JPH0342887A - Laser resonator - Google Patents

Laser resonator

Info

Publication number
JPH0342887A
JPH0342887A JP1177096A JP17709689A JPH0342887A JP H0342887 A JPH0342887 A JP H0342887A JP 1177096 A JP1177096 A JP 1177096A JP 17709689 A JP17709689 A JP 17709689A JP H0342887 A JPH0342887 A JP H0342887A
Authority
JP
Japan
Prior art keywords
gain region
laser
discharge
high gain
mirror
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1177096A
Other languages
Japanese (ja)
Inventor
Hideo Hara
秀雄 原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP1177096A priority Critical patent/JPH0342887A/en
Publication of JPH0342887A publication Critical patent/JPH0342887A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/02Constructional details
    • H01S3/03Constructional details of gas laser discharge tubes
    • H01S3/034Optical devices within, or forming part of, the tube, e.g. windows, mirrors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/08Construction or shape of optical resonators or components thereof

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Lasers (AREA)

Abstract

PURPOSE:To obtain output light having large cross-sectional areas and relieve the deviation of an output distribution on a cross section by amplifying rays of laser light which is generated in a high gain region after reflecting the rays of laser light to a low gain region through a reflecting means, besides, dispersing the above rays which are reflected through an expanding means so that the rays of laser light pass through the low gain region in parallel to an optical axis. CONSTITUTION:Discharge electrodes 1 which are formed into respective semi-column shapes and are facing each other at given intervals form gain regions where laser gas is excited by discharge. As electric discharge, in such a case, is concentrated in the neighborhood of a central axis where a distance between electrodes becomes short, a high gain region including the central axis is formed. Being corresponding to the high gain region, laser resonators ate formed at a total reflection mirror 2 and at the part of the central half mirror of a corner cube type reflecting mirror 4. Further, a beam expander consisting of concave and convex lenses 5 and 6 in which a rectangular opening is formed is provided at a central part corresponding to the high gain region and the width of laser light that is reflected by the reflected mirror 4 is expanded by a factor of 4 and is allowed to pass through a low gain region. In this way, energy is taken out even from the low gain region to improve laser efficiency and gain of each resonator is averaged as well.

Description

【発明の詳細な説明】 [産業上の利用分野〕 本発明は、横放電型ガスレーザ装置、例えば放電型エキ
シマレーザ装置に応用されて好適なレーザ共振器に関す
る。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a laser resonator suitable for application to a transverse discharge type gas laser device, such as a discharge type excimer laser device.

[従来の技術] 横放電型ガスレーザ装置は、種々の用途が開発されて既
に多くの分野で使用されているが、現在も性能に関する
多くの未解決な問題を抱えいて、より高強度、高効率、
安定な出力に対する要求は強い。
[Prior Art] Lateral discharge type gas laser devices have been developed for various applications and are already used in many fields. ,
There is a strong demand for stable output.

第5図は、−数的な横放電型ガスレーザ装置の概略な構
成を示す、ここでは、レーザガスの放電領域11(紙面
に垂直な方向に対向する1対の図示しない放電電極によ
り形成される)をはさんで全反射ミラー12とレーザ出
力用のハーフミラ−13とが向い合わされてレーザ共振
器を形成している。放電領域11でレーザガスが励起状
態となると、レーザガスの発光光は全反射ミラー12と
ハーフくラー13との間で共振状態となり、その1部分
がレーザ出力としてハーフミラ−13側から放射される
FIG. 5 shows a schematic configuration of a numerically lateral discharge type gas laser device. Here, a discharge region 11 of laser gas (formed by a pair of discharge electrodes (not shown) facing each other in a direction perpendicular to the paper surface) A total reflection mirror 12 and a laser output half mirror 13 face each other with the mirror 12 in between to form a laser resonator. When the laser gas is excited in the discharge region 11, the emitted light of the laser gas enters a resonance state between the total reflection mirror 12 and the half mirror 13, and a portion of the light is emitted from the half mirror 13 side as a laser output.

