1の導光板 175の広い面積にわたり導光させることができる。しかも、一体化光源 1 72と光路変換部 173とを第 1の導光板 175の四隅にそれぞれ設けているので、これ らからのレーザー光が混合することで均一な輝度分布を実現できる。この結果、均一 な輝度分布を有する照明用レーザー光 177により液晶表示パネル 131を照明できる ので、明るぐかつ色再現性に優れたディスプレイ装置 170を実現できる。さらに、ス ペックルノイズも有効に低減することができる。  [0082] In the display device 170, which is effective in the present embodiment, the R light, the B light, and the G light emitted from the integrated light source 172 spread in the length direction of the curved surface of the optical path conversion unit 173, and therefore enter. The light can be guided over a wide area of the first light guide plate 175. In addition, since the integrated light source 172 and the optical path conversion unit 173 are provided at the four corners of the first light guide plate 175, a uniform luminance distribution can be realized by mixing these laser beams. As a result, since the liquid crystal display panel 131 can be illuminated by the illumination laser beam 177 having a uniform luminance distribution, the display device 170 that is bright and excellent in color reproducibility can be realized. Furthermore, speckle noise can be effectively reduced.
[0083] なお、本実施の形態に力、かるディスプレイ装置 170においては、第 1の導光板 175 の四隅のそれぞれの角部に、光路変換部 173及び一体化光源 172をそれぞれ配置 したが、本発明はこれに限定されない。第 1の導光板 175の角部の 1つのみに光路 変換部 173と一体化光源 172を配置する構成でもよいし、あるいは 2つの角部に配 置する構成、あるいは 3つの角部に配置する構成であってもよい。さらに、一体化光 源 172ではなぐ R光、 B光及び G光を発光する半導体レーザー光源と固体レーザー 装置とを別々にしてもよい。この場合には、少なくとも 3つの角部に光路変換部 173を 配置し、それぞれの位置に R光および B光を発光するそれぞれの半導体レーザー光 源と G光を発光する内部共振器型 SHGレーザーを配置する構成とすればよい。  Note that, in the display device 170 that is effective in the present embodiment, the optical path conversion unit 173 and the integrated light source 172 are respectively arranged at the four corners of the first light guide plate 175. The invention is not limited to this. The optical path conversion unit 173 and the integrated light source 172 may be arranged at only one corner of the first light guide plate 175, or may be arranged at two corners, or arranged at three corners. It may be a configuration. Further, the solid-state laser device and the semiconductor laser light source that emits the R light, the B light, and the G light may be separated from the integrated light source 172. In this case, the optical path changer 173 is arranged at at least three corners, and the respective semiconductor laser light sources that emit R light and B light at each position and the internal cavity type SHG laser that emits G light. What is necessary is just to set it as the structure to arrange.
[0084] (実施の形態 8)  [Embodiment 8]
次に、本発明の実施の形態 8について説明する。本実施の形態も、上記の実施の 形態 5〜7と同様、上記の実施の形態 4の内部共振器型 SHGレーザーを緑色光源と して搭載するディスプレイ装置に力、かる形態である。図 19A及び Bは、上記の実施の 形態 4の内部共振器型 SHGレーザーを用いた、本実施の形態にかかるディスプレイ 装置の概略構成を示す模式図であり、図 19Aは,照明光源 181側から見た平面図、 図 19Bは、図 19Aの 8A—8A線に沿って切断した断面図である。本実施の形態にか 力、るディスプレイ装置 180も基本的な構成として、画像変換デバイス 131と、画像変 換デバイス 131を照射するための照明光源 181と、を備えている。そして、画像変換 デバイス 131は液晶表示パネルからなり、照明光源 181は R光源、 G光源及び B光源 力、ら出射した照明用レーザー光 185を液晶表示パネルの全面にわたり照射するバッ クライトュュットからなる。以下、照明光源 181をバックライトュュット 181とし、画像変 換デバイス 131を液晶表示パネル 131として説明する力 液晶表示パネル 131につ いては上記の実施の形態 5で説明したものと同じであるので説明を省略する。 Next, an eighth embodiment of the present invention will be described. In the present embodiment, as in the fifth to seventh embodiments described above, the present embodiment is a form that works on a display device in which the internal resonator type SHG laser of the fourth embodiment is mounted as a green light source. FIGS. 19A and 19B are schematic views showing a schematic configuration of the display device according to the present embodiment using the internal cavity type SHG laser according to the fourth embodiment, and FIG. 19A shows the illumination light source 181 side. FIG. 19B is a cross-sectional view taken along the line 8A-8A in FIG. 19A. In this embodiment As a basic configuration, the power display apparatus 180 includes an image conversion device 131 and an illumination light source 181 for irradiating the image conversion device 131. The image conversion device 131 includes a liquid crystal display panel, and the illumination light source 181 includes a backlight unit that irradiates the entire surface of the liquid crystal display panel with an illumination laser beam 185 emitted from the R light source, the G light source, and the B light source. Hereinafter, the power to explain that the illumination light source 181 is the backlight unit 181 and the image conversion device 131 is the liquid crystal display panel 131. The liquid crystal display panel 131 is the same as that described in the fifth embodiment. Description is omitted.
[0085] 本実施の形態に力、かるディスプレイ装置 180では、図 19A及び Bに示すように、 G 光源に上記の実施の形態 4の内部共振器型 SHGレーザーを用いており、図 12Aに 示す 3つのビームを有する横モードのレーザー光を出射するものを用いている。そし て、 R光源と B光源とは半導体レーザー光源を用いている力 S、この R光源と B光源であ る半導体レーザー光源は複数の活性層を設けており、 G光源の内部共振器型 SHG レーザーと同様に 3つのビームを出射する構成としている。そして、本実施の形態に 力、かるディスプレイ装置 180においても、 R光源と B光源である半導体レーザー光源 及び G光源である内部共振器型 SHGレーザーは、 1枚の実装基板(図示せず)上に 密接して実装し、 R光、 G光及び B光がともに比較的小さな領域から出射するように配 置した一体化光源 172を用いている。一体化光源 172は、角部端面入射型導光板 1 82を構成する第 1の導光板 183の四隅に形成された曲面部 183aに対向する位置に 配置されている。そして、一体化光源 172から出射する R光、 G光及び B光は、曲面 部 183aから第 1の導光板 183に入射する。第 1の導光板 183に入射した R光、 G光 及び B光は、第 2の導光板 184でさらに拡散して照明用レーザー光 185として出射し 、液晶表示パネル 131を照明する。  [0085] In display device 180, which is effective in the present embodiment, as shown in FIGS. 19A and 19B, the internal cavity type SHG laser of the above-described Embodiment 4 is used as the G light source, as shown in FIG. 12A. A laser that emits a transverse mode laser beam having three beams is used. The R light source and the B light source use the power S that uses a semiconductor laser light source, and the R light source and the semiconductor laser light source that is the B light source are provided with a plurality of active layers. Like a laser, it is configured to emit three beams. Also in the display device 180 which is effective in this embodiment, the semiconductor laser light source as the R light source and the B light source and the internal resonator type SHG laser as the G light source are on one mounting board (not shown). The integrated light source 172 is used, which is mounted closely so that R light, G light, and B light are emitted from a relatively small area. The integrated light source 172 is disposed at a position facing the curved surface portions 183a formed at the four corners of the first light guide plate 183 constituting the corner end face incident type light guide plate 182. Then, R light, G light, and B light emitted from the integrated light source 172 are incident on the first light guide plate 183 from the curved surface portion 183a. The R light, G light, and B light incident on the first light guide plate 183 are further diffused by the second light guide plate 184 and emitted as illumination laser light 185 to illuminate the liquid crystal display panel 131.
[0086] 以下、本実施の形態に力、かるディスプレイ装置 180に用いるバックライトユニット 18 1の構成について説明する。バックライトユニット 181は、四隅のうちのすべての角部 に凹面形状からなる曲面部 183aを有する第 1の導光板 183及び第 1の導光板 183 に密接して配置された第 2の導光板 184からなる角部端面入射型導光板 182と、第 1 の導光板 183の上記曲面部 183aに対向する位置に配置され、曲面部 183aを介し て第 1の導光板 183にレーザー光を入射させる一体化光源 172と、を備えた構成か らなる。そして、バックライトユニット 181は、液晶表示パネル 131の背面側に配置さ れている。 [0086] The configuration of the backlight unit 181 used in the display device 180 that focuses on the present embodiment will be described below. The backlight unit 181 includes a first light guide plate 183 and a second light guide plate 184 disposed in close contact with the first light guide plate 183 having curved surfaces 183a having concave shapes at all corners of the four corners. The corner end face incident type light guide plate 182 and the first light guide plate 183 are arranged at positions facing the curved surface portion 183a, and the laser light is incident on the first light guide plate 183 through the curved surface portion 183a. Or a light source 172 It becomes. The backlight unit 181 is disposed on the back side of the liquid crystal display panel 131.
[0087] 一体化光源 172から出射した R光、 B光及び G光は、第 1の導光板 183の曲面部 1 83aから第 1の導光板 183に入射する。この場合に、 R光源と B光源とは複数の活性 層を設けて 3つのビームを出射する半導体レーザー光源を用いており、また、 G光源 の内部共振器型 SHGレーザーも同様に 3つのビームを出射する構成としているので 、これらのレーザー光が曲面部 183aから入射したときに第 1の導光板 183中の全面 に拡がり、かつ反射、拡散を生じる。そして、さらにこれらのレーザー光が第 2の導光 板 184に入射し、第 2の導光板 184でさらに拡散して面全体として均一な輝度分布と なった後、照明用レーザー光 185として出射し、液晶表示パネル 131を照明する。こ れにより、液晶表示パネル 131が照明され、画像が表示される。  [0087] The R light, B light, and G light emitted from the integrated light source 172 are incident on the first light guide plate 183 from the curved surface portion 183a of the first light guide plate 183. In this case, the R light source and the B light source use a semiconductor laser light source that emits three beams by providing a plurality of active layers, and the internal resonator type SHG laser of the G light source also emits three beams. Since it is configured to emit, when these laser beams are incident from the curved surface portion 183a, they are spread over the entire surface of the first light guide plate 183, and are reflected and diffused. Further, these laser beams are incident on the second light guide plate 184 and further diffused by the second light guide plate 184 to obtain a uniform luminance distribution over the entire surface, and then emitted as illumination laser light 185. The liquid crystal display panel 131 is illuminated. As a result, the liquid crystal display panel 131 is illuminated and an image is displayed.
