JPS5856415B2 - Phase demodulation circuit for ultrasonic detection type vortex flowmeter - Google Patents

Phase demodulation circuit for ultrasonic detection type vortex flowmeter

Info

Publication number
JPS5856415B2
JPS5856415B2 JP53131375A JP13137578A JPS5856415B2 JP S5856415 B2 JPS5856415 B2 JP S5856415B2 JP 53131375 A JP53131375 A JP 53131375A JP 13137578 A JP13137578 A JP 13137578A JP S5856415 B2 JPS5856415 B2 JP S5856415B2
Authority
JP
Japan
Prior art keywords
phase
ultrasonic
circuit
frequency
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53131375A
Other languages
Japanese (ja)
Other versions
JPS5557109A (en
Inventor
俊一 和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP53131375A priority Critical patent/JPS5856415B2/en
Publication of JPS5557109A publication Critical patent/JPS5557109A/en
Publication of JPS5856415B2 publication Critical patent/JPS5856415B2/en
Expired legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/05Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects
    • G01F1/20Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by detection of dynamic effects of the flow
    • G01F1/32Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by detection of dynamic effects of the flow using swirl flowmeters
    • G01F1/325Means for detecting quantities used as proxy variables for swirl
    • G01F1/3282Means for detecting quantities used as proxy variables for swirl for detecting variations in infrasonic, sonic or ultrasonic waves, due to modulation by passing through the swirling fluid

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices Characterised By Use Of Acoustic Means (AREA)

Description

【発明の詳細な説明】 本発明は超音波検出方式の渦流量計に於ける位相復調回
路に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a phase demodulation circuit in an ultrasonic detection type vortex flow meter.

従来の渦流量計の位相復調回路を第1図に従って説明す
る。
A conventional phase demodulation circuit for a vortex flowmeter will be explained with reference to FIG.

図において、1は渦発生体2を有する流量計、3は発生
したカルマン渦、4は超音波発信子、5は超音波受信子
、6は招音波発振回路、Iは電圧制御位相偏移回路、8
は波形整形回路、9は位相比較器、10はループフィル
タ、11はローパスフィルタである。
In the figure, 1 is a flowmeter having a vortex generator 2, 3 is a generated Karman vortex, 4 is an ultrasonic transmitter, 5 is an ultrasonic receiver, 6 is an induced sound oscillation circuit, and I is a voltage-controlled phase shift circuit. , 8
9 is a waveform shaping circuit, 9 is a phase comparator, 10 is a loop filter, and 11 is a low-pass filter.

上記の様に構成された位相復調回路において、超音波発
振子4から発振された超音波は、カルマン渦3のカルマ
ン渦列により位相変調され超音波受信子5により受信さ
れる。
In the phase demodulation circuit configured as described above, the ultrasonic wave emitted from the ultrasonic oscillator 4 is phase-modulated by the Karman vortex street of the Karman vortex 3 and is received by the ultrasonic receiver 5.

受信波は、波形整形回路8により波形整形される。The received wave is waveform-shaped by a waveform shaping circuit 8.

なお、位相比較器9・超音波発振回路6・電圧制御位相
偏移回路7・ループフィルタ10により位相同期ループ
を構成している。
The phase comparator 9, the ultrasonic oscillation circuit 6, the voltage-controlled phase shift circuit 7, and the loop filter 10 constitute a phase-locked loop.

また、電圧制御位相偏移回路7は、超音波発振周波数信
号の高い周波数安定性をそのまま維持して位相偏移角の
みを制御するものである。
Further, the voltage-controlled phase shift circuit 7 controls only the phase shift angle while maintaining the high frequency stability of the ultrasonic oscillation frequency signal.

上記の様に構成された位相同期ループにおけるループフ
ィルタ10の特性を渦3による位相変調信号の変調角周
波数に十分高速に追随出来るように設定するものとする
It is assumed that the characteristics of the loop filter 10 in the phase-locked loop configured as described above are set so as to be able to follow the modulation angular frequency of the phase modulated signal by the vortex 3 at a sufficiently high speed.