しかし、このレーザ共振器を放電型エキシマレーザ装置
に応用する場合には問題があった。放電型エキシマレー
ザ装置においては、電極構造とレーザガスの特殊性によ
り、レーザガス分子が励起する放電領域11が対向する
放電電極の長手方向に沿った狭い領域に集中するから、
レーザ共振器断面におけるゲイン分布は−様ではない。
However, there were problems when applying this laser resonator to a discharge type excimer laser device. In the discharge type excimer laser device, due to the electrode structure and the special characteristics of the laser gas, the discharge region 11 in which the laser gas molecules are excited is concentrated in a narrow region along the longitudinal direction of the opposing discharge electrodes.
The gain distribution in the cross section of the laser resonator is not -like.

レーザビーム断面におけるレーザ光の強度分布を計測す
ると、放電方向でほぼ−様なのに対し、放電方向と垂直
な幅方向では、第2図に示す様にガウス分布に近い分布
を示す。すなわち、放電型エキシマレーザ装置の対向す
る放電電極間においては、レーザ共振器の光軸を含む薄
い板状の領域に共振の起き易い高利得領域が、また、こ
の板状の領域をはさんだ両側に光軸から外側に離れるに
従いゲインの低下する低利得領域が形成されていた。
When the intensity distribution of the laser beam in the cross section of the laser beam is measured, it is almost negative in the discharge direction, but in the width direction perpendicular to the discharge direction, it shows a distribution close to a Gaussian distribution as shown in FIG. In other words, between the opposing discharge electrodes of a discharge-type excimer laser device, there is a high gain region where resonance is likely to occur in a thin plate-shaped region that includes the optical axis of the laser resonator, and a high-gain region on both sides of this plate-shaped region sandwiching this plate-shaped region. A low gain region was formed in which the gain decreases as the distance from the optical axis increases.

従って、放電型エキシマレーザ装置は、レーザ共振状態
において、高利得領域に係る幅数mmの部分で高強度な
出力光が得られるものの、低利得領域に係る部分では高
利得領域に近い限られた部分でしか共振状態は維持され
ず、レーザ光の取り出し効率が低かった。
Therefore, in a discharge-type excimer laser device, in a laser resonance state, high-intensity output light can be obtained in a portion several millimeters wide related to the high gain region, but in a portion related to the low gain region, a limited output light near the high gain region is obtained. The resonance state was maintained only in some parts, and the efficiency of extracting laser light was low.

[発明が解決しようとする課題] 放電型エキシマレーザ装置は、中心軸周辺とその外側と
では共振に係る利得が異なり、出力光強度の断面上の分
布も大きく偏っていたから、例えば、露光装置に応用す
る場合には、後段に出力光の断面強度分布を平滑化する
ための複雑な光学系を必要とした。また、出力光の波長
狭帯化を図るために、エタロン等の狭帯化素子を共振器
中に挿入した場合、狭帯化素子は自身の光路損失分たけ
共振器のトータルゲインを下げるから、断面上でレーザ
発振が可能な領域はさらに狭くなった。これにより、ビ
ーム断面積が小さくなるとともに装置効率も著しく低下
した。
[Problems to be Solved by the Invention] Discharge-type excimer laser devices have different resonance-related gains around the central axis and outside the central axis, and the cross-sectional distribution of output light intensity is also greatly biased. In this case, a complicated optical system was required at the subsequent stage to smooth the cross-sectional intensity distribution of the output light. Furthermore, when a band narrowing element such as an etalon is inserted into the resonator in order to narrow the wavelength band of the output light, the band narrowing element reduces the total gain of the resonator by its own optical path loss. The area where laser oscillation is possible on the cross section has become even narrower. As a result, the beam cross-sectional area became smaller and the efficiency of the device also decreased significantly.

[課題を解決するための手段] 本発明に係るレーザ共振器は、対向する一対のミラー間
を貫く中心軸上の高利得領域と外側の低利得領域とを形
成する電極対を有し、中心軸上て放電光を共振させるレ
ーザ共振器において、高利得領域のレーザ光を低利得領
域に向って折り返す反射手段と、 折り返されたレーザ光が低利得領域を中心軸と平行に通
過するように、折り返されたレーザ光を分散させる拡大
手段とを有する。
[Means for Solving the Problems] A laser resonator according to the present invention has a pair of electrodes forming a high gain region on a central axis passing between a pair of mirrors facing each other and a low gain region on the outside. In a laser resonator that resonates discharge light on the axis, there is a reflecting means that returns the laser light in the high gain region toward the low gain region, and a reflection means that allows the reflected laser light to pass through the low gain region parallel to the central axis. , and a magnifying means for dispersing the folded laser beam.