[0088] 本実施の形態に力、かるディスプレイ装置 180では、一体化光源 172から出射する R 光、 B光及び G光は、第 1の導光板 183の曲面部 183aから入射するので、曲面部 18 3aによる屈折等により光路変化が生じる結果、第 1の導光板 183の広い面積にわた り導光させること力 Sできる。しかも、一体化光源 172を第 1の導光板 183の四隅に設け ているので、これらからのレーザー光が混合することでさらに均一な輝度分布の照明 用レーザー光 185を出射させることができる。この結果、均一な輝度分布を有する照 明用レーザー光 185により液晶表示パネル 131を照明できるので、明るぐかつ色再 現性に優れたディスプレイ装置 180を実現できる。さらに、スペックルノイズも有効に 低減すること力 Sでさる。  [0088] In the display device 180 that is effective in the present embodiment, the R light, B light, and G light emitted from the integrated light source 172 are incident from the curved surface portion 183a of the first light guide plate 183. As a result of the change of the optical path due to refraction or the like due to 183a, the light can be guided over a wide area of the first light guide plate 183. In addition, since the integrated light source 172 is provided at the four corners of the first light guide plate 183, the laser light 185 for illumination having a more uniform luminance distribution can be emitted by mixing the laser light from these. As a result, since the liquid crystal display panel 131 can be illuminated by the illumination laser beam 185 having a uniform luminance distribution, the display device 180 that is bright and excellent in color reproducibility can be realized. Furthermore, the power S can effectively reduce speckle noise.
[0089] 本実施の形態に力、かるディスプレイ装置 180の場合には、第 1の導光板 183の四 隅のそれぞれの角部に曲面部 183aを設け、これに対向する位置に一体化光源 172 をそれぞれ配置したが、本発明はこれに限定されない。第 1の導光板 183の角部の 1 つのみに曲面部 183aを設け、曲面部 183aに対向する 1つの一体化光源 172を配 置する構成でもよい。あるいは、 2つの角部に曲面部 183aを設けて、これらに対向す る位置に一体化光源 172をそれぞれ配置する構成としてもよい。あるいは、 3つの角 部に曲面部 183aを設け、これらに対向する位置に一体化光源 172を配置する構成 としてもよい。さらに、一体化光源 172ではなぐ R光、 B光及び G光を発光する半導 体レーザー光源と内部共振器型 SHGレーザーとを別々にしてもよい。この場合には 、少なくとも 3つの角部に曲面部 183aを設け、これらに対向する位置に R光及び B光 を発光する半導体レーザー光源と G光を発光する内部共振器型 SHGレーザーをそ れぞれ配置する構成とすればよ!/、。 [0089] In the case of the display device 180 that is effective in the present embodiment, the curved portions 183a are provided at the respective corners of the four corners of the first light guide plate 183, and the integrated light source 172 is provided at a position facing the curved portions. However, the present invention is not limited to this. The curved surface portion 183a may be provided on only one corner of the first light guide plate 183, and one integrated light source 172 facing the curved surface portion 183a may be disposed. Alternatively, the curved surface portion 183a may be provided at the two corner portions, and the integrated light source 172 may be disposed at a position opposite to the curved surface portion 183a. Alternatively, the curved surface portion 183a may be provided at three corners, and the integrated light source 172 may be disposed at a position facing these. In addition, the integrated light source 172 emits R, B, and G light. The body laser light source and the internal cavity type SHG laser may be separated. In this case, a curved surface portion 183a is provided at at least three corners, and a semiconductor laser light source that emits R light and B light and an internal cavity type SHG laser that emits G light are respectively provided at positions facing these. If you have a configuration to arrange!
[0090] (実施の形態 9) [0090] (Embodiment 9)
次に、本発明の実施の形態 9について説明する。本実施の形態は、上記の実施の 形態 4の内部共振器型 SHGレーザーを緑色光源として搭載する投射型のディスプレ ィ装置に力、かる形態である。図 20は、上記の実施の形態 4の内部共振器型 SHGレ 一ザ一を用いた、本実施の形態にかかる投射型ディスプレイ装置の概略構成を示す 模式図である。  Next, Embodiment 9 of the present invention will be described. The present embodiment is a mode that works on a projection type display device in which the internal resonator type SHG laser of the fourth embodiment is mounted as a green light source. FIG. 20 is a schematic diagram showing a schematic configuration of the projection display apparatus according to the present embodiment using the internal resonator type SHG laser of the fourth embodiment.
[0091] 本実施の形態に力、かる投射型ディスプレイ装置 190は、図 20に示すように、画像 変換デバイス 202、 203及び 204と、画像変換デバイス 202、 203及び 204を照射す るための照明光源と、を備えており、照明光源は、 R光源 191、 G光源 192及び B光 源 193からなる。 G光源 192は、上記の実施の形態 4の内部共振器型 SHGレーザー 力、らなる。また、 R光源 191と B光源 193とは半導体レーザー光源であり、 G光源 192 の内部共振器型 SHGレーザーと同様に複数のビームを出射するように複数の活性 層を設けた構成からなる。さらに、本実施の形態にかかる投射型表示装置 190にお いては、画像変換デバイス 202、 203及び 204は 2次元空間変調デバイスの 1種であ る透過型液晶表示パネルからなり、照明光源を構成する R光源 191、 G光源 192及 び B光源 193から出射するレーザー光に対応してそれぞれ配置されており、透過型 液晶表示パネルを透過した映像光は合波プリズム 205により合波された後に投射さ れるように構成されている。以下では、画像変換デバイス 202、 203及び 204につい ては、透過型液晶表示パネル 202、 203及び 204として説明する。  As shown in FIG. 20, the projection type display apparatus 190 that focuses on the present embodiment includes an image conversion device 202, 203, and 204 and an illumination for irradiating the image conversion device 202, 203, and 204. The illumination light source includes an R light source 191, a G light source 192, and a B light source 193. The G light source 192 includes the internal cavity type SHG laser power of the fourth embodiment. The R light source 191 and the B light source 193 are semiconductor laser light sources, and have a configuration in which a plurality of active layers are provided so as to emit a plurality of beams in the same manner as the internal resonator type SHG laser of the G light source 192. Furthermore, in the projection display device 190 according to the present embodiment, the image conversion devices 202, 203, and 204 are composed of a transmissive liquid crystal display panel that is a kind of two-dimensional spatial modulation device, and constitute an illumination light source. The R light source 191, the G light source 192, and the B light source 193 are arranged corresponding to the laser light emitted from the light source 193. The image light transmitted through the transmissive liquid crystal display panel is combined by the combining prism 205 and then projected. It is configured to be Hereinafter, the image conversion devices 202, 203, and 204 will be described as transmissive liquid crystal display panels 202, 203, and 204.
[0092] さらに具体的な構成について、図 20を用いて詳細に説明する。 R光源 191、 G光源  A more specific configuration will be described in detail with reference to FIG. R light source 191, G light source
192及び B光源 193から出力されたレーザー光は、それぞれロッドインテグレータ 19 4、 195及び 196を用いて光量分布が均一化される。そして、 R光源 191から出射し たレーザー光と B光源 193から出射したレーザー光はそれぞれ、レンズ 197、 199を 通して反射ミラー 200、 201に導かれ、反射ミラー 200、 201により光路が変換され、 透過型液晶表示パネル 202 204 それぞれ導かれる。一方、 G光源 192から出射 したレーザー光は、レンズ 198を通して透過型液晶表示パネル 203へ直接導かれる 。透過型液晶表示パネル 202 203 204を透過したそれぞれのレーザー光は合波 プリズム 205により合波され、出射レンズ 206を透過して映像光として出力される。 The laser light output from the 192 and B light sources 193 is made uniform in light quantity distribution using rod integrators 194, 195 and 196, respectively. The laser light emitted from the R light source 191 and the laser light emitted from the B light source 193 are guided to the reflection mirrors 200 and 201 through the lenses 197 and 199, respectively, and the optical paths are converted by the reflection mirrors 200 and 201, respectively. The transmissive liquid crystal display panel 202 204 is guided respectively. On the other hand, the laser light emitted from the G light source 192 is directly guided to the transmissive liquid crystal display panel 203 through the lens 198. The respective laser beams transmitted through the transmissive liquid crystal display panels 202 203 204 are combined by the combining prism 205, transmitted through the exit lens 206, and output as image light.
[0093] 光源制御回路 207は R光源 191 G光源 192及び B光源 193の光出力の制御を行 う。そして、表示装置制御回路 208は、映像表示信号に基づき 3枚の透過型液晶表 示ノ ネノレ 202 203 204をそれぞれ駆動する。すなわち、映像表示信号に基づき、 R光源 191からのレーザー光を受光する透過型液晶表示パネル 202については赤 色映像信号に対応する駆動、 G光源 192からのレーザー光を受光する透過型液晶 表示パネル 203については緑色映像信号に対応する駆動、 B光源 193からのレーザ 一光を受光する透過型液晶表示パネル 204については青色映像信号に対応する駆 動を、表示装置制御回路 208により行う。  The light source control circuit 207 controls the light output of the R light source 191 G light source 192 and B light source 193. Then, the display device control circuit 208 drives each of the three transmissive liquid crystal display non-nores 202 203 204 based on the video display signal. That is, based on the video display signal, the transmissive liquid crystal display panel 202 that receives the laser light from the R light source 191 is driven corresponding to the red video signal, and the transmissive liquid crystal display panel that receives the laser light from the G light source 192. The display device control circuit 208 drives 203 corresponding to the green video signal, and the transmissive liquid crystal display panel 204 that receives one laser beam from the B light source 193 drives the blue video signal.
