JPH0371683A - Gas laser device - Google Patents

Gas laser device

Info

Publication number
JPH0371683A
JPH0371683A JP20697989A JP20697989A JPH0371683A JP H0371683 A JPH0371683 A JP H0371683A JP 20697989 A JP20697989 A JP 20697989A JP 20697989 A JP20697989 A JP 20697989A JP H0371683 A JPH0371683 A JP H0371683A
Authority
JP
Japan
Prior art keywords
resonator
discharge space
curvature
mirror
cross
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP20697989A
Other languages
Japanese (ja)
Other versions
JP2700822B2 (en
Inventor
Junichi Nishimae
順一 西前
Kenji Yoshizawa
憲治 吉沢
Masakazu Taki
正和 滝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP20697989A priority Critical patent/JP2700822B2/en
Publication of JPH0371683A publication Critical patent/JPH0371683A/en
Application granted granted Critical
Publication of JP2700822B2 publication Critical patent/JP2700822B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/02Constructional details
    • H01S3/03Constructional details of gas laser discharge tubes
    • H01S3/0315Waveguide lasers

Abstract

PURPOSE:To improve a resonator in stability as a whole by a method wherein reflecting surfaces most adapted to an unstable type resonator are made to work on the broad side of a discharge space in cross section to constitute an unstable resonator of negative branch, and reflecting surfaces most adapted to an optical waveguide resonator are made to work on the narrow side of the discharge space in cross section to constitute an optical waveguide resonator. CONSTITUTION:The reflecting surfaces possessed of a first curvature of mirrors 50 and 51 are combined to constitute an unstable type resonator of negative branch in a discharge space in the direction of one-dimensional A or a longer side of the discharge space in cross section, and the reflecting surfaces of a second curvature constitute an optical waveguide resonator in the direction of one-dimensional B or a shorter side of the discharge space in cross section. Therefore, there is a focal point in the resonator, but light rays 8 do not concentrate on a single point but on a line, so that the light rays 8 are decreased in concentration rate and problems such as optical damage and the like caused by the concentration of light can be prevented, and moreover a feature that an unstable type resonator of negative branch is insensitive to the inclination of reflecting mirrors is displayed to the utmost. By this setup, a gas laser device of excellent stability can be obtained.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、レーザ気体の励起が行なわれる放電空間が
、偏平なスラブ状をしている気体レーザ装置に関し、特
にそのレーザ共振器の安定性の向上に関するものである
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a gas laser device in which a discharge space in which laser gas is excited is in the shape of a flat slab, and particularly relates to a gas laser device in which the stability of the laser resonator is improved. This is related to the improvement of

[従来の技術] 第5図は特開昭83−192285号公報に示された従
来の気体レーザ装置の概略断面図、第6図はこのレーザ
装置の共振器の構成を示す概略平面図である。図におい
て、 (11)は72MHz高周波発生器、(21)は
電力整合回路、(22)は高周波ケーブル、(23)は
絶縁フィードスルー (71)、(72)は電極、(7
3) 、 (74)は電極の表面で光学反射面に研摩し
である。(75)は放電用隙間、(7B)、 (77)
は電極(71)。
[Prior Art] FIG. 5 is a schematic sectional view of a conventional gas laser device disclosed in Japanese Patent Application Laid-Open No. 83-192285, and FIG. 6 is a schematic plan view showing the configuration of a resonator of this laser device. . In the figure, (11) is a 72MHz high frequency generator, (21) is a power matching circuit, (22) is a high frequency cable, (23) is an insulated feedthrough, (71) and (72) are electrodes, (7
3) and (74) are the surfaces of the electrodes polished to optically reflective surfaces. (75) is the discharge gap, (7B), (77)
is an electrode (71).

(77)を絶縁するスペーサ、〈78〉はU字形をした
基部で、電極(71)、(72)とスペーサ(7[i)
 、 (77)よりなる組立体が基部(78)上に取付
けられ、U字形の基部(78)はM (79)により閉
じられ、セラミック絶縁材(80)が蓋(79〉と電極
(71)との間に配設されている。また、レーザ共振器
は第6図に示すように、凹球面の全反射鏡(52)ε凸
球面の全反射鏡(53〉とから構成されている。
The spacer (78) insulates the electrodes (71) and (72), and the spacer (78) is a U-shaped base.
, (77) is mounted on the base (78), the U-shaped base (78) is closed by M (79), the ceramic insulator (80) is connected to the lid (79〉) and the electrode (71). As shown in FIG. 6, the laser resonator is composed of a concave spherical total reflection mirror (52) and a convex spherical total reflection mirror (53).