[作 用] 本発明に係るレーザ共振器では、一対のミラーと電極対
とで囲まれた空間のレーザ媒体が、励起された利得領域
を形成する。ここで、一対のミラー間を貫く中心軸上に
は高利得な領域が、この領域をはさむ周外側には低利得
領域が形成される。
[Function] In the laser resonator according to the present invention, a laser medium in a space surrounded by a pair of mirrors and a pair of electrodes forms an excited gain region. Here, a high gain region is formed on the central axis passing between the pair of mirrors, and a low gain region is formed on the outer circumferential side sandwiching this region.

従って、出力光を形成する主な共振は中心軸上で発生す
る。
Therefore, the main resonance that forms the output light occurs on the central axis.

本発明に係るレーザ共振器では、反射手段が、高利得領
域で発生したレーザ光を低利得領域に向って折り返すか
ら、レーザ光は、再度利得領域を通過して増幅される。
In the laser resonator according to the present invention, the reflecting means returns the laser light generated in the high gain region toward the low gain region, so that the laser light passes through the gain region again and is amplified.

また、拡大手段が、折り返されたレーザ光の断面積を拡
大させて低利得領域のより広い範囲をレーザ光出力に関
与させる。このとき、拡張手段により断面積の拡大した
レーザ光は、低利得領域を中心軸と平行に通過する。
Further, the enlarging means enlarges the cross-sectional area of the folded laser beam, so that a wider range of the low gain region is involved in the laser beam output. At this time, the laser beam whose cross-sectional area has been expanded by the expansion means passes through the low gain region in parallel to the central axis.

本発明においてレーザ光路中に挿入される反射手段や拡
大手段も光路損失を有するが、低利得領域を通過するレ
ーザ光は、高利得領域で発振した強度の大きなレーザ光
であるから、従来例で述べたレーザ共振器よりも大きな
断面積の出力光が得られ、断面上の出力分布の偏りも緩
和される。
In the present invention, the reflecting means and enlarging means inserted into the laser optical path also have optical path loss, but since the laser light passing through the low gain region is a high-intensity laser light oscillated in the high gain region, the conventional example Output light with a larger cross-sectional area than the laser resonator described above can be obtained, and the bias in the output distribution on the cross-section is also alleviated.

[発明の実施例] 本発明の実施例を図面を参照して説明する。[Embodiments of the invention] Embodiments of the present invention will be described with reference to the drawings.

第1図は、本発明の第1実施例であるエキシマレーザ装
置におけるレーザ共振器の概略な構成を示す。第1実施
例は、紙面と垂直な高さ方向に2cmの間隔で対向する
長さ50cmの半円柱形状の放電電極1(ただし奥側の
電極のみ図示して手前側は不図示)がレーザガスの放電
励起された利得領域を形成する。ここで、放電方向は紙
面と垂直な高さ方向であり、放電は電極間の距離が短く
なる中心軸付近に集中するため、中心軸を含む高さ20
1′fiI11、幅2m111程度の高利得領域が形成
される。
FIG. 1 shows a schematic configuration of a laser resonator in an excimer laser device according to a first embodiment of the present invention. In the first embodiment, semi-cylindrical discharge electrodes 1 with a length of 50 cm facing each other at an interval of 2 cm in the height direction perpendicular to the plane of the drawing (however, only the electrode on the back side is shown and the near side is not shown) are used to discharge laser gas. A discharge excited gain region is formed. Here, the discharge direction is the height direction perpendicular to the plane of the paper, and since the discharge is concentrated near the central axis where the distance between the electrodes is shortened, the height including the central axis is 20
A high gain region having a width of about 1'fiI11 and a width of about 2m111 is formed.

この高利得領域に対応させて、レーザ先取り出し側に長
方形(高さ20mmX幅2m111)の全反射ミラー2
が、逆側に斜辺長2malの細長い直角プリズム2本か
らなるコーナーキューブ反射鏡4が配置されている。こ
こで、高利得領域に対応しているコーナーキューブ反射
鏡4の中央の幅2mmの部分は、誘電体多層膜や硝材の
表面反射を用いたハーフミラ−となっている。すなわち
、全反射ミラー2とコーナーキューブ反射鏡4の中央の
ハーフミラ一部分でレーザ共振器が構成されている。
Corresponding to this high gain region, a rectangular (height 20 mm x width 2 m 111) total reflection mirror 2 is placed on the laser pre-extraction side.
However, on the opposite side, a corner cube reflecting mirror 4 consisting of two elongated right-angled prisms with a hypotenuse length of 2 mal is arranged. Here, a 2 mm wide portion at the center of the corner cube reflecting mirror 4 corresponding to the high gain region is a half mirror using surface reflection of a dielectric multilayer film or glass material. That is, the total reflection mirror 2 and a portion of the central half mirror of the corner cube reflection mirror 4 constitute a laser resonator.

一方、反射手段としては、コーナーキューブ反射鏡4の
ハーフミラ一部分を透過したレーザ光が直角プリズムの
直角をはさむ2辺で反射されて低利得領域に折り返され
る構成である。また、拡大手段としては、高利得領域に
相当する中央部分に長方形(高さ2OmmX幅2 m+
o)の開口を形成したシリンドリカルな凹レンズ5と凸
レンズ6とから成るビームエクスパンダ−が設けられて
いる。
On the other hand, the reflecting means has a configuration in which the laser beam that has passed through a portion of the half mirror of the corner cube reflecting mirror 4 is reflected by two sides of the right angle prism that sandwich the right angle, and is returned to the low gain region. In addition, as an enlarging means, a rectangle (height 20 mm x width 2 m +
A beam expander consisting of a cylindrical concave lens 5 and a convex lens 6 each having an aperture of (o) is provided.

ビームエクスパンダーは、コーナーキューブ反射鏡4で
折り返されたレーザ光の幅を4倍に拡大して低利得領域
を通過させる。これにより、従来レーザ出力に関与しな
かった低利得領域からもエネルギが取り出されてレーザ
効率が向上するとともに、レーザ出力光の各光束に係る
共振器のゲインが平均化される(高利得領域の中心が低
利得領域の外縁部分に、高利得領域の外縁部分が低利得
領域の内縁部分に折り返される)ために、低利得領域を
通過した出力レーザ光は、より幅広い領域で実用レベル
の出力値となる。
The beam expander expands the width of the laser beam reflected by the corner cube reflector 4 by four times and allows it to pass through the low gain region. This improves laser efficiency by extracting energy from the low-gain region, which has not conventionally been involved in laser output, and also averages the resonator gain related to each beam of laser output light (in the high-gain region). (The center is folded back to the outer edge of the low gain area, and the outer edge of the high gain area is folded back to the inner edge of the low gain area.) Therefore, the output laser light that has passed through the low gain area has a practical level output value over a wider area. becomes.

第3図は、第1実施例のエキシマレーザ装置の放電方向
と直角な幅方向の出力分布を示す。全反射ミラー2の陰
に相当する中央のへこみはあるものの、第2図の従来の
出力分布に比べ低利得領域からの出力が改善されて幅広
い均一性の高いレーザ出力光が得られることがわかる。
FIG. 3 shows the output distribution in the width direction perpendicular to the discharge direction of the excimer laser device of the first embodiment. Although there is a depression in the center corresponding to the shadow of the total reflection mirror 2, it can be seen that the output from the low gain region is improved compared to the conventional output distribution in Figure 2, and a wide range of highly uniform laser output light can be obtained. .

第4図は、本発明の第2実施例であるエキシマレーザ装
置におけるレーザ共振器の概略な構成を示す、ここで、
第1実施例と同様な構成と機能とを有する部材には同一
の符号を付しである。
FIG. 4 shows a schematic configuration of a laser resonator in an excimer laser device according to a second embodiment of the present invention, where:
Members having the same configuration and functions as those in the first embodiment are given the same reference numerals.