[0094] 表示装置制御回路 208は、必要に応じて光源制御回路 207の制御も行ってもよい 。例えば、黒表示に対応して R光源 191 G光源 192及び B光源 193のレーザー光 の発振を止める等の制御をしてもよい。あるいは、必要に応じて、 R光源 191 G光源 192あるいは B光源 193のレーザー光の出力を可変してもよい。このような制御を行う ことで、表示画質の改善や消費電力の低減等も実現することができる。なお、透過型 液晶表示パネル 202 203 204は、従来から透過型液晶表示装置に用いられてい る構成、例えばポリシリコン TFT駆動回路を設けたパネル構成等を用いることができ るので説明を省略する。  [0094] The display device control circuit 208 may also control the light source control circuit 207 as necessary. For example, control such as stopping the oscillation of the laser light of the R light source 191 G light source 192 and B light source 193 may be performed in response to black display. Alternatively, the output of the laser light from the R light source 191 G light source 192 or B light source 193 may be varied as necessary. By performing such control, display image quality can be improved and power consumption can be reduced. Note that the transmissive liquid crystal display panels 202 203 204 can use a configuration conventionally used in a transmissive liquid crystal display device, for example, a panel configuration provided with a polysilicon TFT driving circuit, and the description thereof will be omitted.
[0095] 本実施の形態に力、かる投射型ディスプレイ装置 190は、 RGBそれぞれの光源の光 が単色光で色純度がよ!/、レーザー光源を用いて!/、るため、表示可能な色範囲が拡 がり、色純度が高ぐ鮮やかな画像の表示を可能とすることができる。また、光源にラ ンプを用いる場合に比べて低消費電力とすることもできる。さらに、マルチビームの内 部共振器型 SHGレーザーと半導体レーザー光源とを用いているので、光学系を簡 略にすることができ、低コストのディスプレイ装置を実現できる。  [0095] The projection type display device 190, which is effective in the present embodiment, is capable of displaying colors because the light of each RGB light source is monochromatic light and has good color purity! /, And using a laser light source! / The range can be expanded and a vivid image with high color purity can be displayed. In addition, the power consumption can be reduced compared to the case where a lamp is used as the light source. In addition, since a multi-beam internal resonator SHG laser and a semiconductor laser light source are used, the optical system can be simplified and a low-cost display device can be realized.
[0096] なお、本実施の形態のディスプレイ装置においては、 R光、 G光及び B光を発光す るレーザー光源を用いたが、さらに別の色を発光するレーザー光源を加えてもよい。 また、本発明の内部共振器型 SHGレーザーは本実施の形態のディスプレイ装置の 構成に限定されることはなぐ表示装置の照明用として用いるものであれば特に制約 なく適用可能である。 [0096] In the display device of the present embodiment, a laser light source that emits R light, G light, and B light is used. However, a laser light source that emits another color may be added. Further, the internal cavity type SHG laser of the present invention is not limited to the configuration of the display device of the present embodiment, and can be applied without particular limitation as long as it is used for illumination of a display device.
[0097] 以上説明したように、本発明の実施の形態 4〜9によれば、固体レーザー結晶や波 長変換素子の損傷を防止でき、長寿命で、かつ高出力の内部共振器型 SHGレーザ 一を実現できるという大きな効果を奏する。また、この内部共振器型 SHGレーザーは 横モードがマルチモードとなって!/、るので、液晶表示装置のバックライトユニットの光 源とした場合に、構造が簡単で、力、つ製造コストを安価にできる画像表示装置を実現 できると!/、う大きな効果を奏する。  [0097] As described above, according to Embodiments 4 to 9 of the present invention, damage to the solid-state laser crystal and the wavelength conversion element can be prevented, and the internal cavity type SHG laser with a long life and high output can be obtained. One effect is achieved. In addition, this internal cavity type SHG laser has a multi-mode transverse mode! /. Therefore, when used as a light source for a backlight unit of a liquid crystal display device, the structure is simple, and power and manufacturing cost are reduced. If an image display device that can be made cheap is realized, it will have a great effect!
[0098] 上記の各実施の形態から本発明について要約すると、以下のようになる。すなわち 、本発明にかかるディスプレイ装置は、励起レーザー光を出射する半導体レーザーと 、前記励起レーザー光の入射により励起されてレーザー発振し、基本波レーザー光 を出射する固体レーザー及び、前記固体レーザーを挟むように配置された第 1及び 第 2のミラー、を有する共振器と、前記共振器内部に配置され、前記基本波レーザー 光を高調波レーザー光に変換する波長変換素子と、前記高調波レーザー光の照射 により画像を表示する画像表示素子と、前記画像表示素子に印加される映像信号の フレーム周期の整数倍の周期で前記高調波レーザー光の出力が低下するように前 記半導体レーザーを駆動するレーザー駆動部とを備える。  The present invention can be summarized from the above embodiments as follows. That is, a display device according to the present invention sandwiches a semiconductor laser that emits an excitation laser beam, a solid laser that is excited by the incidence of the excitation laser beam and oscillates and emits a fundamental laser beam, and the solid laser. A resonator having first and second mirrors arranged as described above, a wavelength conversion element that is arranged inside the resonator and converts the fundamental laser light into harmonic laser light, and the harmonic laser light The semiconductor laser is driven so that the output of the harmonic laser light decreases at an integer multiple of the frame period of the video signal applied to the image display element and the image signal applied to the image display element. A laser driving unit.
[0099] 上記のディスプレイ装置では、映像信号のフレームレートの整数倍の周期における 高調波レーザー光の出力の低下により高調波レーザー光の発振状態の縦モードが マルチモード化される。このため、高調波レーザー光の出力が安定化され、高調波レ 一ザ一光の出力不安定に起因する画像の色バランスを乱れ等を抑制し、高品質の 画像を表示することができる。  [0099] In the above display device, the longitudinal mode of the oscillation state of the harmonic laser beam is changed to the multimode due to the decrease in the output of the harmonic laser beam in the period that is an integral multiple of the frame rate of the video signal. For this reason, the output of the harmonic laser beam is stabilized, the disturbance of the color balance of the image due to the unstable output of the harmonic laser beam is suppressed, and a high-quality image can be displayed.
[0100] 前記高調波レーザー光の出力が低下する期間は、前記映像信号の連続するフレ ーム間において前記画像表示素子が非表示状態にされる期間内に含まれることが 好ましい。  [0100] It is preferable that the period during which the output of the harmonic laser beam decreases is included in a period during which the image display element is in a non-display state between consecutive frames of the video signal.
[0101] この場合、画像表示中に高調波レーザー光の出力低下されることはなぐ高調波レ 一ザ一光の出力低下による影響が表示画像に及ぶことはない。 [0102] 前記高調波レーザー光の出力が低下する期間は、 1ms以上であることが好ましい[0101] In this case, the output of the harmonic laser light does not decrease during the image display, and the display image is not affected by the decrease in the output of the harmonic laser light. [0102] The period during which the output of the harmonic laser beam decreases is preferably 1 ms or more.
Yes
[0103] この場合、固体レーザーによる基本波レーザー光の発振が確実に停止されるので 、高調波レーザー光の発振状態の縦モードのマルチモード化をより安定的に実現す ること力 Sでさる。  [0103] In this case, since the oscillation of the fundamental laser beam by the solid-state laser is reliably stopped, the force S can be realized more stably to achieve the multimode of the longitudinal mode of the harmonic laser beam oscillation state. .
[0104] 前記高調波レーザー光の出力低下の繰り返し周波数は、 2Hz以上であることが好 ましい。  [0104] The repetition frequency of the output reduction of the harmonic laser beam is preferably 2 Hz or more.
[0105] この場合、固体レーザーによる基本波レーザー光の発振が確実に停止されるので 、高調波レーザー光の発振状態の縦モードのマルチモード化をより安定的に実現す ること力 Sでさる。  [0105] In this case, the oscillation of the fundamental laser beam by the solid-state laser is surely stopped, so the force S can be realized more stably to realize the multimode of the longitudinal mode of the oscillation state of the harmonic laser beam. .
[0106] 前記半導体レーザーの出力は、第 1の所定時間 T1の間隔ごとの第 2の所定時間 T 2の間において所定の低出力値に変調され、前記第 1の所定時間 T1及び第 2の所 定の時間 T2は、 Tl < 0. 5s、 T2 > 1msであることが好まし!/、。  [0106] The output of the semiconductor laser is modulated to a predetermined low output value during a second predetermined time T2 at intervals of the first predetermined time T1, and the first predetermined time T1 and the second predetermined time T2 are modulated. The given time T2 is preferably Tl <0.5s, T2> 1ms! /.
[0107] この場合、高調波レーザー光の照射による画像表示素子の画像表示に影響を与え ることなぐ高調波レーザー光の発振状態の縦モードのマルチモード化を安定的に 実現できる。  [0107] In this case, it is possible to stably realize the multimode of the longitudinal mode of the oscillation state of the harmonic laser beam without affecting the image display of the image display element by the irradiation of the harmonic laser beam.
[0108] 前記半導体レーザーの出力は、第 1の出力値 P1と第 2の出力値 P2との間で交互 に変調され、前記第 1の出力値 P1及び第 2の出力値 P2は、 P2〉P1の関係を満足し 、前記第 1の出力値 P1と前記第 2の出力値 P2との間における変調の繰り返し周波数 は、 1kHz以下であることが好ましい。  [0108] The output of the semiconductor laser is alternately modulated between a first output value P1 and a second output value P2, and the first output value P1 and the second output value P2 are P2> Preferably, the relationship of P1 is satisfied, and the repetition frequency of modulation between the first output value P1 and the second output value P2 is 1 kHz or less.
[0109] この場合、レーザ駆動部による半導体レーザーの駆動の駆動電流のロス、駆動電 流による電磁波の発生、その電磁波によるノイズ対策等は不要であり、レーザ駆動部 を簡単な構成で実現できる。  In this case, there is no need for loss of the driving current for driving the semiconductor laser by the laser driving unit, generation of electromagnetic waves due to the driving current, countermeasures against noise due to the electromagnetic waves, etc., and the laser driving unit can be realized with a simple configuration.