上記のように構成された従来の気体レーザ装置において
は、高周波発生器(tl)により発生された高周波は電
力整合器(21)を介して、ケーブル(22)を通って
電極(71) 、 (72)間に印加される。電極(7
1)、(72)間の放電用隙間(75)にはレーザ気体
が充填されており、電極(71)、 (72)間に印加
された高周波によりレーザ気体が放電励起される。この
ように、反射鏡(52)と(53)とで構成されるレー
ザ共振器内に、励起されたレーザ気体が存在するため、
レーザ発振が行なわれる。このとき、電極(71)、(
72)間を2 amにし、電極(71)、(72)の縁
と凸面鏡(53)の縁との間の距離を2 mmこするこ
とにより一辺が、約2 mmの方形ビームが得られる。
In the conventional gas laser device configured as described above, the high frequency generated by the high frequency generator (tl) passes through the power matching device (21), the cable (22), and the electrodes (71), ( 72) is applied between. Electrode (7
A discharge gap (75) between electrodes (71) and (72) is filled with laser gas, and the laser gas is excited to discharge by the high frequency applied between electrodes (71) and (72). In this way, since the excited laser gas exists in the laser resonator composed of the reflecting mirrors (52) and (53),
Laser oscillation is performed. At this time, the electrode (71), (
72) A rectangular beam with a side of approximately 2 mm is obtained by setting the distance between the electrodes (71) and (72) and the edge of the convex mirror (53) to 2 mm.

このビームはレーザ共振器から一定距離離れるとガウス
型円形ビームとなる。
This beam becomes a Gaussian circular beam at a certain distance from the laser resonator.

[発明が解決しようとする課題] 上記のような従来の気体レーザ装置では、レーザ共振器
が凹面鏡と凸面鏡の組み合わせの、いわゆる正ブランチ
不安定型共振器となっているため、反射鏡の傾きに非常
に敏感で、反射鏡の傾きの調整が行ない難く、しかも温
度による変形等で調整が狂い易いため、共振器の安定性
の確保が難しいといった問題点があった。
[Problems to be Solved by the Invention] In the conventional gas laser device as described above, the laser resonator is a so-called positive branch unstable type resonator, which is a combination of a concave mirror and a convex mirror. This poses a problem in that it is difficult to ensure the stability of the resonator, as it is difficult to adjust the inclination of the reflecting mirror, and the adjustment is easily lost due to deformation due to temperature.

この発明は、かかる問題点を解決するためになされたも
ので、反射鏡の傾きに鈍感で、反射鏡の傾きの調整が容
易で、安定性の良い気体レーザ装置を得ることを目的と
する。
The present invention was made to solve these problems, and aims to provide a gas laser device that is insensitive to the inclination of the reflecting mirror, allows easy adjustment of the inclination of the reflecting mirror, and has good stability.

[課題を解決するための手段] この発明に係る気体レーザ装置は、放電空間を、レーザ
光軸方向に垂直な断面の縦と横の寸法が異なる偏平なス
ラグ状に形成し、この放電空間の両端に夫々レーザ共振
器ミラーを配置すると共に少なくとも一方のミラーは一
方向に第1の曲率の反射面と、これと直交する方向には
第2の曲率の反射面とを持った非対称凹面鏡として、放
電空間断面における寸法の長い方の1次元については第
1の曲率の反射面を作用させて負ブランチの不安定型共
振器を構成し、放電空間断面における寸法の短い方の1
次元については第2の曲率の反射面を作用させて光導波
路共振器を構成し、さらに、放電空間断面における寸法
の長い方の一端部からレーザビームを取り出すものであ
る。
[Means for Solving the Problems] In the gas laser device according to the present invention, the discharge space is formed in the shape of a flat slug in which the vertical and horizontal dimensions of the cross section perpendicular to the laser optical axis direction are different. Laser resonator mirrors are disposed at both ends, and at least one of the mirrors is an asymmetric concave mirror having a reflecting surface with a first curvature in one direction and a reflecting surface with a second curvature in a direction perpendicular to this, For one dimension with the longer dimension in the cross section of the discharge space, a reflecting surface of the first curvature acts to constitute an unstable negative branch resonator, and in the one dimension with the shorter dimension in the cross section of the discharge space.
Regarding the dimension, an optical waveguide resonator is constructed by using a reflecting surface having a second curvature, and a laser beam is extracted from one end of the longer dimension in the cross section of the discharge space.

[作用] この発明においては、放電空間断面における寸法の長い
方の1次元については、第1の曲率の反射面を作用させ
て負ブランチの不安定型共振器を構成し、放電空間断面
における寸法の短い方の1次元については第2の曲率の
反射面を作用させて光導波路共振器を構成しているから
、共振器内に焦点はあるが、光が集中するのは一点でな
く一線となり、通常の円筒軸対称の共振器を負ブランチ
とした場合に比し光の集中の割合が大きく低減され、光
学損傷等光の集中による問題が生じることなく、しかも
負ブランチの不安定型共振器の反射鏡の傾きに鈍感であ
る特長が最大限に発揮される。
[Function] In the present invention, for the longer one dimension in the discharge space cross section, a reflecting surface of the first curvature is used to configure a negative branch unstable resonator, and the dimension in the discharge space cross section is changed. Regarding the shorter one dimension, the optical waveguide resonator is constructed by using a reflecting surface with the second curvature, so although there is a focal point within the resonator, the light is concentrated in a line rather than at a single point. Compared to the case where a normal cylindrical axially symmetrical resonator is used as a negative branch, the concentration ratio of light is greatly reduced, and problems due to light concentration such as optical damage do not occur, and the unstable negative branch resonator reflects The feature of being insensitive to the tilt of the mirror is maximized.