第2実施例のコーナキューブ反射鏡4bは、第1実施例
のコーナキューブ反射&R4のようなハーフミラ一部分
を持たず、利得領域をはさんで対向する全反射ミラー2
とハーフミラ−3とでレーザ共振器を構成している。す
なわち、コーナキューブ反射fi4bを折り返し点とし
た高利得領域と低利得領域とが直列に接続されたレーザ
共振器が構成されていて、レーザ共振状態での各光束に
係るゲインが平均化されるために第1実施例と同様に幅
広い均一性の高いレーザ出力光が得られる。
The corner cube reflection mirror 4b of the second embodiment does not have a half mirror portion like the corner cube reflection &R4 of the first embodiment, but has a total reflection mirror 2 facing across the gain region.
and the half mirror 3 constitute a laser resonator. In other words, a laser resonator is configured in which a high gain region and a low gain region are connected in series with the corner cube reflection fi4b as a turning point, and the gains related to each light beam in the laser resonant state are averaged. Similarly to the first embodiment, a wide range of highly uniform laser output light can be obtained.

第2実施例では全反射ミラー2とハーフミラ−3を独立
した別部材としたが、ハーフよラー3の中央部分に全反
射ミラ一部分を一体形成する等して1個の構成部材とす
ることも可能である。
In the second embodiment, the total reflection mirror 2 and the half mirror 3 are made into independent separate members, but they may also be made into one component by integrally forming a part of the total reflection mirror in the central part of the half mirror 3. It is possible.

以上の各実施例は、エタロン等の波長選択素子をレーザ
共振器中に挿入した場合にも、レーザ共振が停止する程
に低利得な領域は従来例のレーザ共振器に比べてごく小
さいから、レーザ出力光の断面積の減少は小さく抑えら
れる。また、レーザ出力光も安定し、高効率な運転が可
能である。
In each of the above embodiments, even when a wavelength selection element such as an etalon is inserted into the laser resonator, the region where the gain is low enough to stop laser resonance is extremely small compared to the conventional laser resonator. The decrease in the cross-sectional area of the laser output light can be kept small. Furthermore, the laser output light is stable and highly efficient operation is possible.

[発明の効果] 本発明に係るレーザ共振器では、従来レーザ出力光に関
与できなかった低利得領域からも有効にエネルギが取り
出されるからレーザ共振器の効率が向上してレーザ出力
も安定する。また、低利得領域からも十分な強度のレー
ザ出力光が得ら、れるから、エタロン等の機能素子をレ
ーザ共振器中に挿入する場合も設計の自由度が増すとと
もに、従来よりも広い断面積を持ちながら断面上の強度
分布の偏りの減少したレーザ出力光を得られる。
[Effects of the Invention] In the laser resonator according to the present invention, energy is effectively extracted even from the low gain region that could not contribute to the laser output light conventionally, so the efficiency of the laser resonator is improved and the laser output is stabilized. In addition, since laser output light of sufficient intensity can be obtained even from the low gain region, the degree of design freedom is increased when inserting functional elements such as etalons into the laser resonator, and the cross-sectional area is wider than before. It is possible to obtain laser output light with reduced bias in the intensity distribution on the cross section while maintaining the same characteristics.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の第1実施例の放電型エキシマレーザ
装置におけるレーザ共振器の概略な構成を示す模式図で
ある。 第2図は、従来の放電型エキシマレーザのレーザ出力光
の幅方向の強度分布を示す線図である。 第3図は、本発明の第1実施例の放電型エキシマレーザ
のレーザ出力光の幅方向の強度分布を示す線図である。 第4図は、本発明の第2実施例の放電型エキシマレーザ
装置におけるレーザ共振器の概略な構成を示す模式図で
ある。 第5図は、従来の放電型エキシマレーザ装置におけるレ
ーザ共振器の概略な構成を示す模式図である。 [主要部分の符号の説明] 1 ・・・放電電極 2・・・全反射ミラー 4・・・コーナキューブ反射鏡 5・・・凹レンズ 6・・・凸レンズ
FIG. 1 is a schematic diagram showing the general configuration of a laser resonator in a discharge type excimer laser device according to a first embodiment of the present invention. FIG. 2 is a diagram showing the intensity distribution in the width direction of laser output light of a conventional discharge type excimer laser. FIG. 3 is a diagram showing the intensity distribution in the width direction of the laser output light of the discharge type excimer laser according to the first embodiment of the present invention. FIG. 4 is a schematic diagram showing the general configuration of a laser resonator in a discharge type excimer laser device according to a second embodiment of the present invention. FIG. 5 is a schematic diagram showing the general configuration of a laser resonator in a conventional discharge type excimer laser device. [Explanation of symbols of main parts] 1...Discharge electrode 2...Total reflection mirror 4...Corner cube reflector 5...Concave lens 6...Convex lens