[0110] 前記第 1の出力値 P1及び第 2の出力値 P2は、 P2— P1〉0. 2ワットの関係を満足 することが好ましい。  [0110] It is preferable that the first output value P1 and the second output value P2 satisfy a relationship of P2-P1> 0.2 watts.
[0111] この場合、高調波レーザー光の発振状態の縦モードのマルチモード化をより効果 的に実現できる。  [0111] In this case, the longitudinal mode of the harmonic laser beam oscillation state can be more effectively realized.
[0112] 前記第 1の出力値 P1は、前記固体レーザーの発振閾値励起光パワー Pth以下で あることが好ましい。 [0112] The first output value P1 is less than or equal to the oscillation threshold excitation light power Pth of the solid-state laser. Preferably there is.
[0113] この場合、高調波レーザー光の出力が低下する期間においては確実に高調波レ 一ザ一光の発生が停止する。このため、その停止分だけ固体レーザーによる消費電 力を低減することができる。  [0113] In this case, the generation of the harmonic laser light is surely stopped during the period in which the output of the harmonic laser light is reduced. For this reason, power consumption by the solid laser can be reduced by the amount of the stoppage.
[0114] 前記半導体レーザーの出力は、前記高調波レーザー光の平均出力が所望の値と なるように第 3の出力値 P3と第 4の出力値 P4との間で交互に変調され、前記第 3の 出力値 P3及び第 4の出力値 P4は、 P4〉P3力、つ P4— P3〉0. 2ワットの関係を満足 し、前記第 3の出力値 P3の出力時間 T3は、 T3〉 lmsであることが好ましい。  [0114] The output of the semiconductor laser is alternately modulated between a third output value P3 and a fourth output value P4 so that an average output of the harmonic laser beam becomes a desired value, The output value P3 of 3 and the fourth output value P4 satisfy the relationship of P4> P3 force, P4—P3> 0.2 watts, and the output time T3 of the third output value P3 is T3> lms It is preferable that
[0115] この場合、高調波レーザー光の平均出力を所望の値で維持しつつ、高調波レーザ 一光の発振状態の縦モードのマルチモード化をより効果的に実現することができる。  [0115] In this case, it is possible to more effectively realize the longitudinal mode multimode of the oscillation state of one harmonic laser light while maintaining the average output of the harmonic laser light at a desired value.
[0116] 前記固体レーザーのレーザー媒質は、 Nd :YVO結晶であり、前記 Nd :YVO結  [0116] The laser medium of the solid-state laser is an Nd: YVO crystal, and the Nd: YVO crystal
4 4 晶の Ndドープ量は、 2〜3%であることが好ましい。  The Nd doping amount of 4 4 crystals is preferably 2 to 3%.
[0117] この場合、高調波レーザー光の出力をより短時間で再度向上させることができる。こ のため、高調波レーザー光の出力の立ち上げに要求される励起レーザー光が低減 され、この結果、半導体レーザーによる消費電力を低減できる。  [0117] In this case, the output of the harmonic laser beam can be improved again in a shorter time. For this reason, the excitation laser beam required for raising the output of the harmonic laser beam is reduced, and as a result, the power consumption by the semiconductor laser can be reduced.
[0118] 赤色光を出射する赤色光源と、前記赤色光の照射により画像を表示する赤色用画 像表示素子と、青色光を出射する青色光源と、前記青色光の照射により画像を表示 する青色用画像表示素子と、をさらに備え、前記高調波レーザー光は、緑色光であり 、前記画像表示素子は、緑色用画像表示素子であり、前記緑色光の出力が低下す る期間は、前記映像信号の連続するフレーム間において前記緑色用画像表示素子 が非表示状態にされる期間内に含まれることが好ましい。  [0118] A red light source that emits red light, a red image display element that displays an image by irradiating the red light, a blue light source that emits blue light, and a blue that displays an image by irradiating the blue light And the harmonic laser light is green light, the image display element is a green image display element, and the video light is output during a period when the output of the green light is reduced. It is preferable that the green image display element is included in a non-display state between consecutive frames of signals.
[0119] この場合、緑色用画像表示素子の無表示状態に合わせて緑色光の出力が低下す るので、表示画像上でちらつきが無いようにすることができる。さらに、緑色用画像表 示素子を透過する緑色光の光量が確実に低減されるため、コントラストの向上が実現 され、レーザ駆動部による駆動電力も低減される。  [0119] In this case, since the output of green light decreases in accordance with the non-display state of the green image display element, it is possible to prevent flickering on the display image. Furthermore, since the amount of green light transmitted through the green image display element is surely reduced, the contrast is improved and the driving power by the laser driving unit is also reduced.
[0120] 前記赤色用画像表示素子に印加される映像信号のフレームレートの整数倍の周期 で前記赤色光の出力が低下するように前記赤色光源を駆動する赤色光源駆動部と 、前記青色用画像表示素子に印加される映像信号のフレームレートの整数倍の周期 で前記青色光の出力が低下するように前記青色光源を駆動する青色光源駆動部と 、をさらに備え、前記赤色光の出力が低下する期間は、前記赤色用画像表示素子に 印加される映像信号の連続するフレーム間において前記赤色用画像表示素子が非 表示状態にされる期間内に含まれ、前記青色光の出力が低下する期間は、前記青 色用画像表示素子に印加される映像信号の連続するフレーム間において前記青色 用画像表示素子が非表示状態にされる期間内に含まれることが好ましい。 [0120] A red light source driving unit that drives the red light source so that the output of the red light decreases at a cycle that is an integral multiple of a frame rate of a video signal applied to the red image display element, and the blue image Period that is an integral multiple of the frame rate of the video signal applied to the display element A blue light source driving unit that drives the blue light source so that the output of the blue light is reduced, and a video signal applied to the red image display element during a period in which the output of the red light is reduced Of the video signal applied to the blue image display element is included in a period in which the red image display element is in a non-display state between successive frames of It is preferable that the blue image display element is included in a period during which the blue image display element is not displayed between successive frames.
[0121] この場合、赤色光及び青色光においてもそれぞれの画像表示素子の無表示状態 に合わせて出力が低下するので、無表示状態における黒色がより鮮明となり、画像 のコントラストが向上する。各光源の発熱量もより抑制でき、消費電力が低減される。  [0121] In this case, the output of red light and blue light also decreases in accordance with the non-display state of each image display element, so that black in the non-display state becomes clearer and the contrast of the image is improved. The amount of heat generated by each light source can be further suppressed, and power consumption is reduced.
[0122] 赤色光を出射する赤色光源と、青色光を出射する青色光源と、をさらに備え、前記 高調波レーザー光は、緑色光であり、前記画像表示素子は、前記映像信号の 1フレ ーム内において前記赤色光の照射による画像、前記青色光の照射による画像及び 前記緑色光の照射による画像を順次表示し、前記緑色光の出力が低下する期間は 、前記映像信号の 1フレーム内の前記赤色光及び青色光が照射される期間であるこ とが好ましい。  [0122] The apparatus further includes a red light source that emits red light and a blue light source that emits blue light, wherein the harmonic laser light is green light, and the image display element is one frame of the video signal. The image by the red light irradiation, the image by the blue light irradiation and the image by the green light irradiation are sequentially displayed in a frame, and the period during which the output of the green light is reduced is within one frame of the video signal. It is preferable that it is a period in which the red light and blue light are irradiated.
[0123] この場合、赤色光及び青色光が照射される期間に緑色光の出力は停止されるので 、レーザー駆動部による特別な駆動を行うことなぐ確実に緑色光の出力が低下され る期間が発生する。このため、レーザー駆動部を簡単な構成により実現できる。  [0123] In this case, since the output of the green light is stopped during the period in which the red light and the blue light are irradiated, there is a period in which the output of the green light is surely reduced without performing a special drive by the laser driving unit. appear. For this reason, a laser drive part is realizable by simple structure.
[0124] 前記半導体レーザーの出力は、前記映像信号の 1フレーム内の前記緑色光が照 射される期間における前記緑色光の平均出力が所望の値となるように、 2つの出力 値の間で交互に変調されることが好ましい。 [0124] The output of the semiconductor laser is between two output values so that the average output of the green light in a period in which the green light is irradiated in one frame of the video signal becomes a desired value. It is preferred that they are modulated alternately.
[0125] この場合、緑色光の平均出力を所望の値で維持しつつ、緑色光の発振状態の縦 モードのマルチモード化をより効果的に実現することができる。 [0125] In this case, it is possible to more effectively realize the longitudinal mode of the green light oscillation state while maintaining the average output of the green light at a desired value.
[0126] 前記高調波レーザー光の発振状態の横モードは、マルチモード化されていることが 好ましい。 [0126] The transverse mode of the oscillation state of the harmonic laser beam is preferably a multimode.
[0127] この場合、高調波レーザー光の発振状態の横モードがマルチモード化されることに より高調波レーザー光の出力がより効果的に安定化される。  [0127] In this case, the output of the harmonic laser beam is more effectively stabilized by changing the transverse mode of the oscillation state of the harmonic laser beam to the multimode.
[0128] 前記横モードの次数は、 2次以下であることが好ましい。 [0129] この場合、高調波レーザー光の出力低下を招くことが無い。 [0128] The order of the transverse mode is preferably 2nd order or less. [0129] In this case, the output of the harmonic laser beam is not reduced.
[0130] 前記第 1及び第 2のミラーのうちの少なくとも 1つは、前記基本波レーザー光の光軸 に対して所定の傾斜角度をなすように配置されていることが好ましい。  [0130] It is preferable that at least one of the first and second mirrors is disposed so as to form a predetermined inclination angle with respect to an optical axis of the fundamental laser beam.
[0131] この場合、高調波レーザー光の発振状態の横モードをより効果的にマルチモード 化することカできる。このため、固体レーザーや波長変換素子内のレーザー光の通 過領域が拡がり、これに伴い発熱する領域が拡がる。この結果、局部的に高温になる 領域を防止することができ、高出力、かつ、安定に高調波レーザー光を出射させるこ と力 Sできる。  [0131] In this case, the transverse mode of the oscillation state of the harmonic laser beam can be converted into a multimode more effectively. For this reason, the region through which the laser beam passes in the solid laser or the wavelength conversion element is expanded, and the region that generates heat is expanded accordingly. As a result, it is possible to prevent a region where the temperature is locally high, and to output the harmonic laser light stably with high output.