さらに、光導波路共振器側についても良質のビームモー
ドが得られる。
Furthermore, a high quality beam mode can also be obtained on the optical waveguide resonator side.

[実施例] 第1図(a)はこの発明の一実施例における共振器を示
す斜視図、第1図(b)は第1図(a)に示す共振器の
不安定型共振器側の概要を示す平面図、第1図(C)は
第1図(a)に示す共振器の光導波路共振器側の概要を
示す側面図である。
[Example] Fig. 1(a) is a perspective view showing a resonator in an embodiment of the present invention, and Fig. 1(b) is an outline of the unstable resonator side of the resonator shown in Fig. 1(a). FIG. 1(C) is a side view schematically showing the optical waveguide resonator side of the resonator shown in FIG. 1(a).

第1図(a) 、 (b)及び(e)において、(50
)は全反射ミラーである。この全反射ミラー(50)は
不安定型共振器に最適な第1の曲率の反射面と光導波路
共振器に最適な第2の曲率の反射面とを持った非対称凹
面鏡で、この実施例ではトロイダルミラーである。(5
1〉は出口全反射ミラーである。この出口反射ミラー(
51)もミラー(50〉と同様の第1の曲率の反射面と
第2の曲率の反射面とを持った非対称凹面鏡で、この実
施例ではシリンドリカルミラーである。なお、上記の第
1の曲率と第2の曲率は互いに直交する方向における曲
率である。また、上記のような第1の曲率と第2の曲率
の反射面を持った凹面鏡をこの明細書では非対称凹面鏡
と称することにする。
In Figure 1 (a), (b) and (e), (50
) is a total reflection mirror. This total reflection mirror (50) is an asymmetric concave mirror having a reflecting surface with a first curvature that is optimal for an unstable resonator and a reflecting surface that has a second curvature that is optimal for an optical waveguide resonator, and in this embodiment is a toroidal mirror. It's a mirror. (5
1> is an exit total reflection mirror. This exit reflection mirror (
51) is also an asymmetrical concave mirror having a reflecting surface with a first curvature and a reflecting surface with a second curvature similar to the mirror (50>), and is a cylindrical mirror in this embodiment. and the second curvature are curvatures in directions perpendicular to each other. In addition, a concave mirror having reflective surfaces having the first curvature and the second curvature as described above will be referred to as an asymmetric concave mirror in this specification.

(BT)は放電空間で、第5図における電極(71)。(BT) is the discharge space and is the electrode (71) in FIG.

(72)の表面で囲まれた放電用隙間(75)に相当す
る空間である。この放電空間(B7)は、レーザ光軸方
向に垂直な断面の縦と横の寸法(A及びB)が異なる偏
平なスラブ状に形成されており、寸法Bはレーザ波長に
対し光導波路の寸法としである。なお、放電空間(67
)の図示は簡略化して輪郭のみ示しである。この放電空
間(B7〉に対し、ミラー(50)。
This is a space corresponding to the discharge gap (75) surrounded by the surface of (72). This discharge space (B7) is formed in the shape of a flat slab in which the vertical and horizontal dimensions (A and B) of the cross section perpendicular to the laser optical axis direction are different, and dimension B is the dimension of the optical waveguide with respect to the laser wavelength. It's Toshide. In addition, the discharge space (67
) is simplified and only the outline is shown. A mirror (50) for this discharge space (B7).

(51)は第1図(a)に示す平面図で見たとき、A方
向の1次元に光を拡大するように、第1の曲率の反射面
同士を対向させて配置し、第1図(b)に示すように第
1図(a)と直交する方向から見たとき、第2の曲率の
反射面同士を対向させて配置しである。
(51) is arranged so that the reflective surfaces of the first curvature face each other so as to expand the light one-dimensionally in the A direction when viewed from the plan view shown in FIG. 1(a). As shown in FIG. 1(b), when viewed from a direction perpendicular to FIG. 1(a), the reflective surfaces of the second curvature are arranged to face each other.

以上のように構成された共振器は、放電空間断面におけ
る寸法の長い方の1次元については、つまり図示のA方
向についてはミラー(50)及び(51)の第1の曲率
の反射面を組み合わせた負ブランチの不定定型共振器と
なっており、放電空間断面における寸法の短い方の1次
元については、つまり図示のB方向については、第2の
曲率の反射面による光導波路共振器になっている。
The resonator configured as described above is constructed by combining the reflecting surfaces of the mirrors (50) and (51) with the first curvature for the longer one dimension in the cross section of the discharge space, that is, for the direction A shown in the figure. In the shorter one dimension in the cross section of the discharge space, that is, in the direction B shown in the figure, it becomes an optical waveguide resonator with a reflective surface of the second curvature. There is.

ところで、ミラー(50)、 (51)を不安定型共振
器に適した曲率を持った球面の凹面鏡を用いた場合、光
導波路共振器側については光導波路共振器に適した曲率
になっていないため、光導波路の高次モードが励振され
強いサイドロブが発生する恐れがあり、いわゆる最低次
のシングルモードになり難いのに対し、この共振器は、
B方向については曲率を変えて、放電空間断面における
寸法の短い方の一次元について、光導波路モードのうち
最低次のシングルードが効率良く励振される曲率にする
ため、高次の光導波路モードが励振され難く円形の良質
なモードでレーザ発振させることができる。
By the way, when the mirrors (50) and (51) are spherical concave mirrors with a curvature suitable for an unstable resonator, the optical waveguide resonator side does not have a curvature suitable for an optical waveguide resonator. , the higher-order mode of the optical waveguide may be excited and a strong side lobe may occur, and it is difficult to become the so-called lowest-order single mode, whereas this resonator
In the B direction, the curvature is changed to make the curvature in which the lowest-order single mode among the optical waveguide modes is efficiently excited in one dimension of the shorter dimension in the cross section of the discharge space, so that the higher-order optical waveguide modes are excited. Laser oscillation can be performed in a high-quality circular mode that is difficult to detect.

さらに、負ブランチの不安定型共振器は、放電空間断面
の寸法が長い方の一端部(871)からのみレーザビー
ム(8)を取り出すために、レーザ光軸を放電空間の中
心軸よりずらしである。即ち、ミラー(50)及び(5
1)の少なくとも一方は放電空間の中心軸に対し傾けて
配置しである。また、ミラー(51)にはビーム取り出
し部(511)が設けである。
Furthermore, in the negative branch unstable resonator, the laser optical axis is shifted from the central axis of the discharge space in order to extract the laser beam (8) only from one end (871) with a longer cross-sectional dimension of the discharge space. . That is, mirrors (50) and (5
At least one of 1) is arranged at an angle with respect to the central axis of the discharge space. Further, the mirror (51) is provided with a beam extraction section (511).

このレーザビーム取り出し部(511)は、こノ実施例
ではミラー(51)の一部を切欠いて直線状ノアバーチ
ャを形成したものである。
In this embodiment, the laser beam extracting portion (511) is formed by cutting out a portion of the mirror (51) to form a linear noa verture.

上記実施例では、ミラー(50)にトロイダルミラミラ
ー(51)にシリンドリカルミラーを用いているが、両
方共トロイダルミラーを用いてもよくまた、一方のみを
トロイダルミラー又はシリンドリカルミラーとし、もう
一方を球面の凹面鏡とした場合でも、両方とも球面の凹
面鏡を用いたものに比し、光導波路共振器側のモードを
良好なものにすることができる。
In the above embodiment, a toroidal mirror is used for the mirror (50), and a cylindrical mirror is used for the mirror (51), but both may be toroidal mirrors, or only one is a toroidal mirror or a cylindrical mirror, and the other is a spherical mirror. Even when a concave mirror is used, the mode on the optical waveguide resonator side can be made better than when a concave mirror with both spherical surfaces is used.

なお、図において、PLOはミラー(51)から取り出
されるレーザ光強度分布を示しており、RTl及びR1
□はミラー(50)の第1及び第2曲率半径、R及びR
P2はミラー(51)の第1及び第2の曲率1 半径である。また、a及びbはミラーの有効長さを示し
ている。
In the figure, PLO indicates the laser beam intensity distribution taken out from the mirror (51), and RTl and R1
□ are the first and second radii of curvature of the mirror (50), R and R
P2 is the first and second radius of curvature of the mirror (51). Further, a and b indicate the effective length of the mirror.

次に、不安定型共振器の機械的変動、つまりミラーの傾
き(以下、ミスアライメントと記す)に対する感度につ
いて説明する。
Next, the sensitivity of the unstable resonator to mechanical fluctuations, that is, mirror tilt (hereinafter referred to as misalignment) will be explained.

第2図は正ブランチ不安定型共振器のミスアライメント
感度を説明する説明図、第3図は負ブランチ不安定型共
振器のミスアライメント感度を説明する説明図である。
FIG. 2 is an explanatory diagram for explaining the misalignment sensitivity of the positive branch unstable type resonator, and FIG. 3 is an explanatory diagram for explaining the misalignment sensitivity of the negative branch unstable type resonator.