Claims (1)

【特許請求の範囲】 対向する一対のミラー間を貫く中心軸上の高利得領域と
、高利得領域の外側の低利得領域とを形成する電極対を
有し、前記中心軸上で放電光を共振させるレーザ共振器
において、前記高利得領域のレーザ光を前記低利得領域
に向って折り返す反射手段と、 折り返された前記レーザ光が前記低利得領域を中心軸と
平行に通過するように、折り返された前記レーザ光を分
散させる拡大手段とを有することを特徴とするレーザ共
振器。
[Claims] It has a pair of electrodes forming a high gain region on a central axis passing between a pair of opposing mirrors and a low gain region outside the high gain region, and emits discharge light on the central axis. In the laser resonator for resonating, a reflecting means for folding back the laser light in the high gain region toward the low gain region; a laser resonator, further comprising a magnifying means for dispersing the laser beam.
JP1177096A 1989-07-11 1989-07-11 Laser resonator Pending JPH0342887A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1177096A JPH0342887A (en) 1989-07-11 1989-07-11 Laser resonator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1177096A JPH0342887A (en) 1989-07-11 1989-07-11 Laser resonator

Publications (1)

Publication Number Publication Date
JPH0342887A true JPH0342887A (en) 1991-02-25

Family

ID=16025068

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1177096A Pending JPH0342887A (en) 1989-07-11 1989-07-11 Laser resonator

Country Status (1)

Country Link
JP (1) JPH0342887A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1299407C (en) * 2004-10-22 2007-02-07 清华大学 Cat's eye chamber helium neon laser

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1299407C (en) * 2004-10-22 2007-02-07 清华大学 Cat's eye chamber helium neon laser

Similar Documents

Publication Publication Date Title
US5353297A (en) Gas slab laser with folded resonator structure
JP3265173B2 (en) Solid state laser device
US5271031A (en) High efficiency mode-matched solid-state laser with transverse pumping and cascaded amplifier stages
US4837771A (en) High-efficiency mode-matched solid-state laser with transverse pumping and cascaded amplifier stages
JPWO2019012642A1 (en) Laser system
US5125001A (en) Solid laser device
RU99105608A (en) LASER DEVICE
JP3621623B2 (en) Laser resonator
US3365671A (en) Multiple-pass molecular laser amplifier with masking to prevent oscillations
JPH0342887A (en) Laser resonator
JP2957637B2 (en) Narrow band laser device
JP2961428B2 (en) Narrow-band oscillation excimer laser
JP3591360B2 (en) Laser oscillation device
US6853670B2 (en) Laser resonator
JPH03190178A (en) Gas laser oscillating device
JP2967623B2 (en) Narrow band laser oscillator
JPH0491483A (en) Gas laser oscillator
JPH0212980A (en) Narrow band laser oscillator
RU2092947C1 (en) Gas-flow laser with stable-fluctuating resonator
JP2001015837A (en) Solid state laser oscillator
JP2550693B2 (en) Solid-state laser device
JP3383217B2 (en) Solid state laser device
JP2755217B2 (en) Solid state laser oscillator
JPH0637368A (en) Laser and beam expander
JPH03283685A (en) Unstably resonating laser apparatus