[0132] 前記第 1のミラーは、前記固体レーザーの前記半導体レーザ側に配置され、前記 第 2のミラーは、前記固体レーザーの前記波長変換素子側に配置され、前記第 2のミ ラーは、凹面型ミラーであることが好ましい。  [0132] The first mirror is disposed on the semiconductor laser side of the solid-state laser, the second mirror is disposed on the wavelength conversion element side of the solid-state laser, and the second mirror is A concave mirror is preferred.
[0133] この場合、半導体レーザー、固体レーザー及び波長変換素子の配置構成を変更 すること無ぐ横モードをマルチモード化することができる。 [0133] In this case, the transverse mode can be changed to a multimode without changing the arrangement configuration of the semiconductor laser, the solid-state laser, and the wavelength conversion element.
[0134] 前記凹面型ミラーの曲率半径は、 50mm以下であることが好ましい。 [0134] The radius of curvature of the concave mirror is preferably 50 mm or less.
[0135] この場合、半導体レーザー、固体レーザー及び波長変換素子の配置構成を変更 すること無ぐ横モードをマルチモード化することができる。 In this case, the transverse mode can be changed to a multimode without changing the arrangement configuration of the semiconductor laser, the solid-state laser, and the wavelength conversion element.
[0136] 前記所定の傾斜角度は、 0. ;!〜 0. 5° の範囲であることが好ましい。 [0136] The predetermined inclination angle is preferably in the range of 0.;! To 0.5 °.
[0137] この場合、半導体レーザー、固体レーザー及び波長変換素子の配置構成を変更 すること無ぐ横モードをマルチモード化することができる。 [0137] In this case, the transverse mode can be changed to a multimode without changing the arrangement configuration of the semiconductor laser, the solid-state laser, and the wavelength conversion element.
[0138] 前記半導体レーザーは、前記励起レーザー光の発振波長を固定する固定部を有 し、前記固定部により前記半導体レーザーの発振波長を固定することにより前記半 導体レーザーの温度変化に起因する前記半導体レーザーの発振波長の変動を抑 制することが好ましい。 [0138] The semiconductor laser has a fixing unit that fixes the oscillation wavelength of the excitation laser beam, and the oscillation wavelength of the semiconductor laser is fixed by the fixing unit to cause the temperature change of the semiconductor laser. It is preferable to suppress fluctuations in the oscillation wavelength of the semiconductor laser.
[0139] この場合、温度変化が生じても半導体レーザーの発振波長はほぼ一定に保持され るので、半導体レーザーに対する高精度の温度制御を行う必要が無くなる。なお、固 定部としては、例えば透過型の回折格子である VBGがある。半導体レーザーから出 射したレーザー光を VBGに入射させ、その一部が反射されて半導体レーザーにフィ ードバックされ、半導体レーザーの発振波長力 SVBGにより選択された波長に固定さ れる。さらに、このように半導体レーザーに波長選択性を有する構造としては DFBレ 一ザ一や DBRレーザーがあり、このようなレーザーを用いてもよ!/ヽ。 [0139] In this case, the oscillation wavelength of the semiconductor laser is kept substantially constant even when the temperature changes, so that it is not necessary to perform highly accurate temperature control on the semiconductor laser. An example of the fixed part is VBG, which is a transmissive diffraction grating. The laser beam emitted from the semiconductor laser is incident on the VBG, a part of which is reflected and fed back to the semiconductor laser, and is fixed at the wavelength selected by the oscillation wavelength force SVBG of the semiconductor laser. It is. Furthermore, there are DFB lasers and DBR lasers that have wavelength selectivity for semiconductor lasers, and you can use such lasers!
[0140] 前記緑色光の発振状態の横モードは、マルチモード化されており、前記赤色光源 及び青色光源のそれぞれは、赤色及び青色半導体レーザーであり、前記赤色及び 青色半導体レーザーのそれぞれは、複数の活性層を有し、前記複数の活性層のそ れぞれの誘導放出により複数のレーザー光を出射することが好ましい。  [0140] The transverse mode of the green light oscillation state is a multi-mode, and each of the red light source and the blue light source is a red and blue semiconductor laser, and each of the red and blue semiconductor lasers is a plurality of It is preferable that a plurality of laser beams are emitted by the stimulated emission of each of the plurality of active layers.
[0141] この場合、緑色光の発振状態の横モードがマルチモード化され、赤色光及び青色 光のそれぞれが複数のレーザー光であるので、色再現範囲が広ぐ画質が良好で、 かつ明るいディスプレイ装置を実現することができる。なお、ディスプレイ装置としては 、画像表示素子として 2次元空間変調素子、例えば MEMS技術により形成したマイ クロミラーを多数配置した構成の素子を用いた投射型構成のディスプレイ装置、液晶 表示パネルを 2次元空間変調素子として用いた投射型構成のディスプレイ装置、ある いはバックライトユニットと液晶表示パネルとを用いた薄型テレビ構成のディスプレイ 装置等がある。  [0141] In this case, the horizontal mode of the green light oscillation state is changed to the multi-mode, and each of the red light and the blue light is a plurality of laser beams, so that the color reproduction range is wide and the image quality is good and the display is bright. An apparatus can be realized. In addition, as a display device, a two-dimensional spatial modulation element as an image display element, for example, a projection type display apparatus using an element in which a large number of micromirrors formed by MEMS technology are arranged, and a liquid crystal display panel are two-dimensional spatial modulation. There is a projection type display device used as an element, or a thin television configuration display device using a backlight unit and a liquid crystal display panel.
[0142] 前記赤色光源、青色光源及び緑色光源から出射されるレーザー光が入射され、前 記画像表示素子の背面から前記レーザー光を照射するバックライトユニット部、をさら に備えることが好ましい。  [0142] It is preferable to further include a backlight unit that receives laser light emitted from the red light source, blue light source, and green light source and irradiates the laser light from the back surface of the image display element.
[0143] この場合、薄型テレビ等の大画面のディスプレイ装置の場合でも、色再現範囲を拡 大でき、画質を大幅に改善できる。また、全体として低消費電力化を実現することも できる。 [0143] In this case, even in the case of a large-screen display device such as a flat-screen TV, the color reproduction range can be expanded, and the image quality can be greatly improved. In addition, low power consumption can be realized as a whole.
[0144] 前記バックライトユニット部は、四隅のうちの少なくとも 1つの角部が曲面形状に加工 され、入射されるレーザー光を反射及び拡散させて出射する第 1の導光板と、前記 第 1の導光板に密接して配置され、前記第 1の導光板から出射されるレーザー光を 反射及び拡散させて前記画像表示素子側に出射する第 2の導光板と、前記第 1の導 光板の前記角部に形成された曲面形状に沿って配置され、前記赤色光源、青色光 源及び緑色光源から出射されるレーザー光が入射され前記第 1の導光板に出射す る光路変換部とを有することが好ましレ、。  [0144] The backlight unit portion includes at least one corner portion of four corners processed into a curved shape, and reflects and diffuses incident laser light to emit the first light guide plate, and the first light guide plate. A second light guide plate that is disposed in close contact with the light guide plate, reflects and diffuses laser light emitted from the first light guide plate, and emits the laser light to the image display element side; and the first light guide plate. And an optical path changing unit that is arranged along a curved surface formed at a corner, and that receives the laser light emitted from the red light source, the blue light source, and the green light source and emits the laser light to the first light guide plate. Is preferred.
[0145] この場合、赤色光源、緑色光源及び青色光源を第 1の導光板の表面に配置するこ とができるので、ディスプレイ装置としての全体的な形状を小型化することができると 共に、第 1の導光板から出射されるレーザー光を第 2の導光板によりさらに拡散させ て画像表示素子側に出射させることができる。 [0145] In this case, a red light source, a green light source, and a blue light source are arranged on the surface of the first light guide plate. Therefore, the overall shape of the display device can be reduced, and the laser light emitted from the first light guide plate is further diffused by the second light guide plate to the image display element side. Can be emitted.
[0146] 前記バックライトユニット部は、四隅のうちの少なくとも 1つの角部が凹面形状からな る曲面部を有し、入射されるレーザー光を反射及び拡散させて出射する第 1の導光 板と、前記第 1の導光板に密接して配置され、前記第 1の導光板から出射されるレー ザ一光を反射及び拡散させて前記画像表示素子側に出射する第 2の導光板とを有 し、前記赤色光源、青色光源及び緑色光源は、前記第 1の導光板の前記曲面部に 対向する位置に配置され、前記赤色光源、青色光源及び緑色光源から出射されるレ 一ザ一光は、前記曲面部により反射されることにより前記第 1の導光板に入射される ことが好ましい。 [0146] The backlight unit portion has a curved surface portion in which at least one corner portion of the four corners has a concave shape, and reflects and diffuses incident laser light to be emitted. And a second light guide plate that is disposed in close contact with the first light guide plate, reflects and diffuses one laser beam emitted from the first light guide plate, and emits the light to the image display element side. The red light source, the blue light source, and the green light source are arranged at positions facing the curved surface portion of the first light guide plate, and the laser light emitted from the red light source, the blue light source, and the green light source. Is preferably incident on the first light guide plate by being reflected by the curved surface portion.
[0147] この場合、光路変換部を設けずに直接第 1の導光板の曲面部から第 1の導光板に レーザー光を入射させることができるので、光学系の構成を簡略化しながら、大画面 化に対応することができると共に、第 1の導光板から出射されるレーザー光を第 2の 導光板によりさらに拡散させて画像表示素子側に出射させることができる。  [0147] In this case, laser light can be directly incident on the first light guide plate from the curved surface portion of the first light guide plate without providing an optical path conversion unit, so that a large screen can be obtained while simplifying the configuration of the optical system. The laser light emitted from the first light guide plate can be further diffused by the second light guide plate and emitted to the image display element side.
産業上の利用可能性  Industrial applicability
[0148] 本発明に力、かるディスプレイ装置はプロジェクタ一として有用である。  [0148] The display device which is effective in the present invention is useful as a projector.