第2図及び第3図において、(1)及び〈2)はミラー
で、第2図では第5図のミラー(52)及びミラー(5
3)を示し、第3図では第1−図のミラー(50)及び
ミラー(51)を示している。eはミラー(2〉の曲率
中心、fはもともとのミラー(1)の曲率中心、gはず
れたミラー(1)の曲率中心、θはミラー(1)のずれ
角、φは光軸のずれ角である。なお、光軸は曲率中心を
結んだ線、即ち両方のミラー面に垂直な線で、ミラー(
1)がずれた場合、即ちミラー(1)が傾いた場合ef
からiへ変化する。dはずれた光軸を示している。
In Figures 2 and 3, (1) and <2) are mirrors, and in Figure 2, mirror (52) and mirror (5) in Figure 5 are shown.
3), and FIG. 3 shows the mirror (50) and mirror (51) of FIG. e is the center of curvature of mirror (2>), f is the center of curvature of the original mirror (1), g is the center of curvature of the displaced mirror (1), θ is the deviation angle of mirror (1), and φ is the deviation angle of the optical axis. Note that the optical axis is a line connecting the centers of curvature, that is, a line perpendicular to both mirror surfaces.
1) is shifted, that is, the mirror (1) is tilted, ef
changes from to i. d indicates a shifted optical axis.

不安定型共振器のミスアライメントに対する感度は、学
会誌(IEEE JOURNAL OF QUANTU
MELECTRONIC8、DECEMBER1913
9,P、579)に記載されているように、下記(1〉
〜(3)式で表わされる。
The sensitivity of unstable resonators to misalignment is described in the IEEE JOURNAL OF QUANTU
MELECTRONIC8, DECEMBER1913
9, P, 579), as described below (1)
~(3) Expression.

M−− θ ・・・(L) ここで、mは拡大率で共焦点(Con foea I 
)共振器においてはミラーの曲率比で考えられる。
M-- θ...(L) Here, m is the magnification and confocal (Confocal I)
) In a resonator, it can be considered as the curvature ratio of the mirror.

R,R2はミラー(1)及び(2)の曲率半径で、凸曲
率と凹曲率を士符号で区別しているため(5)式は負と
なる。
R and R2 are the radii of curvature of mirrors (1) and (2), and since convex curvature and concave curvature are distinguished by the sign, equation (5) is negative.

このmは、幾何(光)学的にはエツジやアパーチャによ
って制限されたミラーの有効長さ(第1図、第6図に示
すa及びb)の比になる。
This m is geometrically (optically) a ratio of the effective length of the mirror (a and b shown in FIGS. 1 and 6) limited by edges and apertures.

m=   − ・・・(6) なお、ミラーの有効長さとはエツジやアパーチャにより
制限されて、実際に光の当っているミラーの部分である
。(軸対称の場合は有効径になる)即ち、拡大率とは、
共振器内における拡大される前のビームの大きさと拡大
後のビームの大きさの比である。
m=- (6) Note that the effective length of the mirror is limited by edges and apertures and is the portion of the mirror that is actually illuminated by light. (In the case of axial symmetry, it becomes the effective diameter.) In other words, the magnification rate is
It is the ratio of the size of the beam before being expanded and the size of the beam after being expanded within the resonator.

第1図に従って試作したCOzレーザの例では、放電空
間長400mm、断面寸法2X20mmであり、適当な
出力結合率10%と出射ビームの対称性が両立するよう
に拡大率mは1.1程度に設計されている。
In the example of the COz laser prototyped according to Figure 1, the discharge space length is 400 mm, the cross-sectional dimensions are 2 x 20 mm, and the magnification factor m is set to about 1.1 in order to achieve both an appropriate output coupling rate of 10% and symmetry of the emitted beam. Designed.

この場合M 二22、M 二1となる。In this case, M222 and M21.

+ 従って、負ブランチのミスアライメント感度は正ブラン
チのミスアライメント感度の1/22となる。
+ Therefore, the misalignment sensitivity of the negative branch is 1/22 of the misalignment sensitivity of the positive branch.

即ち、ミラーが傾いたことによる光軸のずれは負ブラン
チの方がはるかに少い。従って、共振器の安定性が向上
する。
That is, the deviation of the optical axis due to the tilting of the mirror is much smaller in the negative branch. Therefore, the stability of the resonator is improved.

なお、この発明では、拡大率mは不安定側(断面寸法A
の方)のみで定義され、光導波路側(断面寸法Bの方)
については関係がない。
In addition, in this invention, the magnification ratio m is on the unstable side (cross-sectional dimension A
side), and the optical waveguide side (cross-sectional dimension B side)
It has nothing to do with it.

