JPS5856465A - Charge transfer device - Google Patents

Charge transfer device

Info

Publication number
JPS5856465A
JPS5856465A JP15568181A JP15568181A JPS5856465A JP S5856465 A JPS5856465 A JP S5856465A JP 15568181 A JP15568181 A JP 15568181A JP 15568181 A JP15568181 A JP 15568181A JP S5856465 A JPS5856465 A JP S5856465A
Authority
JP
Japan
Prior art keywords
charge transfer
charge
gate electrode
output gate
semiconductor substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP15568181A
Other languages
Japanese (ja)
Other versions
JPS6251505B2 (en
Inventor
Kazuo Miwata
三輪田 和雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP15568181A priority Critical patent/JPS5856465A/en
Publication of JPS5856465A publication Critical patent/JPS5856465A/en
Publication of JPS6251505B2 publication Critical patent/JPS6251505B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/762Charge transfer devices
    • H01L29/765Charge-coupled devices
    • H01L29/768Charge-coupled devices with field effect produced by an insulated gate
    • H01L29/76816Output structures

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Solid State Image Pick-Up Elements (AREA)

Abstract

PURPOSE:To improve the charge detecting sensitivity without causing the reduction of the maximum drive frequency by opposing one output gate electrode of two series charge transfer elements and the other output gate electrode. CONSTITUTION:In a charge transfer unit having two charge transfer regions 16, 16', the output gates are opposed to source regions 11'', thereby enabling to reduce the area of the source region 11''. With this system, the capacity of a diffused layer can be reduced without reducing the maximum drive frequency, and the sensitivity of the charge detector can be increased. This can be applied to a CCD in which part or entirety of the detector is a forced channel or further to a BBD, and the charge detecting system is not limited only to an FDA method, but a current outputting method may be employed. The semiconductor substrate is not limited only to P type, but when the polarity of the conductive type is reversely set and the polarity of the voltage is reversed, an N type semiconductor substrate may be employed.

Description

【発明の詳細な説明】 本発明は電荷結合素子(以下CODと呼ぶ)やパケット
°ブリゲート素子(以下BBDと呼ぶ)などの電荷転送
装置に関し、特に2本の電荷転送素子の出力を交互に取
シ出すことができる電荷転送装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a charge transfer device such as a charge coupled device (hereinafter referred to as COD) or a packet bridge gate device (hereinafter referred to as BBD), and particularly relates to a charge transfer device such as a charge coupled device (hereinafter referred to as COD) or a packet bridge gate device (hereinafter referred to as BBD). The present invention relates to a charge transfer device that can be used as a charge transfer device.

従来、CODにおける電荷検出方式の一つにFDA(F
loating Diffusion Amplifi
er)法がある。
Conventionally, one of the charge detection methods in COD is FDA (F
floating Diffusion Amplifier
er) There is a law.

第1図(a) 、 (b)は従来の電荷転送装置の一例
を説明するための平面図およびA−に断面図である。
FIGS. 1(a) and 1(b) are a plan view and a cross-sectional view along line A- for explaining an example of a conventional charge transfer device.

説明の簡単化のため、電荷装置は表面チャネルCODと
し、“半導体基板はP型とし、転送される電荷、即ちキ
ャリアは電子とする0 第1図(a) 、 (b)において、lはP型半導体基
板。
To simplify the explanation, the charge device is assumed to be a surface channel COD, the semiconductor substrate is of P type, and the transferred charges, that is, carriers, are electrons. In Figures 1(a) and (b), l is P. type semiconductor substrate.

2〜5及び7〜10はアルミニワ等の金属で作られた電
極%6は出力ゲート電極、11.13はΔ型頭域、12
はゲート電極であって、N型領域11 、13をソース
領域およびドレイン領域% 12をゲート電極とするN
O8)ランジスタTr1が構成される。
2 to 5 and 7 to 10 are electrodes made of metal such as aluminum wire %6 is an output gate electrode, 11.13 is a Δ type head area, 12
is a gate electrode, where N-type regions 11 and 13 are source and drain regions, and 12 is a gate electrode.
O8) The transistor Tr1 is configured.

ソース領域11は転送されて来る電荷を検出する電荷検
出用領域でもら)%普通は拡散層であるO前記のNO8
)ランジスタTrsと出力ゲート電極とで電荷検出装置
が構成されるn16.16’は電荷転送領域、17は絶
縁膜である。
The source region 11 is a charge detection region for detecting the transferred charges) and is normally a diffusion layer.
) A charge detection device is constituted by the transistor Trs and the output gate electrode.N16 and 16' are charge transfer regions, and 17 is an insulating film.

第2図は第1図(a) 、 (b)に示す電荷転送装置
の動作を説明するためのタイムチャツトチア60時刻t
、において、ダRに「高」レベルを加工MOSトランジ
スタTr1を導通させ、Trsのソース電位VatをT
rlのドレイン電位vDDと同電位に設定する。時刻4
にORは「低」レベルとし、ソース領域11はフローテ
ィング状態となる。この状態の後に5時刻t、において
為を「低」レベルにし、電極5の下に蓄積されていたキ
ャリアを一定電圧Vooが加えられている出力ゲート電
極6の下のチャネルを通しソース領域11に流入させる
。この流入キャリアによるソース領域11の電位変化Δ
V81は、流入キャリアの電荷量をQとし、ソース領域
110基板1に対する寄生容量を情とし、ソース領域1
1に接続されている配線、ゲートなどによる浮遊容量を
へとすると となる。この電位変化を、MOS)ランジスタ14と抵
抗也よシなるソースフォロワ−回路のMOSトランジス
タ14のゲートに加えることにょシ。
FIG. 2 is a time chart for explaining the operation of the charge transfer device shown in FIGS. 1(a) and (b).
, the processed MOS transistor Tr1 is made conductive by applying a "high" level to DaR, and the source potential Vat of Trs is set to T.
Set to the same potential as the drain potential vDD of rl. Time 4
Then, OR is set to a "low" level, and the source region 11 is in a floating state. After this state, at time t, the voltage is set to a "low" level, and the carriers accumulated under the electrode 5 are transferred to the source region 11 through the channel under the output gate electrode 6 to which a constant voltage Voo is applied. Let it flow. Potential change Δ of the source region 11 due to this inflow carrier
V81 is defined as Q, the amount of charge of inflowing carriers, and the parasitic capacitance of the source region 110 to the substrate 1.
If the stray capacitance caused by the wiring, gate, etc. connected to 1 is reduced, then This potential change is applied to the gate of the MOS transistor 14 of the source follower circuit, which includes the MOS transistor 14 and a resistor.

出力信号はVovt端子15よ)取シ出される。ここで
、このソース7オロワー回路の電圧利得をGとすれば一
取シ出される正味の信号出力ΔVOuT 紘となる。
The output signal is taken out from the Vovt terminal 15). Here, if the voltage gain of this source 7 subordinate circuit is G, then the net signal output ΔVOut is obtained.

これよシ、この電荷検出装置の感度を上けるためには、
すなわち、ある一定の流入電荷量Qに対してよシ大きな
信号出力を得るためにはc、+c。
In order to increase the sensitivity of this charge detection device,
That is, in order to obtain a larger signal output for a certain amount of inflow charge Q, c, +c.

を小さくし、Gを大きくすればよいことがわかる。It can be seen that it is best to make G smaller and G larger.

ところがGはソース7オロワー回路の特性上1以上大き
くすることはできない。そのため%CI−)−C。
However, G cannot be increased by more than 1 due to the characteristics of the source 7 subordinate circuit. Therefore %CI-)-C.

を小さくすることが行なわれている。efforts are being made to make it smaller.

第3図は従来の電荷検出装置の他の例の平面図である。FIG. 3 is a plan view of another example of the conventional charge detection device.

ソース領域11’の面積を小さくして情を小さくし、以
ってC,+C,の値を小さくすることによシ。
This can be achieved by reducing the area of the source region 11' to reduce the density, thereby reducing the value of C, +C.

電荷検出装置の感度を上げているoしかし、この例にお
いては、電極5または電極7下に蓄積されていたキャリ
アが、一定電圧Voaが加えられている出力ゲート電極
6下のチャネルを通シソース領域11’に流入する時、
図に斜線で示す部分Bに流入して米たキャリアはソース
領域11′に向かって電極6の下の長いチャネルを通過
せねばならない。
However, in this example, the carriers accumulated under the electrode 5 or the electrode 7 pass through the channel under the output gate electrode 6 to which a constant voltage Voa is applied to the source region. When flowing into 11',
The rice carriers flowing into the shaded area B in the figure must pass through a long channel under the electrode 6 toward the source region 11'.

そのため、電極5または電極7下に蓄積されていタキャ
リアがすべてソース領域11′に流入するまでの時間、
すなわち信号電荷によるソース領域1fの電位変化が完
了するまでの時間が長くなってしまう。この時間の増加
は電荷検出装置の最高駆動周波数を低減させるという欠
点があった。
Therefore, the time required for all the carriers accumulated under the electrode 5 or the electrode 7 to flow into the source region 11' is
In other words, it takes a long time to complete the potential change of the source region 1f due to the signal charge. This increase in time has the disadvantage of reducing the maximum driving frequency of the charge detection device.

本発明は上記欠点を除去し、最高駆動周波数の低減を起
こすことなく電荷検出感度を改善した電荷転送装置を提
供するものである。
The present invention eliminates the above drawbacks and provides a charge transfer device that improves charge detection sensitivity without reducing the maximum drive frequency.

本発明め電荷転送装置は、半導体基板表面に絶縁膜を介
して設けられ九二系列の電荷転送素子と、前記絶縁膜を
介して設けられた出力ゲート電極と前記出力ゲート電極
の直下部と少くとも隣接しかつ前記半導体基板と反対導
電型の二つの領域と前記二つの領域の間に絶縁膜を介し
てまたがるゲート電極とを含む電荷検出装置とを含み、
前記二基列の電荷転送素子の出力を交互に取出す方式の
電荷転送装置において、前記二基列の電荷転送素子の一
方の出力ゲート電極と他方の出力ゲート電極とを向い合
わせることにより構成される0次に1本発明の実施例に
ついて図面を用いて説明する。
The charge transfer device of the present invention includes a 92-series charge transfer element provided on the surface of a semiconductor substrate via an insulating film, an output gate electrode provided via the insulating film, and a portion immediately below the output gate electrode. a charge detection device including two regions that are adjacent to each other and have a conductivity type opposite to that of the semiconductor substrate, and a gate electrode that extends between the two regions with an insulating film interposed therebetween;
In the charge transfer device of a type in which the outputs of the two rows of charge transfer elements are taken out alternately, the charge transfer device is configured by facing one output gate electrode of the two rows of charge transfer elements and the other output gate electrode. Next, embodiments of the present invention will be described with reference to the drawings.

第4図は本発明の一実施例の平面図である。FIG. 4 is a plan view of one embodiment of the present invention.

2本の電荷転送領域16と16′を有する電荷転送装置
において、それぞれの出力ゲートをソース領域11″に
対して向かい合わせる形に形成することによシ、ソース
領域11“の面積を小さくすることができる。この方式
をとれば、第3図を用いて減 説明したような最高駆動周波数の低減を起こすことなく
拡散層の容量を低下せしめ、電荷検出装置の感度を増大
せしめることができる0 以上の説明は表面チャネルCODについて行なったが1
本発明は装置の一部あるいは全ての部分が押込チャネル
であるようなCOD、更にはBBDに適用できる。電荷
検出方式もPDA法に限定されず1例えば電流出力法(
Current 0utpnt法)でもよい。また半導
体基板もP型に限らず、導電型の極性を逆にし、電位の
正負を逆にすればN型半導体基板でもよい。
In a charge transfer device having two charge transfer regions 16 and 16', each output gate is formed to face the source region 11'', thereby reducing the area of the source region 11''. I can do it. If this method is adopted, the capacitance of the diffusion layer can be reduced without causing a reduction in the maximum driving frequency as explained using FIG. 3, and the sensitivity of the charge detection device can be increased. I conducted this on the surface channel COD.
The invention is applicable to CODs and even BBDs where part or all of the device is a forced channel. The charge detection method is not limited to the PDA method; for example, the current output method (
Current 0outpnt method) may also be used. Further, the semiconductor substrate is not limited to the P type, but may be an N type semiconductor substrate by reversing the polarity of the conductivity type and reversing the sign of the potential.

以上詳細に説明したように1本発明によれば最高駆動周
波数の低減を起すことなく電荷検出感度を改善した電荷
転送装置が得られるのでその効果は大きい。
As described in detail above, according to the present invention, a charge transfer device with improved charge detection sensitivity without reducing the maximum drive frequency can be obtained, and the effect is significant.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a) 、 (b)は従来の電荷転送装置の一例
の平面図および断面図、第2図は第1図に示す電荷転送
装置の動作を説明するためのタイムチャート。 第3図は従来の電荷転送装置の他の例の平面図。 第4図は本発明の一実施例の平面図である。 1・−・・−P型半導体基板、2.3.4.5,7.8
.9゜10.3’ 、4’ 、5’ 、7’ 、8’ 
、9’−一転送電極、6・・・・・・出力ゲート電極、
11.11’、11“−−−−−−N型ソース領域% 
12・・・・・・ゲート電極、13・・−・・・へ型ド
レイン領域、  14・・・・・・MO8ト5ンジスタ
、15・・・・・・出力端子、16.16’・・・・−
・電荷転送領域、17・・・・・・絶縁膜。 (り 多rシイ ′し81 謬2図
1A and 1B are a plan view and a sectional view of an example of a conventional charge transfer device, and FIG. 2 is a time chart for explaining the operation of the charge transfer device shown in FIG. FIG. 3 is a plan view of another example of a conventional charge transfer device. FIG. 4 is a plan view of one embodiment of the present invention. 1.--P-type semiconductor substrate, 2.3.4.5, 7.8
.. 9゜10.3', 4', 5', 7', 8'
, 9'-one transfer electrode, 6...output gate electrode,
11.11', 11"---N-type source region%
12...Gate electrode, 13...H-shaped drain region, 14...MO8 transistor, 15...Output terminal, 16.16'...・・−
- Charge transfer region, 17...Insulating film. (Rita rshii 'shi 81 False 2 figure