Claims

請求の範囲 The scope of the claims
[1] 励起レーザー光を出射する半導体レーザーと、  [1] a semiconductor laser that emits excitation laser light;
前記励起レーザー光の入射により励起されてレーザー発振し、基本波レーザー光 を出射する固体レーザー及び、前記固体レーザーを挟むように配置された第 1及び 第 2のミラー、を有する共振器と、  A resonator having a solid-state laser that is excited by incidence of the excitation laser beam and oscillates and emits a fundamental laser beam, and first and second mirrors disposed so as to sandwich the solid-state laser;
前記共振器内部に配置され、前記基本波レーザー光を高調波レーザー光に変換 する波長変換素子と、  A wavelength conversion element that is disposed inside the resonator and converts the fundamental laser beam into a harmonic laser beam;
前記高調波レーザー光の照射により画像を表示する画像表示素子と、 前記画像表示素子に印加される映像信号のフレーム周期の整数倍の周期で前記 高調波レーザー光の出力が低下するように前記半導体レーザーを駆動するレーザ 一駆動部と  An image display element that displays an image by irradiation of the harmonic laser beam, and the semiconductor so that the output of the harmonic laser beam decreases at a period that is an integral multiple of a frame period of a video signal applied to the image display element. A laser that drives the laser
を備えることを特徴とするディスプレイ装置。  A display device comprising:
[2] 前記高調波レーザー光の出力が低下する期間は、前記映像信号の連続するフレ ーム間において前記画像表示素子が非表示状態にされる期間内に含まれることを特 徴とする請求項 1に記載のディスプレイ装置。 [2] The period in which the output of the harmonic laser beam is reduced is included in a period in which the image display element is not displayed between consecutive frames of the video signal. Item 4. The display device according to Item 1.
[3] 前記高調波レーザー光の出力が低下する期間は、 1ms以上であることを特徴とす る請求項 1または 2に記載のディスプレイ装置。 [3] The display device according to claim 1 or 2, wherein a period during which the output of the harmonic laser beam is reduced is 1 ms or more.
[4] 前記高調波レーザー光の出力低下の繰り返し周波数は、 2Hz以上であることを特 徴とする請求項 1または 2に記載のディスプレイ装置。 [4] The display device according to claim 1 or 2, wherein a repetition frequency of the output decrease of the harmonic laser beam is 2 Hz or more.
[5] 前記半導体レーザーの出力は、第 1の所定時間 T1の間隔ごとの第 2の所定時間 T[5] The output of the semiconductor laser is a second predetermined time T for each interval of the first predetermined time T1.
2の間において所定の低出力値に変調され、 Between 2 and modulated to a predetermined low output value,
前記第 1の所定時間 T1及び第 2の所定の時間 T2は、 TK O. 5s、 T2〉lmsであ ることを特徴とする請求項 1または 2に記載のディスプレイ装置。  3. The display device according to claim 1, wherein the first predetermined time T1 and the second predetermined time T2 satisfy TK O.5s and T2> lms.
[6] 前記半導体レーザーの出力は、第 1の出力値 P1と第 2の出力値 P2との間で交互 に変調され、 [6] The output of the semiconductor laser is alternately modulated between the first output value P1 and the second output value P2,
前記第 1の出力値 P1及び第 2の出力値 P2は、 P2〉P1の関係を満足し、 前記第 1の出力値 P1と前記第 2の出力値 P2との間における変調の繰り返し周波数 は、 1kHz以下であることを特徴とする請求項 1または 2に記載のディスプレイ装置。 The first output value P1 and the second output value P2 satisfy the relationship P2> P1, and the repetition frequency of modulation between the first output value P1 and the second output value P2 is The display device according to claim 1, wherein the display device is 1 kHz or less.
[7] 前記第 1の出力値 PI及び第 2の出力値 P2は、 P2— PI〉0. 2ワットの関係を満足 することを特徴とする請求項 6に記載のディスプレイ装置。 7. The display device according to claim 6, wherein the first output value PI and the second output value P2 satisfy a relationship of P2−PI> 0.2 watts.
[8] 前記第 1の出力値 P1は、前記固体レーザーの発振閾値励起光パワー Pth以下で あることを特徴とする請求項 6または 7に記載のディスプレイ装置。 [8] The display device according to claim 6 or 7, wherein the first output value P1 is equal to or less than an oscillation threshold excitation light power Pth of the solid-state laser.
[9] 前記半導体レーザーの出力は、前記高調波レーザー光の平均出力が所望の値と なるように第 3の出力値 P3と第 4の出力値 P4との間で交互に変調され、 [9] The output of the semiconductor laser is alternately modulated between the third output value P3 and the fourth output value P4 so that the average output of the harmonic laser beam becomes a desired value,
前記第 3の出力値 P3及び第 4の出力値 P4は、 P4〉P3力、つ P4— P3〉0. 2ワット の関係を満足し、  The third output value P3 and the fourth output value P4 satisfy the relationship of P4> P3 force, P4-P3> 0.2 watts,
前記第 3の出力値 P3の出力時間 T3は、 T3〉 lmsであることを特徴とする請求項 1 または 2に記載のディスプレイ装置。  3. The display device according to claim 1, wherein an output time T3 of the third output value P3 is T3> lms.
[10] 前記固体レーザーのレーザー媒質は、 Nd :YVO結晶であり、 [10] The laser medium of the solid-state laser is an Nd: YVO crystal,
4  Four
前記 Nd :YVO結晶の Ndドープ量は、 2〜3%であることを特徴とする請求項 1〜9  The Nd doping amount of the Nd: YVO crystal is 2 to 3%.
4  Four
のいずれか 1項に記載のディスプレイ装置。  The display device according to any one of the above.
[11] 赤色光を出射する赤色光源と、前記赤色光の照射により画像を表示する赤色用画 像表示素子と、青色光を出射する青色光源と、前記青色光の照射により画像を表示 する青色用画像表示素子と、をさらに備え、 [11] A red light source that emits red light, a red image display element that displays an image by irradiating the red light, a blue light source that emits blue light, and a blue that displays an image by irradiating the blue light An image display element for use,
前記高調波レーザー光は、緑色光であり、前記画像表示素子は、緑色用画像表示 素子であり、  The harmonic laser beam is green light, and the image display element is a green image display element,
前記緑色光の出力が低下する期間は、前記映像信号の連続するフレーム間にお いて前記緑色用画像表示素子が非表示状態にされる期間内に含まれることを特徴と する請求項 1に記載のディスプレイ装置。  2. The period in which the output of the green light decreases is included in a period in which the green image display element is in a non-display state between consecutive frames of the video signal. Display device.
[12] 前記赤色用画像表示素子に印加される映像信号のフレームレートの整数倍の周期 で前記赤色光の出力が低下するように前記赤色光源を駆動する赤色光源駆動部と 、前記青色用画像表示素子に印加される映像信号のフレームレートの整数倍の周期 で前記青色光の出力が低下するように前記青色光源を駆動する青色光源駆動部と 、をさらに備え、 [12] A red light source driving unit that drives the red light source so that an output of the red light decreases at a cycle that is an integral multiple of a frame rate of a video signal applied to the red image display element, and the blue image A blue light source drive unit that drives the blue light source so that the output of the blue light decreases at a cycle that is an integral multiple of the frame rate of the video signal applied to the display element,
前記赤色光の出力が低下する期間は、前記赤色用画像表示素子に印加される映 像信号の連続するフレーム間において前記赤色用画像表示素子が非表示状態にさ れる期間内に含まれ、 During the period in which the output of the red light decreases, the red image display element is not displayed between successive frames of the video signal applied to the red image display element. Included in the period
前記青色光の出力が低下する期間は、前記青色用画像表示素子に印加される映 像信号の連続するフレーム間において前記青色用画像表示素子が非表示状態にさ れる期間内に含まれることを特徴とする請求項 11に記載のディスプレイ装置。  The period during which the output of the blue light is reduced is included in a period in which the blue image display element is set in a non-display state between successive frames of the video signal applied to the blue image display element. The display device according to claim 11, wherein