所で、負ブランチの不安定型共振器は、共振器内に焦点
があり、通常の円筒軸対称の共振器に用いると共振器内
に光が集中する一点が生じ光学損傷等の問題があるため
、一般にはほとんど用いられていない。これに対し、こ
の発明は放電空間断面における寸法の短い方の1次元は
光導波路共振器を構成した通常の円筒軸対称でない共振
器において、負ブランチの不安定型共振器を適用したも
のである。このため、共振器内に焦点があるが、光が集
中するのは一点でなく一線(第1図(b)及び(C)に
おけるL)となり、通常の円筒軸対称の共振器に適用し
た場合に比し光の集中の割合が大きく低減され、光学損
傷等の光の集中による問題が生じることなく、しかも負
ブランチの不安定型の反射鏡の傾きに鈍感である特長を
最大限に発揮できるものとなる。
By the way, an unstable negative branch resonator has a focal point within the resonator, and if it is used in a normal cylindrical axis-symmetrical resonator, there will be a single point where light is concentrated within the resonator, causing problems such as optical damage. , is rarely used in general. In contrast, the present invention applies an unstable resonator with a negative branch in a conventional resonator that is not symmetrical about the cylindrical axis and constitutes an optical waveguide resonator in the shorter one dimension in the cross section of the discharge space. Therefore, although there is a focal point within the resonator, the light is concentrated not at one point but on a line (L in Figure 1 (b) and (C)), and when applied to a normal cylindrical axis-symmetrical resonator. The rate of light concentration is greatly reduced compared to the previous model, and there are no problems due to light concentration such as optical damage, and the feature of being insensitive to the tilt of the negative branch unstable reflector can be maximized. becomes.

放電空間長400mm、断面寸法2×20關の例では、
第4図に示すように正ブランチの共振器では出力25W
程度からミラーの歪によりモードがくずれ、出力が飽和
してしまうが、負ブランチの共振器では80W以上が得
られた。負ブランチでも、ミラーに凹球面鏡を用いた場
合は、出力は80W以上が得られたものの、光導波路方
向(寸法の短い方の1次元方向)に強いサイドロブが生
じ、円形のモードが得られなかったのに対し、ミラーを
トロイダルミラーにすることで、はぼ円形の良好なモー
ドが得られた。
In an example of a discharge space length of 400 mm and cross-sectional dimensions of 2 x 20 mm,
As shown in Figure 4, the output of the positive branch resonator is 25W.
Although the mode was distorted due to the distortion of the mirror and the output was saturated, more than 80 W was obtained with the negative branch resonator. Even in the negative branch, when a concave spherical mirror was used, an output of 80 W or more was obtained, but a strong side lobe occurred in the optical waveguide direction (the one-dimensional direction with the shortest dimension), and a circular mode could not be obtained. On the other hand, by using a toroidal mirror as the mirror, a good round-shaped mode was obtained.

また、負ブランチの方がミラーの曲率半径が小さくなる
ため、曲率としては大きくなり形状誤差に対する曲率誤
差が小となる。同じ形状誤差(精度)に対して曲率半径
の誤差(精度)は目標曲率半径に対してほぼ2乗で大き
くなり、ミラー製作上の精度の良さの点でも負ブランチ
の方が有利である。例えば、前記のCO2レーザの例で
±0.5μ劇の形状誤差でφ3hm程度のミラーを使用
しているが、負ブランチの場合、不安定型の曲率は約4
00で±0.5關の誤差であるが、正ブランチの場合曲
率が約9000で±200*+mの誤差となり、正ブラ
ンチでは共焦点からのずれが大きく、拡大率も目標から
ずれ、光の制御が設計通りいかなかった。
Further, since the radius of curvature of the mirror is smaller in the negative branch, the curvature is larger and the curvature error with respect to the shape error is smaller. For the same shape error (accuracy), the error (accuracy) in the radius of curvature increases approximately to the square of the target radius of curvature, and the negative branch is also advantageous in terms of precision in mirror manufacturing. For example, in the example of the CO2 laser mentioned above, a mirror with a diameter of about 3hm is used with a shape error of ±0.5μ plays, but in the case of a negative branch, the curvature of the unstable type is about 4
00, the error is ±0.5 degrees, but in the case of the positive branch, the curvature is about 9000, resulting in an error of ±200*+m, and in the positive branch, the deviation from the confocal point is large, the magnification rate also deviates from the target, and the light Control did not work as designed.

上記実施例は、高周波電界により放電を発生させレーザ
気体を励起するものであるが、特開昭83−18648
3号公報に開示されているような、マイクロ波回路の一
部を構成する導電体壁と、この導電体壁に対向して設け
られた誘電体との間にレーザ光軸方向に垂直な断面の縦
と横の寸法が異なる空間を形成し、この空間にレーザ気
体を封入すると共にマイクロ波電界により放電破壊させ
てプラズマを発生させレーザ気体を励起する気体レーザ
装置に実施しても同様の効果が得られる。
In the above embodiment, a discharge is generated by a high frequency electric field to excite the laser gas.
As disclosed in Publication No. 3, a cross section perpendicular to the laser optical axis direction is formed between a conductive wall that constitutes a part of a microwave circuit and a dielectric material provided opposite to this conductive wall. The same effect can be obtained by implementing a gas laser device in which a space with different vertical and horizontal dimensions is formed, a laser gas is sealed in this space, and the laser gas is destroyed by discharge using a microwave electric field to generate plasma and excite the laser gas. is obtained.

また、ミラー(51)のレーザビーム取り出し部(51
1)は、直線状のアパーチャを形成しているが、放電空
間断面の短い方の寸法より充分大きな直径のミラーであ
れば、円形ミラーを用いても問題ない。
In addition, the laser beam extraction portion (51) of the mirror (51)
1) forms a linear aperture, but there is no problem in using a circular mirror as long as it has a diameter sufficiently larger than the shorter dimension of the cross section of the discharge space.

[発明の効果] この発明は以上説明したとおり、放電空間断面における
寸法の長い方の1次元については不安定型共振器に最適
な第1の曲率の反射面を作用させて負ブランチの不安定
型共振器を構成し、放電空間断面における寸法の短い方
の1次元については光導波路共振器に最適な第2の曲率
の反射面を作用させて光導波路共振器を構成しているか
ら、共振器内に焦点はあるが、光が集中するのは一点で
なく一線となり、光学損傷等光の集中による問題が生じ
るこさなく、負ブランチの不安定型共振器の反射鏡の傾
きに鈍感である特長が最大限に発揮され、さらに光導波
路共振器側についても良質のビームモードが得られ、共
振器の安定性が総合的に向上するという効果がある。
[Effects of the Invention] As explained above, the present invention achieves unstable resonance of the negative branch by applying a reflection surface of the optimum first curvature to the unstable resonator for the longer one dimension in the cross section of the discharge space. As for the shorter one dimension in the cross section of the discharge space, the optical waveguide resonator is constructed by applying a reflecting surface of the second curvature that is most suitable for the optical waveguide resonator. Although there is a focal point, the light is concentrated on a line rather than on one point, so there are no optical damage or other problems caused by the concentration of light, and the main feature is that it is insensitive to the tilt of the reflector of the unstable negative branch resonator. Furthermore, a high-quality beam mode can be obtained on the optical waveguide resonator side, and the stability of the resonator is improved overall.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)はこの発明の一実施例における共振器を示
す斜視図、第1図(b)は第1図(a)に示す共振器の
不安定型共振器側の概要を示す平面図、第1図(C)は
第1図(a)に示す共振器の光導波路共振器側の概要を
示す側面図、第2図は正ブランチ不安定型共振器のミス
アライメント感度を説明する説明図、第3図は負ブラン
チ不安定型共振器のミスアライメント感度を説明する説
明図、第4図は正ブランチおよび負ブランチ不安定型共
振器によるCO2レーザ発振器の特性を示すグラフ、第
5図は従来の気体レーザ装置の概略断面図、第6図は第
5図に示す気体レーザ装置の共振器の構成を示す概略平
面図である。 図において、(50)は全反射ミラー(非対称凹面鏡)
 、(51)は出口全反射ミラー(非対称凹面鏡)、(
511)はレーザビーム取り出し部、〈B7〉は放電空
間、(8)はレーザビーム、Aは放電空間断面における
長い方の寸法、Bは放電空間断面における短い方の寸法
である。 なお、図中、同一符号は同−又は相当部分を示す。 第2図
FIG. 1(a) is a perspective view showing a resonator according to an embodiment of the present invention, and FIG. 1(b) is a plan view showing an outline of the unstable resonator side of the resonator shown in FIG. 1(a). , FIG. 1(C) is a side view showing the outline of the optical waveguide resonator side of the resonator shown in FIG. 1(a), and FIG. 2 is an explanatory diagram illustrating the misalignment sensitivity of the positive branch unstable type resonator. , Fig. 3 is an explanatory diagram explaining the misalignment sensitivity of a negative branch unstable type resonator, Fig. 4 is a graph showing the characteristics of a CO2 laser oscillator using a positive branch and negative branch unstable type resonator, and Fig. 5 is a graph showing the characteristics of a CO2 laser oscillator using a conventional negative branch unstable type resonator. A schematic sectional view of the gas laser device, and FIG. 6 is a schematic plan view showing the configuration of a resonator of the gas laser device shown in FIG. In the figure, (50) is a total reflection mirror (asymmetric concave mirror)
, (51) is the exit total reflection mirror (asymmetric concave mirror), (
511) is the laser beam extraction part, <B7> is the discharge space, (8) is the laser beam, A is the longer dimension in the discharge space cross section, and B is the shorter dimension in the discharge space cross section. In addition, in the figures, the same reference numerals indicate the same or corresponding parts. Figure 2

Claims (1)