この場合、ループフィルタ10の出力(以下出力1と記
す)は、電圧制御位相偏移回路7の出力を、超音波受信
信号に同期させる様に変化する。
In this case, the output of the loop filter 10 (hereinafter referred to as output 1) changes so as to synchronize the output of the voltage controlled phase shift circuit 7 with the ultrasonic reception signal.

つまり出力1は、そのまま位相復調出力となる。In other words, output 1 becomes the phase demodulation output as it is.

位相開明ループの位相同期角は、位相比較器9及びルー
プフィルタ10の特性により決定される。
The phase synchronization angle of the phase open loop is determined by the characteristics of the phase comparator 9 and the loop filter 10.

近年IC化された位相比較器9を用いると、O2π/2
.π等の位相同期角が簡単に実現出来る。
When using the phase comparator 9, which has been integrated into an IC in recent years, O2π/2
.. A phase synchronization angle such as π can be easily realized.

ところが、上記の様に構成された位相復調回路において
は、流体の温度変化によって犬、きく音速が変化した場
合に、受信された超音波が大きく位相偏移することにな
り、電圧制御位相偏移回路7の位相偏移量は2πをはる
かに越えた広角度位相偏移が要求され、回路が複雑にな
る欠点があった。
However, in the phase demodulation circuit configured as described above, if the speed of sound changes due to a change in the temperature of the fluid, the received ultrasonic wave will undergo a large phase shift, and the voltage-controlled phase shift The phase shift amount of the circuit 7 is required to have a wide angle phase shift far exceeding 2π, which has the disadvantage of complicating the circuit.

また、次にループフィルタ10の設定を、うすによる位
相変調信号の変調角周波数に追随出来ないように、時定
数の大きい値に設定した場合には、電圧制御位相偏移回
路7の出力信号が、超音波受倍信号の平均位相および平
均周波数に開明し、かつ周波数安定性の高い信号が得ら
れる。
Furthermore, if the loop filter 10 is then set to a large time constant so that it cannot follow the modulation angular frequency of the phase modulation signal due to thinning, the output signal of the voltage controlled phase shift circuit 7 , the average phase and average frequency of the ultrasonic multiplied signal can be determined, and a signal with high frequency stability can be obtained.

第2図は第1図に用いる位相比較器901例であり、エ
クスクル−シブオアー回路9で構成されている。
FIG. 2 shows an example of the phase comparator 901 used in FIG. 1, and is composed of an exclusive OR circuit 9.

ここで、キャリアフィルタの為のローパスフィルタ11
におげろ入力の位相差に対する復調出力特性を第3図に
示す。
Here, the low-pass filter 11 for the carrier filter
FIG. 3 shows the demodulated output characteristics with respect to the phase difference of the input.

上記のエクスクル−シブオアー回路91を用い、ループ
フィルタ10の設定により、平均の位相差か丁となる様
に位相同期ループを構成すれば、出力2には位相復調出
力が得られ、微小な位相偏移に対しても大きな復調感度
が得られる。
If the above exclusive OR circuit 91 is used and the loop filter 10 is set to form a phase-locked loop so that the average phase difference is equal to or smaller than the average phase difference, a phase demodulated output can be obtained at output 2, and a minute phase deviation can be obtained. Great demodulation sensitivity can be obtained even with respect to shifts.

ところが、この場合に前述の電圧制御位相偏移回路7の
位相偏移角は、超音波の発信子と受信子間の平均的な位
相偏移に相当する部分のみを補償する様に位相同期ルー
プが組まれているので、変調角周波数が高い位相変調の
復調には、エクスクル−シブオアー回路91の特性によ
り、Oからπラジアンまでの位相変調のみしか、直線性
よく復調する事が出来ない欠点があった。
However, in this case, the phase shift angle of the voltage controlled phase shift circuit 7 described above is changed to a phase locked loop so that only the portion corresponding to the average phase shift between the ultrasonic transmitter and the receiver is compensated. , the demodulation of phase modulation with a high modulation angular frequency has the drawback that only phase modulation from O to π radians can be demodulated with good linearity due to the characteristics of the exclusive OR circuit 91. there were.