[13] 赤色光を出射する赤色光源と、青色光を出射する青色光源と、をさらに備え、 前記高調波レーザー光は、緑色光であり、前記画像表示素子は、前記映像信号の 1フレーム内において前記赤色光の照射による画像、前記青色光の照射による画像 及び前記緑色光の照射による画像を順次表示し、 [13] The apparatus further includes a red light source that emits red light and a blue light source that emits blue light, the harmonic laser light is green light, and the image display element is within one frame of the video signal. And sequentially displaying the image by irradiation with the red light, the image by irradiation with the blue light and the image by irradiation with the green light,
前記緑色光の出力が低下する期間は、前記映像信号の 1フレーム内の前記赤色 光及び青色光が照射される期間であることを特徴とする請求項 1に記載のディスプレ ィ装置。  2. The display device according to claim 1, wherein the period during which the output of the green light decreases is a period during which the red light and blue light within one frame of the video signal are irradiated.
[14] 前記半導体レーザーの出力は、前記映像信号の 1フレーム内の前記緑色光が照 射される期間における前記緑色光の平均出力が所望の値となるように、 2つの出力 値の間で交互に変調されることを特徴とする請求項 13に記載のディスプレイ装置。  [14] The output of the semiconductor laser is between two output values so that the average output of the green light during a period in which the green light within one frame of the video signal is irradiated becomes a desired value. 14. The display device according to claim 13, wherein the display device is alternately modulated.
[15] 前記高調波レーザー光の発振状態の横モードは、マルチモード化されていることを 特徴とする請求項;!〜 14のいずれか 1項に記載のディスプレイ装置。  15. The display device according to claim 1, wherein the transverse mode of the oscillation state of the harmonic laser beam is a multimode.
[16] 前記横モードの次数は、 2次以下であることを特徴とする請求項 15に記載のデイス プレイ装置。  16. The display device according to claim 15, wherein the order of the transverse mode is 2nd order or less.
[17] 前記第 1及び第 2のミラーのうちの少なくとも 1つは、前記基本波レーザー光の光軸 に対して所定の傾斜角度をなすように配置されていることを特徴とする請求項 15に 記載のディスプレイ装置。  [17] The at least one of the first and second mirrors is arranged so as to form a predetermined tilt angle with respect to an optical axis of the fundamental laser beam. A display device according to 1.
[18] 前記第 1のミラーは、前記固体レーザーの前記半導体レーザ側に配置され、前記 第 2のミラーは、前記固体レーザーの前記波長変換素子側に配置され、 [18] The first mirror is disposed on the semiconductor laser side of the solid-state laser, and the second mirror is disposed on the wavelength conversion element side of the solid-state laser,
前記第 2のミラーは、凹面型ミラーであることを特徴とする請求項 17に記載のデイス プレイ装置。  18. The display device according to claim 17, wherein the second mirror is a concave mirror.
[19] 前記凹面型ミラーの曲率半径は、 50mm以下であることを特徴とする請求項 18に 記載のディスプレイ装置。  19. The display device according to claim 18, wherein a radius of curvature of the concave mirror is 50 mm or less.
[20] 前記所定の傾斜角度は、 0. ;!〜 0. 5° の範囲であることを特徴とする請求項 18ま たは 19に記載のディスプレイ装置。 [20] The predetermined inclination angle is in a range of 0.;! To 0.5 °. Or the display apparatus of 19.
[21] 前記半導体レーザーは、前記励起レーザー光の発振波長を固定する固定部を有 し、 [21] The semiconductor laser has a fixing portion for fixing an oscillation wavelength of the excitation laser light,
前記固定部により前記半導体レーザーの発振波長を固定することにより前記半導 体レーザーの温度変化に起因する前記半導体レーザーの発振波長の変動を抑制 することを特徴とする請求項 1〜20のいずれ力、 1項に記載のディスプレイ装置。  21. The force according to any one of claims 1 to 20, wherein fluctuations in the oscillation wavelength of the semiconductor laser caused by temperature changes of the semiconductor laser are suppressed by fixing the oscillation wavelength of the semiconductor laser by the fixing portion. The display device according to 1 above.
[22] 前記緑色光の発振状態の横モードは、マルチモード化されており、 [22] The transverse mode of the green light oscillation state is a multi-mode,
前記赤色光源及び青色光源のそれぞれは、赤色及び青色半導体レーザーであり 、前記赤色及び青色半導体レーザーのそれぞれは、複数の活性層を有し、前記複 数の活性層のそれぞれの誘導放出により複数のレーザー光を出射することを特徴と する請求項 11〜; 14のいずれか 1項に記載のディスプレイ装置。  Each of the red light source and the blue light source is a red and blue semiconductor laser, and each of the red and blue semiconductor lasers has a plurality of active layers, and each of the plurality of active layers emits a plurality of stimulated emissions. The display device according to claim 11, wherein the display device emits laser light.
[23] 前記赤色光源、青色光源及び緑色光源から出射されるレーザー光が入射され、前 記画像表示素子の背面から前記レーザー光を照射するバックライトユニット部、をさら に備えることを特徴とする請求項 22に記載のディスプレイ装置。 [23] The apparatus further comprises a backlight unit that receives laser light emitted from the red light source, blue light source, and green light source and irradiates the laser light from the back surface of the image display element. 23. A display device according to claim 22.
[24] 前記バックライトユニット部は、 [24] The backlight unit section includes:
四隅のうちの少なくとも 1つの角部が曲面形状に加工され、入射されるレーザー光 を反射及び拡散させて出射する第 1の導光板と、  A first light guide plate in which at least one corner portion of the four corners is processed into a curved shape, and reflects and diffuses incident laser light; and
前記第 1の導光板に密接して配置され、前記第 1の導光板から出射されるレーザー 光を反射及び拡散させて前記画像表示素子側に出射する第 2の導光板と、  A second light guide plate that is disposed in close contact with the first light guide plate, reflects and diffuses laser light emitted from the first light guide plate, and emits the laser light to the image display element side;
前記第 1の導光板の前記角部に形成された曲面形状に沿って配置され、前記赤色 光源、青色光源及び緑色光源から出射されるレーザー光が入射され前記第 1の導光 板に出射する光路変換部と  Laser light emitted from the red light source, the blue light source, and the green light source is incident and emitted to the first light guide plate, arranged along a curved surface formed at the corner of the first light guide plate. With optical path changer
を有することを特徴とする請求項 23に記載のディスプレイ装置。  24. The display device according to claim 23, comprising:
[25] 前記バックライトユニット部は、 [25] The backlight unit section includes:
四隅のうちの少なくとも 1つの角部が凹面形状からなる曲面部を有し、入射されるレ 一ザ一光を反射及び拡散させて出射する第 1の導光板と、  A first light guide plate that has a concave curved surface at least one corner of the four corners, and reflects and diffuses incident laser light; and
前記第 1の導光板に密接して配置され、前記第 1の導光板から出射されるレーザー 光を反射及び拡散させて前記画像表示素子側に出射する第 2の導光板と を有し、 A second light guide plate that is disposed in close contact with the first light guide plate and reflects and diffuses laser light emitted from the first light guide plate and emits the laser light to the image display element side; Have
前記赤色光源、青色光源及び緑色光源は、前記第 1の導光板の前記曲面部に対 向する位置に配置され、  The red light source, the blue light source, and the green light source are disposed at positions facing the curved surface portion of the first light guide plate,
前記赤色光源、青色光源及び緑色光源から出射されるレーザー光は、前記曲面 部により反射されることにより前記第 1の導光板に入射されることを特徴とする請求項 23に記載のディスプレイ装置。  24. The display device according to claim 23, wherein the laser light emitted from the red light source, the blue light source, and the green light source is incident on the first light guide plate by being reflected by the curved surface portion.
PCT/JP2007/064636 2006-08-04 2007-07-26 Display device WO2008015951A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2006213165A JP2009258142A (en) 2006-08-04 2006-08-04 Display device
JP2006-213165 2006-08-04
JP2007-111275 2007-04-20
JP2007111275A JP2009259854A (en) 2007-04-20 2007-04-20 Solid-state laser device, and image display using the same