【特許請求の範囲】[Claims] レーザ気体の励起を放電により行なう気体レーザ装置に
おいて、放電によるレーザ気体の励起が行なわれる放電
空間を、レーザ光軸方向に垂直な断面の縦と横の寸法が
異なる偏平なスラブ状に形成し、この放電空間の両端に
夫々レーザ共振器ミラーを配置すると共に少なくとも一
方のミラーは一方向に第1の曲率の反射面とこれと直交
する方向には第2の曲率の反射面とを持った非対称凹面
鏡を用いて、放電空間断面における寸法の長い方の1次
元については前記第1の曲率の反射面を作用させて、負
ブランチの不安定型共振器を構成し、放電空間断面にお
ける寸法の短い方については前記第2の曲率の反射面を
作用させて光導波路共振器を構成し、さらに、放電空間
断面における寸法の長い方の一端部からレーザビームを
取り出すようにしたことを特徴とする気体レーザ装置。
In a gas laser device in which laser gas is excited by discharge, a discharge space in which laser gas is excited by discharge is formed in the shape of a flat slab with different vertical and horizontal dimensions in a cross section perpendicular to the laser optical axis direction, Laser resonator mirrors are arranged at both ends of this discharge space, and at least one of the mirrors is asymmetrical with a reflecting surface of a first curvature in one direction and a reflecting surface of a second curvature in a direction perpendicular to this. Using a concave mirror, the reflecting surface of the first curvature acts on the one dimension with the longer dimension in the cross section of the discharge space to form an unstable negative branch resonator, and the one dimension with the shorter dimension in the cross section of the discharge space The gas laser is characterized in that an optical waveguide resonator is formed by using the reflecting surface of the second curvature, and further, the laser beam is extracted from one end of the longer dimension in the cross section of the discharge space. Device.
JP20697989A 1989-08-11 1989-08-11 Gas laser device Expired - Lifetime JP2700822B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20697989A JP2700822B2 (en) 1989-08-11 1989-08-11 Gas laser device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20697989A JP2700822B2 (en) 1989-08-11 1989-08-11 Gas laser device

Publications (2)

Publication Number Publication Date
JPH0371683A true JPH0371683A (en) 1991-03-27
JP2700822B2 JP2700822B2 (en) 1998-01-21

Family

ID=16532165

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20697989A Expired - Lifetime JP2700822B2 (en) 1989-08-11 1989-08-11 Gas laser device

Country Status (1)

Country Link
JP (1) JP2700822B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6891873B2 (en) 2000-05-19 2005-05-10 Tomoo Fujioka Cylindrical straight slab type gas laser
US6975662B2 (en) 2000-05-19 2005-12-13 Tomoo Fujioka Cylindrical straight slab type gas laser
JP2009105408A (en) * 2007-10-25 2009-05-14 Rofin-Sinar Uk Ltd Gas laser device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3793044B1 (en) * 2019-09-12 2021-11-03 Kern Technologies, LLC Output coupling from unstable laser resonators

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6891873B2 (en) 2000-05-19 2005-05-10 Tomoo Fujioka Cylindrical straight slab type gas laser
US6975662B2 (en) 2000-05-19 2005-12-13 Tomoo Fujioka Cylindrical straight slab type gas laser
JP2009105408A (en) * 2007-10-25 2009-05-14 Rofin-Sinar Uk Ltd Gas laser device

Also Published As

Publication number Publication date
JP2700822B2 (en) 1998-01-21

Similar Documents

Publication Publication Date Title
EP0275023B1 (en) Carbon dioxide slab laser
EP0412555B1 (en) Gas laser device
EP0708996B1 (en) Slab laser with folded resonator structure
US4221468A (en) Multi-cavity laser mirror
US6850544B2 (en) Optical resonators with orthogonally polarized modes
US5148445A (en) High power Nd:YLF solid state lasers
US6813286B1 (en) Optical resonators with discontinuous phase elements
KR100458795B1 (en) Cylindrical straight type gas laser
JPH0371683A (en) Gas laser device
JP2700345B2 (en) Gas laser device
US4727638A (en) Low cost ring laser angular rate sensor
EP0184559B1 (en) Laser utilising a negative branch unstable cavity resonator
JP2536706B2 (en) Laser oscillator
JPH1065236A (en) Multi-channel, rf excited gas discharge laser
JPH0799358A (en) Solid state-laser system
JPH0240980A (en) Gas laser oscillator
JPH073896B2 (en) Gas laser oscillator
RU2150773C1 (en) High-power laser with stable-unstable resonator
JP2937441B2 (en) He-Ne gas laser device
JPH05283788A (en) Narrow band laser oscillation device
JP2002043659A (en) Cylindrical straight slab gas laser
JPS62124786A (en) Laser device
JPH11112066A (en) Laser resonator
JPS5856487A (en) Specifying method for resonance mode of gas laser tube
JPH01152681A (en) Pulse laser equipment

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071003

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081003

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091003

Year of fee payment: 12

EXPY Cancellation because of completion of term