Claims (1)

【特許請求の範囲】[Claims] 半導体基板表面に絶縁膜を介して設けられた二基列の電
荷転送素子と、前記絶縁膜を介して設けられた出力ゲー
ト電極と前記出力ゲート電極の直下部と少くとも隣接し
かつ前記半導体基板と反対導電型の二つの領域と前記二
つの領域9間に絶縁膜を介してまたがるゲート電極とを
含む電荷検出装置とを含み、前記二基列の電荷転送素子
の出力を交互に取出す方式の電荷転送装置において、前
記二基列の電荷転送素子の一方の出力ゲート電極と他方
の出力ゲート電極とを向い合わせることを特徴とする電
荷転送装置。
two rows of charge transfer elements provided on the surface of a semiconductor substrate with an insulating film interposed therebetween; an output gate electrode provided with the insulating film interposed therebetween; and at least immediately below and adjacent to the output gate electrode and the semiconductor substrate. and a charge detection device including two regions of opposite conductivity type and a gate electrode extending between the two regions 9 with an insulating film interposed therebetween, and alternately extracting the outputs of the two rows of charge transfer elements. A charge transfer device, wherein one output gate electrode and the other output gate electrode of the two rows of charge transfer elements face each other.
JP15568181A 1981-09-30 1981-09-30 Charge transfer device Granted JPS5856465A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15568181A JPS5856465A (en) 1981-09-30 1981-09-30 Charge transfer device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15568181A JPS5856465A (en) 1981-09-30 1981-09-30 Charge transfer device

Publications (2)

Publication Number Publication Date
JPS5856465A true JPS5856465A (en) 1983-04-04
JPS6251505B2 JPS6251505B2 (en) 1987-10-30

Family

ID=15611238

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15568181A Granted JPS5856465A (en) 1981-09-30 1981-09-30 Charge transfer device

Country Status (1)

Country Link
JP (1) JPS5856465A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60189966A (en) * 1984-03-12 1985-09-27 Matsushita Electronics Corp Charge transfer device and driving method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60189966A (en) * 1984-03-12 1985-09-27 Matsushita Electronics Corp Charge transfer device and driving method thereof

Also Published As

Publication number Publication date
JPS6251505B2 (en) 1987-10-30

Similar Documents

Publication Publication Date Title
JPH01166561A (en) Charge transfer device
US4163239A (en) Second level phase lines for CCD line imager
JPH0322055B2 (en)
JPS5856465A (en) Charge transfer device
JPS61198676A (en) Semiconductor integrated circuit device
US4280067A (en) Semiconductor charge transfer device having a decoupling gate for stopping reverse charge flow
JPH07106553A (en) Solid state image pickup element
JPH04373136A (en) Charge coupled device
JPH04148536A (en) Charge-transfer amplification device
JPS60132367A (en) Charge transfer device
JP3060649B2 (en) Semiconductor device and driving method thereof
JP2963572B2 (en) Charge-coupled device
JP3263197B2 (en) Charge-coupled device
US6366322B1 (en) Horizontal charge coupled device of CCD image sensor
JPH04133336A (en) Charge transfer device
EP0409245A2 (en) Charge transfer device provided with improved output structure
JPS6138624B2 (en)
JP2877183B2 (en) Charge transfer device
JP2723054B2 (en) Charge transfer element
US6191440B1 (en) Charge transfer device with improved charge detection sensitivity
JPS603717B2 (en) charge transfer device
JPS60241265A (en) Charge coupled device
JPH06101485B2 (en) Charge transfer device
JPS61187367A (en) Output circuit of charge coupled device
JPS6213827B2 (en)