麩に、第4図は、前述の位相比較器9の他の例で、92
はエッヂトリガー型のセット・リセットクリップ・フロ
ップ回路である。
Furthermore, FIG. 4 shows another example of the phase comparator 9 described above.
is an edge-triggered set-reset clip-flop circuit.

ここで、ローパスフィルタ11における入力の位相差に
対する復調出力特性を第5図に示す。
Here, the demodulated output characteristics with respect to the phase difference of the input in the low-pass filter 11 are shown in FIG.

上記のセットリセットフリップフロップ回路92を用い
てループフィルタ10の設定により、平均の位相差がπ
となる様に位相同期ループを構成したとしても、直線性
よく復調出来るのは0から2πラジアンまでである。
By setting the loop filter 10 using the set-reset flip-flop circuit 92 described above, the average phase difference is set to π.
Even if a phase-locked loop is configured so that

つまり、セットリセットフリップフロップ回路92の出
力は、位相差2πの周期函数である。
In other words, the output of the set-reset flip-flop circuit 92 is a periodic function with a phase difference of 2π.

この為に、超音波検出方式渦流量計の様に、超音波発振
周波数と、超音波送信子と受信子間の対向距離との選択
によっては2πを超える広角度位相変調が起こりうる様
な場合には、これを越える範囲の位相復調が困難で、且
つ回路が複雑となる欠点があった。
For this reason, in cases such as ultrasonic detection type vortex flow meters, wide angle phase modulation exceeding 2π may occur depending on the selection of the ultrasonic oscillation frequency and the facing distance between the ultrasonic transmitter and receiver. However, it is difficult to demodulate the phase beyond this range, and the circuit is complicated.

この発明は上記の欠点を除去しようとするもので、電圧
制御位相偏移回路の位相偏移角を低減させると共に広角
度位相復調が可能となる超音波検出方式渦流量計の位相
復調回路を提供するものである。
The present invention aims to eliminate the above-mentioned drawbacks, and provides a phase demodulation circuit for an ultrasonic detection type vortex flowmeter that reduces the phase shift angle of a voltage-controlled phase shift circuit and enables wide-angle phase demodulation. It is something to do.

以下この発明の一実施例を第6図で説明する。An embodiment of the present invention will be described below with reference to FIG.

図において、12と13はそれぞれ第1.第2の周波数
分周器で、その分周比をNとする。
In the figure, 12 and 13 are the first . The frequency division ratio of the second frequency divider is N.

なお、位相同期ループは、分周された周波数信号により
構成されている。
Note that the phase-locked loop is constituted by a frequency-divided frequency signal.

また、その他の符号の説明は従来のものと同様につき省
略する。
Furthermore, explanations of other symbols are omitted as they are the same as those of the prior art.

上記のように構成されたものにおいて、超音波発振周波
数信号は、第2の分局器13により分周されて電圧制御
位相偏移回路7に入力され、超音波受信信号は第1の分
局器12により分周されて位相比較器9に入力される。
In the configuration as described above, the ultrasonic oscillation frequency signal is frequency-divided by the second divider 13 and inputted to the voltage controlled phase shift circuit 7, and the ultrasonic reception signal is input to the first divider 12. The frequency is divided by and input to the phase comparator 9.

ここで、従来回路の第1図で出力1から位相復調出力を
取り出す場合について説明した様に、高速の位相同期ル
ープを構成した場合について説明する。
Here, a case will be described in which a high-speed phase-locked loop is constructed, as described in the case of extracting the phase demodulated output from output 1 in FIG. 1 of the conventional circuit.

この場合、電圧制御位相偏移回路7は、超音波発振周波
数のN分の1分周器号が人力される為に、電圧制御位相
偏移回路7での位相偏移角は1/Nに低減される。
In this case, the voltage-controlled phase-shift circuit 7 has a 1/N divider number of the ultrasonic oscillation frequency, so the phase shift angle in the voltage-controlled phase-shift circuit 7 is 1/N. Reduced.

次に、従来回路の第1図で出力2から位相復調出力を取
り出す場合について説明した様に、時定数の大きい位相
同期ループを構成した場合について説明する。
Next, a case will be described in which a phase-locked loop with a large time constant is constructed, as described in the case of extracting the phase demodulated output from the output 2 in FIG. 1 of the conventional circuit.

この場合、N分の1に分周された周波数信号が、位相比
較器9に人力される。
In this case, the frequency signal whose frequency has been divided by N is input to the phase comparator 9 .

N分の1分周波どうしの位相差は、基本周波数での位相
差に換算するとN倍となる為に、直線性よく位相復調さ
れる位相範囲がN倍に拡大された事になる。
Since the phase difference between the 1/N frequency divided waves is N times larger when converted to the phase difference at the fundamental frequency, the phase range in which the phase is demodulated with good linearity is expanded by N times.

なお、上記実施例では、本発明を超音波検出方式渦流量
計の位相復調回路に応用する場合について述べたが、そ
の他の超音波を用いた位相変調測定装置の復調に用いら
れる事は言うまでもない。
In the above embodiment, the present invention is applied to a phase demodulation circuit of an ultrasonic detection type vortex flowmeter, but it goes without saying that the present invention can also be used for demodulation of other phase modulation measurement devices using ultrasonic waves. .

以上のように本発明は、分局器、電圧制御位相偏移回路
を含めて位相同期ループを構成すると云う簡単な構成で
、広角度位相復調回路を実現でき、さらには、電圧制御
位相偏移回路の位相偏移量を低減できる効果がある。
As described above, the present invention can realize a wide-angle phase demodulation circuit with a simple configuration of configuring a phase-locked loop including a divider and a voltage-controlled phase shift circuit. This has the effect of reducing the amount of phase shift.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の渦流量計の復調回路図、第2図は第1図
の位相比較器の1例を示す回路図、第3図は第2図に示
した位相比較器を用いた場合のローパスフィルタ11に
おける人出力特性図、第4図は第1図の位相比較器の他
の例を示す回路図、第5図は第4図に示した位相比較器
を用いた場合ノロ−バスフィルタ11における人出力特
性図、第6図は本発明の一実施例を示す回路図である。 図において、6は超音波発振回路、7は電圧制御位相偏
移回路、9は位相比較器、10はループフィルタ、11
はローパスフィルタ、12は第10分周器、13は第2
の分周器である。 なお各図中、同一符号は同一、 又は相当部分を示す。
Figure 1 is a demodulation circuit diagram of a conventional vortex flowmeter, Figure 2 is a circuit diagram showing an example of the phase comparator shown in Figure 1, and Figure 3 is a case where the phase comparator shown in Figure 2 is used. FIG. 4 is a circuit diagram showing another example of the phase comparator shown in FIG. 1, and FIG. FIG. 6, which is a human output characteristic diagram of the filter 11, is a circuit diagram showing an embodiment of the present invention. In the figure, 6 is an ultrasonic oscillation circuit, 7 is a voltage controlled phase shift circuit, 9 is a phase comparator, 10 is a loop filter, 11
is a low-pass filter, 12 is a tenth frequency divider, and 13 is a second frequency divider.
is a frequency divider. In each figure, the same reference numerals indicate the same or equivalent parts.

Claims (1)

【特許請求の範囲】[Claims] 1 流体中に配設された渦発生体、この渦発生体の下流
側に発生するカルマン渦列の流れを横切って超音波を伝
播させるように設けられた超音波発信子、この超音波発
信子を励振させる超音波発振回路、上記カルマン渦によ
って位相変調された超音波を受信する超音波受信子、こ
の超音波受信子の受信信号を分周する為の第10分周器
、この第10分周器の信号を一方の人力とする位相比較
器、この位相比較器の出力の不要周波数成分を除去する
ループフィルタ、上記発振回路の出力信号を分周する為
の第2の分周器、及びこの第20分周器の出力信号から
の位相偏移角が上記ループフィルタの出力電圧に対応し
て制御される出力信号を発生するとともに、この出力が
上記位相比較器の他方の入力となる電圧制御位相偏移回
路を備えた事を特徴とする超音波検出方式渦流量計の位
相復調回路。
1. A vortex generator disposed in a fluid, an ultrasonic transmitter provided to propagate ultrasonic waves across the flow of the Karman vortex street generated on the downstream side of the vortex generator, and this ultrasonic transmitter. an ultrasonic oscillation circuit that excites the ultrasonic wave, an ultrasonic receiver that receives the ultrasonic wave phase-modulated by the Karman vortex, a tenth frequency divider for dividing the frequency of the received signal of this ultrasonic receiver, and this tenth frequency divider. a phase comparator that uses a signal from a frequency converter as one input; a loop filter that removes unnecessary frequency components from the output of the phase comparator; a second frequency divider that divides the output signal of the oscillation circuit; The phase deviation angle from the output signal of this 20th frequency divider generates an output signal controlled in accordance with the output voltage of the loop filter, and this output is a voltage that becomes the other input of the phase comparator. A phase demodulation circuit for an ultrasonic detection type vortex flow meter characterized by being equipped with a controlled phase shift circuit.
JP53131375A 1978-10-24 1978-10-24 Phase demodulation circuit for ultrasonic detection type vortex flowmeter Expired JPS5856415B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP53131375A JPS5856415B2 (en) 1978-10-24 1978-10-24 Phase demodulation circuit for ultrasonic detection type vortex flowmeter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP53131375A JPS5856415B2 (en) 1978-10-24 1978-10-24 Phase demodulation circuit for ultrasonic detection type vortex flowmeter

Publications (2)

Publication Number Publication Date
JPS5557109A JPS5557109A (en) 1980-04-26
JPS5856415B2 true JPS5856415B2 (en) 1983-12-14

Family

ID=15056462

Family Applications (1)

Application Number Title Priority Date Filing Date
JP53131375A Expired JPS5856415B2 (en) 1978-10-24 1978-10-24 Phase demodulation circuit for ultrasonic detection type vortex flowmeter

Country Status (1)

Country Link
JP (1) JPS5856415B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59135423U (en) * 1983-02-28 1984-09-10 株式会社クボタ Ultrasonic detection type Karman vortex current meter
JPS59161033U (en) * 1983-04-12 1984-10-29 オ−バル機器工業株式会社 Flow rate or velocity measuring device

Also Published As

Publication number Publication date
JPS5557109A (en) 1980-04-26

Similar Documents

Publication Publication Date Title
EP0515074B1 (en) Frequency controlled oscillator for high frequency phase-locked loop
US4507617A (en) Carrier recovery circuit for a PSK modulated signal
US4682118A (en) Phase shift keying and phase modulation transmission system
JP2003060720A (en) Instrument for measuring jitter
US4656431A (en) Digital frequency discriminator
JPS5856415B2 (en) Phase demodulation circuit for ultrasonic detection type vortex flowmeter
US5450032A (en) FSK data demodulator using mixing of quadrature baseband signals
JPH04260239A (en) Timing extracting circuit
US6169774B1 (en) Phase comparator for determining in which direction the phase of a signal changes on the basis of a rotary vector
JP3368936B2 (en) Direct conversion FSK receiver
JP2516250B2 (en) 90 degree phase shifter
JPH04297150A (en) Digital modulation system for spread spectrum communication
JPS61142842A (en) Carrier wave lead-in auxiliary system
JP2000004121A (en) Oscillation modulating circuit
JP2829548B2 (en) Local signal generation circuit
JPH0263350A (en) Psk demodulation circuit
JPS61296822A (en) Lead phase detector
JPH09135167A (en) Phase locked loop circuit device
JPH10271172A (en) Frequency discrimination circuit
RU2076458C1 (en) Signal demodulator with frequency-shift keying
JP2743635B2 (en) Signal receiver
JPS62149225A (en) Fsk demodulator
JP2003084857A (en) Clock signal transmitting method, clock signal transmitting and receiving device, and image display applied apparatus
JPS5950141B2 (en) phase locked loop circuit
JPH02243011A (en) Afc circuit