Publications (1)

Publication Number Publication Date
WO2008015951A1 true WO2008015951A1 (en) 2008-02-07

Family

ID=38997130

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/064636 WO2008015951A1 (en) 2006-08-04 2007-07-26 Display device

Country Status (1)

Country Link
WO (1) WO2008015951A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011023858A1 (en) * 2009-08-31 2011-03-03 Epicrystals Oy Stabilized light source
CN102414943A (en) * 2010-03-02 2012-04-11 松下电器产业株式会社 Wavelength conversion device and image display device employing same
JP2012078611A (en) * 2010-10-04 2012-04-19 Hitachi Consumer Electronics Co Ltd Laser projector
JP2014535063A (en) * 2011-09-14 2014-12-25 インテル・コーポレーション Holographic display system, method and device

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03155684A (en) * 1989-08-11 1991-07-03 Mitsubishi Electric Corp Gas laser device
JPH05210082A (en) * 1991-11-20 1993-08-20 Semiconductor Energy Lab Co Ltd Device and method for dipslaying picture
JPH0675261A (en) * 1992-03-03 1994-03-18 Matsushita Electric Ind Co Ltd Short-wavelength light source
JPH1154820A (en) * 1997-07-29 1999-02-26 Pioneer Electron Corp Semiconductor laser pumped solid-state laser and optical device using the same
JPH1184419A (en) * 1997-09-09 1999-03-26 Hitachi Ltd Liquid crystal light valve and projection type display device
JP2002082622A (en) * 2000-09-05 2002-03-22 Enplas Corp Image display device and surface light source device
JP2002203417A (en) * 2000-12-28 2002-07-19 Nichia Chem Ind Ltd Light emitting device
JP2003121656A (en) * 2001-10-18 2003-04-23 Nippon Leiz Co Ltd Light guide plate and plane illumination device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03155684A (en) * 1989-08-11 1991-07-03 Mitsubishi Electric Corp Gas laser device
JPH05210082A (en) * 1991-11-20 1993-08-20 Semiconductor Energy Lab Co Ltd Device and method for dipslaying picture
JPH0675261A (en) * 1992-03-03 1994-03-18 Matsushita Electric Ind Co Ltd Short-wavelength light source
JPH1154820A (en) * 1997-07-29 1999-02-26 Pioneer Electron Corp Semiconductor laser pumped solid-state laser and optical device using the same
JPH1184419A (en) * 1997-09-09 1999-03-26 Hitachi Ltd Liquid crystal light valve and projection type display device
JP2002082622A (en) * 2000-09-05 2002-03-22 Enplas Corp Image display device and surface light source device
JP2002203417A (en) * 2000-12-28 2002-07-19 Nichia Chem Ind Ltd Light emitting device
JP2003121656A (en) * 2001-10-18 2003-04-23 Nippon Leiz Co Ltd Light guide plate and plane illumination device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011023858A1 (en) * 2009-08-31 2011-03-03 Epicrystals Oy Stabilized light source
US8264765B2 (en) 2009-08-31 2012-09-11 Epicrystals Oy Stabilized light source
CN102414943A (en) * 2010-03-02 2012-04-11 松下电器产业株式会社 Wavelength conversion device and image display device employing same
JP2012078611A (en) * 2010-10-04 2012-04-19 Hitachi Consumer Electronics Co Ltd Laser projector
CN102445825A (en) * 2010-10-04 2012-05-09 日立民用电子株式会社 Laser projector
JP2014535063A (en) * 2011-09-14 2014-12-25 インテル・コーポレーション Holographic display system, method and device

Similar Documents

Publication Publication Date Title
US8270440B2 (en) Laser light source and optical device
JP5096379B2 (en) Solid-state laser device, display device, and wavelength conversion element
JP5214630B2 (en) Wavelength conversion laser
US7835409B2 (en) Illumination light source device and laser projection device
US7907646B2 (en) Laser light source and display device
JP5205397B2 (en) Light source device, illumination device, and image display device
US8068274B2 (en) Wavelength conversion laser device and image display device using the same
US7354157B2 (en) Image display device and light source device
US20080075130A1 (en) Coherent Light Source and Optical Device Using the Same
US8121156B2 (en) Solid-state laser device and image display device
JP2008198759A (en) Laser light source, laser light source device, illuminator, monitoring device, and image display device
JP5654576B2 (en) Wavelength conversion laser light source
US8699123B2 (en) Wavelength conversion laser light source and image display apparatus
WO2008015951A1 (en) Display device
CN102124616B (en) Wavelength conversion laser and image display device
JP2009259854A (en) Solid-state laser device, and image display using the same
US20090161700A1 (en) Fiber laser
JP2015115509A (en) Laser light source device and screen projection device
JP2009258142A (en) Display device
JP2004165396A (en) Upconversion fiber laser device and video display apparatus
JP2011165785A (en) Laser light source device, image display device and monitor device
JP2009239158A (en) Laser light source equipment, image display device, and monitor device
JP2011215535A (en) Wavelength conversion element, light source device and projector
JP2010177406A (en) Light source device and image display device

Legal Events

Date Code Title Description
DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07791336

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 07791336

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP