JPS5855663A - Air conditioner for room - Google Patents

Air conditioner for room

Info

Publication number
JPS5855663A
JPS5855663A JP15386981A JP15386981A JPS5855663A JP S5855663 A JPS5855663 A JP S5855663A JP 15386981 A JP15386981 A JP 15386981A JP 15386981 A JP15386981 A JP 15386981A JP S5855663 A JPS5855663 A JP S5855663A
Authority
JP
Japan
Prior art keywords
heat exchanger
refrigerant
cooling
outdoor heat
tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15386981A
Other languages
Japanese (ja)
Inventor
昌寛 竹林
啓夫 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP15386981A priority Critical patent/JPS5855663A/en
Publication of JPS5855663A publication Critical patent/JPS5855663A/en
Pending legal-status Critical Current

Links

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明はルームエアコンに係り、特に低負荷冷房運転の
安定化を志向した、容量制御可能な圧縮機を備えたルー
ムエアコンに関するもの÷ある。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a room air conditioner, and more particularly to a room air conditioner equipped with a compressor whose capacity can be controlled and aimed at stabilizing low-load cooling operation.

まず、従来の、容量制御可能な圧縮機を備えたルームエ
アコンの一例として、容量制御可能な圧縮機を備えだヒ
ートポンプ式ルームエアコンについて説明する。
First, a heat pump type room air conditioner equipped with a capacity controllable compressor will be described as an example of a conventional room air conditioner equipped with a capacity controllable compressor.

第1図は、容量制御可能な圧縮機を備えたヒートポンプ
式ルームエアコンのサイクル構成図、第一2図は、第1
図における室外熱交換器の詳細と、冷房時に、その内部
を流れる冷媒の状態を併せて示す部分拡大断面図である
Figure 1 is a cycle configuration diagram of a heat pump room air conditioner equipped with a compressor that can control the capacity.
FIG. 3 is a partially enlarged sectional view showing details of the outdoor heat exchanger in the figure and the state of refrigerant flowing inside the outdoor heat exchanger during cooling.

第1図において、1は容量制御可能な圧縮機(以下、単
に圧縮機という)、2は四方弁、3は室内熱交換器、4
は逆止弁、5は暖房用キャピラリチューブ、6は室外熱
交換器(詳細後述)、7は逆上弁、8は冷房用キャピラ
リチューブ、9は、室外熱交換器用配管(A)、10は
、室外熱交換器用配管(B)である。
In Fig. 1, 1 is a capacity controllable compressor (hereinafter simply referred to as a compressor), 2 is a four-way valve, 3 is an indoor heat exchanger, and 4
5 is a check valve, 5 is a capillary tube for heating, 6 is an outdoor heat exchanger (details will be described later), 7 is a reverse valve, 8 is a capillary tube for cooling, 9 is outdoor heat exchanger piping (A), 10 is , outdoor heat exchanger piping (B).

前記室外熱交換器6を、第2図を使用して、詳細に説明
すると、11は、熱交換器本体に係るチューブ、11a
は、チューブ11の下部に設けられ、室外熱交換器用配
管(A)9に接続された冷房時冷媒入口、11bは、チ
ューブ11の上部に設けられ、室外熱交換器用配管(B
)10に接続された冷房時冷媒出口、12は、チューブ
11に取付けられたフィンである。
The outdoor heat exchanger 6 will be described in detail using FIG. 2. 11 is a tube related to the heat exchanger body, 11a
is provided at the lower part of the tube 11 and is connected to the outdoor heat exchanger piping (A) 9, and 11b is the cooling refrigerant inlet provided at the upper part of the tube 11 and connected to the outdoor heat exchanger piping (B).
) A cooling refrigerant outlet connected to 10 and 12 are fins attached to the tube 11.

そして、実線矢印は暖房時の冷媒流れ方向を、破線矢印
は冷房時及び除霜時の流れ方向を示している。
The solid line arrows indicate the flow direction of the refrigerant during heating, and the broken line arrows indicate the flow direction during cooling and defrosting.

暖房時は、圧縮機1から吐出された高温高圧ガス冷媒は
、四方弁2を通シ室内熱交換器3に送られ、ここで室内
空気に放熱して液冷媒となって逆止弁4を通シ暖房用キ
ャピラリチューブ5に送られる。キャピラリチューブ5
によって減圧された冷媒は、室外熱交換器6において外
気によって加熱され、ガス冷媒となって四方弁2を通シ
再び圧縮機1に吸込まれサイクルを一循する。
During heating, the high-temperature, high-pressure gas refrigerant discharged from the compressor 1 passes through the four-way valve 2 and is sent to the indoor heat exchanger 3, where it radiates heat to the indoor air and becomes liquid refrigerant, which passes through the check valve 4. It is sent to the capillary tube 5 for continuous heating. capillary tube 5
The refrigerant whose pressure has been reduced is heated by outside air in the outdoor heat exchanger 6, becomes a gas refrigerant, passes through the four-way valve 2, is sucked into the compressor 1 again, and goes through the cycle.

冷房時は、四方弁2を切シ換えて、圧縮機1から吐出さ
れた高温高圧ガス冷媒は、室外熱交換器6に送られ外気
に放熱し凝縮して液冷媒となる。
During cooling, the four-way valve 2 is switched, and the high-temperature, high-pressure gas refrigerant discharged from the compressor 1 is sent to the outdoor heat exchanger 6, radiates heat to the outside air, and condenses to become liquid refrigerant.

この液冷媒は、逆止弁7を通シ冷房用キャピラリチュー
ブ8に送られ減圧されて、室内熱交換器3において室内
空気を冷却しながら蒸発してガス冷媒となって、四方弁
2を通シ再び圧縮機1に吸込まれサイクルを一循する。
This liquid refrigerant is sent to the cooling capillary tube 8 through the check valve 7, is depressurized, and evaporates while cooling the indoor air in the indoor heat exchanger 3, becoming a gas refrigerant, and passing through the four-way valve 2. The air is sucked into the compressor 1 again and goes through the cycle.

除霜時は、暖房運転から四方弁2を切り換えて、前記し
た冷房時と同様のサイクルとなる。
During defrosting, the four-way valve 2 is switched from heating operation to the same cycle as during cooling described above.

冷房時、室外熱交換器6における冷媒の流れを。The flow of refrigerant in the outdoor heat exchanger 6 during cooling.

第2図を使用して説明すると、次の通シである。The following is an explanation using FIG. 2.

この第2図において破線矢印は、前記第1図におけると
同様に冷房時の冷媒流れ方向を示し、ハツチングを施し
た部分は、チューブ11内の液冷媒の分布状態を示す。
In FIG. 2, broken line arrows indicate the flow direction of the refrigerant during cooling, as in FIG.

圧縮機1から四方弁2.室外熱交換器用配管(A)9を
通して送られてきた高温高圧ガス冷媒は、チューブ11
の下部にある冷房時冷媒入口11aから入方向に、チュ
ーブ11内へ流入し、室外空気によって飽和温度に冷却
され凝縮し始める。さらに、凝縮しながら、すでに凝縮
した冷媒を押し上げるようにして上部へ流れ、冷房時冷
媒出口11bからB方向へ流出し、室外熱交換器用配管
(B)10へ流れる。
From the compressor 1 to the four-way valve 2. The high-temperature, high-pressure gas refrigerant sent through the outdoor heat exchanger piping (A) 9 is transferred to the tube 11.
The refrigerant flows into the tube 11 in the inlet direction from the cooling refrigerant inlet 11a located at the bottom of the tube 11, is cooled to a saturation temperature by outdoor air, and begins to condense. Furthermore, while condensing, the already condensed refrigerant is pushed up and flows upward, flows out from the cooling refrigerant outlet 11b in the direction B, and flows into the outdoor heat exchanger pipe (B) 10.

ところで、圧縮機1として、容量制御範囲の大きい容量
制御圧縮機(たとえば、回転数制御圧縮機)を使用した
場合、冷房時に圧縮機容量を小さく制御して運転すると
、冷媒循環量が少ないことから冷媒流速も遅くなシ、チ
ューブ11内で凝縮しだ液冷媒を上部へ押し上げる力を
失う。このため、凝縮した液冷媒が下の方からチューブ
11内に滞留して冷媒不足の状態となシ、冷房時冷媒出
口11bにおいて、冷媒のかわき度が大きい、すなわち
ガスの多い状態で室外熱交換器用配管(B)10へ流出
し、冷房用Jヤピラリチューブ8へ送られる゛ことにな
る。このため、冷房用キャピラリチューブ8における抵
抗が大きくなシ、冷媒循環量が極端に減少し、室内熱交
換器3に送られ蒸発する液冷媒がほとんどなくなるため
、冷房効果が得られなくなる。このような現象は、前述
した低冷房負荷時で圧縮機容量を小さ−くした場合のみ
ならず、外気温度が低く室外熱交換器6で冷媒が凝縮し
やすい場合にも顕著にあられれるものである。
By the way, when a capacity control compressor with a large capacity control range (for example, a rotation speed control compressor) is used as the compressor 1, if the compressor capacity is controlled to a small value during cooling, the amount of refrigerant circulation will be small. If the refrigerant flow rate is also slow, the force to push the condensed liquid refrigerant upward in the tube 11 is lost. For this reason, the condensed liquid refrigerant accumulates in the tube 11 from below, resulting in a refrigerant shortage condition, and at the refrigerant outlet 11b during cooling, outdoor heat exchange is performed in a state where the refrigerant is highly evaporative, that is, there is a large amount of gas. It flows out into the pipe (B) 10 and is sent to the J pipe pipe 8 for cooling. Therefore, the resistance in the cooling capillary tube 8 is large and the amount of refrigerant circulated is extremely reduced, and almost no liquid refrigerant is sent to the indoor heat exchanger 3 and evaporated, making it impossible to obtain a cooling effect. This phenomenon occurs not only when the compressor capacity is reduced during low cooling loads as described above, but also when the outside air temperature is low and the refrigerant easily condenses in the outdoor heat exchanger 6. be.

このために、圧縮機容量を制御した運転が安定してでき
ないという欠点があった。
For this reason, there was a drawback that stable operation with controlled compressor capacity was not possible.

本発明は、上記した従来技術の欠点を除去し、冷房時、
圧縮機容量を小さく制御した場合や外気温度が低い場合
でも、室外熱交換器を出た冷媒のかわき度を小さく保ち
、安定した運転を実施することができるルームエアコン
の提供を、その目的とするものである。
The present invention eliminates the drawbacks of the prior art described above, and when cooling,
The purpose is to provide a room air conditioner that can maintain stable operation by keeping the degree of refrigerant discharged from an outdoor heat exchanger small even when the compressor capacity is controlled to be small or the outside air temperature is low. It is something.

本発明の特徴は、少なくとも、容量制御可能な圧縮機、
室内熱交換器および室外熱交換器を備えたルームエアコ
ンにおいて、室外熱交換器の冷房時冷媒入口を、その熱
交換器本体の上部に、また冷房時冷媒出口を前記熱交換
器本体の下部に、それぞれ設けたルームエアコンにある
The features of the present invention include at least a capacity controllable compressor;
In a room air conditioner equipped with an indoor heat exchanger and an outdoor heat exchanger, the cooling refrigerant inlet of the outdoor heat exchanger is placed at the top of the heat exchanger body, and the cooling refrigerant outlet is placed at the bottom of the heat exchanger body. Each room has its own air conditioner.

さらに詳しくは次の通シである。More details are as follows.

前述した従来のルームエアコンにおいて、室外熱交換器
6の冷房時冷媒人口11aをチューブ11の下部に、ま
た冷房時冷媒出口11bをチューブ11の上部に設けで
あるのは、除霜時、室外熱交換器6における冷媒の流れ
が冷房時と同じであることから、除霜運転を行なった場
合、着霜した霜の表面が解け、室外熱交換器6の上部か
ら絹が流れ落ちて下部へたまることになるが、高温高圧
ガス冷媒を室外熱交換器6の下部に設けた冷房時冷媒人
口11aに導くことにより、そのガス冷媒の熱を室外熱
交換器6の下部にたまった霜の融解に利用するためであ
った。したがって、最も高温である高温高圧ガス冷媒の
熱を霜の融解に用いるため、そうでない場合にくらべ除
霜時間が短いという利点があったが、その反面、前述し
た如く、冷房時、圧縮機容量を小さく制御した場合に、
冷房運転が不安定になった。
In the conventional room air conditioner described above, the cooling refrigerant outlet 11a of the outdoor heat exchanger 6 is provided in the lower part of the tube 11, and the cooling refrigerant outlet 11b is provided in the upper part of the tube 11. Since the flow of refrigerant in the exchanger 6 is the same as during cooling, when defrosting operation is performed, the surface of the frost that has formed will melt, and silk will flow down from the top of the outdoor heat exchanger 6 and accumulate in the bottom. However, by guiding the high-temperature, high-pressure gas refrigerant to the cooling refrigerant 11a provided at the bottom of the outdoor heat exchanger 6, the heat of the gas refrigerant can be used to melt the frost accumulated at the bottom of the outdoor heat exchanger 6. It was for the purpose of Therefore, since the heat of the high-temperature, high-pressure gas refrigerant, which is the highest temperature, is used to melt the frost, there is an advantage that the defrosting time is shorter than in the case otherwise.However, as mentioned above, when cooling, the compressor capacity When controlled to a small value,
Cooling operation has become unstable.

そこで本発明においては、室外熱交換器の冷房時冷媒入
口をチューブの上部に、また冷房時冷媒出口を前記チュ
ーブの下部に、それぞれ設けることによシ、冷房時、前
記チューブ内で凝縮した液冷媒が、上部から下部へ、冷
媒の流れに沿って流れ落ちるようにして、圧縮機容量を
小さくした場合でも、安定して運転できるようにしたも
のである。ただ、このような構成においては、除霜時間
がやや長くなるものの、冷房時、圧縮機容量を制御した
場合に、ルームエアコンを安定して運転できるという効
果の方が、はるかに大きい。なお、前記除軸蒔間がやや
長くなるという問題は、後述する第4図に係る実施例に
おいては完全に解決するものである。
Therefore, in the present invention, the refrigerant inlet for cooling of the outdoor heat exchanger is provided at the upper part of the tube, and the refrigerant outlet for cooling is provided at the lower part of the tube. The refrigerant flows down from the top to the bottom along the flow of the refrigerant, allowing stable operation even when the compressor capacity is reduced. However, in such a configuration, although the defrosting time becomes a little longer, the effect of stably operating the room air conditioner when the compressor capacity is controlled during cooling is much greater. Incidentally, the above-mentioned problem that the spacing between the shafts and the shafts is slightly longer is completely solved in the embodiment shown in FIG. 4, which will be described later.

以下本発明を実施例によって説明する。The present invention will be explained below with reference to Examples.

第3図は、本発明の一実施例に係るルームエアコンの、
室外熱交換器の詳細と、冷房時に、その内部を流れる冷
媒の状態を併せて示す部分拡大断面図である(サイクル
構成は、第1図と同一である)。
FIG. 3 shows a room air conditioner according to an embodiment of the present invention.
FIG. 2 is a partially enlarged sectional view showing details of the outdoor heat exchanger and the state of refrigerant flowing inside the outdoor heat exchanger during cooling (the cycle configuration is the same as FIG. 1).

この第3図において、第2図と同一番号を付したものは
同一部分である。この室外熱交換器6Aは、冷房時冷媒
人口11aを、熱交換器本体に係るチューブ11の上部
に、また冷房時冷媒出口11bをチューブ11の下部に
、それぞれ設けたものである。
In FIG. 3, the same parts as in FIG. 2 are denoted by the same numbers. In this outdoor heat exchanger 6A, a cooling refrigerant outlet 11a is provided in the upper part of the tube 11 related to the heat exchanger body, and a cooling refrigerant outlet 11b is provided in the lower part of the tube 11.

このように構成しだので、冷房時、圧縮機lから吐出し
た高温高圧ガス冷媒は、室外熱交換器用配管(A)9を
通シ、室外熱交換器6Aのチューブ11の上部にある冷
房時冷媒人口11aから、A方向にチューブ11内へ流
入し、下部の冷房時気によって冷却され凝縮し始め、さ
らにその冷媒は凝縮しながら冷房時冷媒出口11bに向
って流れ落ちる。しだがって、冷房時冷媒出口11bに
おいて、冷媒は過冷却されだ液冷媒あるいは、かわき度
の小さい冷媒となって室外熱交換器用配管(B)10へ
流出し、冷房用キャピラリチューブ8に送られる。
With this configuration, during cooling, the high-temperature, high-pressure gas refrigerant discharged from the compressor 1 passes through the outdoor heat exchanger piping (A) 9 and is transferred to the upper part of the tube 11 of the outdoor heat exchanger 6A during cooling. The refrigerant flows into the tube 11 in the direction A from the refrigerant population 11a, is cooled by the cooling air in the lower part, and begins to condense.The refrigerant further flows down toward the cooling refrigerant outlet 11b while condensing. Therefore, at the cooling refrigerant outlet 11b, the refrigerant becomes a supercooled liquid refrigerant or a refrigerant with a low degree of freshness, and flows out to the outdoor heat exchanger pipe (B) 10, and is sent to the cooling capillary tube 8. It will be done.

このため、冷房用キャピラリチューブ8における抵抗は
大きくならず、安定した冷媒循環量が得られる。
Therefore, the resistance in the cooling capillary tube 8 does not increase, and a stable refrigerant circulation amount can be obtained.

第4図は、本発明の他の実施例に係るルームエアコンの
、室外熱交換器の詳細と、冷房時に、その内部を流れる
冷媒の状態を併せて示す部分拡大断面図である(サイク
ル構成は、第1図と同一である)。
FIG. 4 is a partially enlarged cross-sectional view showing the details of the outdoor heat exchanger of a room air conditioner according to another embodiment of the present invention and the state of the refrigerant flowing inside it during cooling (the cycle configuration is , the same as in Figure 1).

この第4図において、第2図と同一番号を付し、だもの
は同一部分である。この室外熱交換器6Bは、熱交換器
本体に係るチューブ11の下方に、その一端がチューブ
11の冷房時冷媒人口11aにろう付は部14で接続さ
れ、他端に、冷房時に冷媒を導入する入口13aを有す
る除霜用過熱チューブ13を設けたものである。なお、
12Aは、チューブ11および除霜用過熱チューブ13
に取付けられたフィンである。
In this Fig. 4, the same numbers as in Fig. 2 are given, and the parts are the same. This outdoor heat exchanger 6B has one end connected to the cooling refrigerant port 11a of the tube 11 at a brazing portion 14 below the tube 11 related to the heat exchanger main body, and the other end into which a refrigerant is introduced during cooling. A defrosting superheating tube 13 having an inlet 13a is provided. In addition,
12A is the tube 11 and the defrosting superheating tube 13
It is a fin attached to the

このように構成したので、冷房時、圧縮機1から吐出し
た高温高圧ガス冷媒は、室外熱交換器用配管(A)9を
通り、室外熱交換器6Bの除霜用過熱チューブ13の入
口13aからA方向に除霜用過熱チューブ13内へ流入
し、外気によって飽和温度に冷却され、冷房時冷媒人口
11a近傍で凝縮が始まり、チューブ11内で飽和域に
入って凝縮し、流れに沿って下方へ流れ落ちる。そして
、冷房時冷媒出口11bにおける冷媒は、前記実施例に
おけると同様に、過冷却されだ液冷媒あるいはかわき度
の小さい冷媒となって室外熱交換器用配管(B) 1o
へ流出し、冷房用キャピラリチューブ8に送られる。し
たがって、安定した冷媒循環量が得られる。
With this configuration, during cooling, the high-temperature, high-pressure gas refrigerant discharged from the compressor 1 passes through the outdoor heat exchanger piping (A) 9 and from the inlet 13a of the defrosting superheating tube 13 of the outdoor heat exchanger 6B. It flows into the defrosting superheating tube 13 in the A direction, is cooled to the saturation temperature by the outside air, begins to condense near the cooling refrigerant population 11a, enters the saturation region in the tube 11, condenses, and flows downward along the flow. flows down to Then, the refrigerant at the refrigerant outlet 11b during cooling becomes a supercooled drip refrigerant or a refrigerant with a low degree of dryness, as in the above embodiment, and is transferred to the outdoor heat exchanger pipe (B) 1o.
and is sent to the cooling capillary tube 8. Therefore, a stable amount of refrigerant circulation can be obtained.

さらに、除霜運転を行なった場合、冷房時と同様の冷媒
流れとなることから、除霜によって室外熱交換器6Bの
上部から下部へ流れ落ちた霜の融解に、除霜用過熱チュ
ーブ13内にある高温高圧ガス冷媒の熱を利用すること
ができるので、除霜時間は、第2図に係る従来の室外熱
交換器と変らない。
Furthermore, when defrosting operation is performed, the refrigerant flow is similar to that during cooling, so that the frost that flows down from the upper part of the outdoor heat exchanger 6B to the lower part due to defrosting is melted. Since the heat of a certain high-temperature, high-pressure gas refrigerant can be utilized, the defrosting time is no different from that of the conventional outdoor heat exchanger according to FIG. 2.

なお、本実施例においては、除霜用過熱チューブ13を
チューブ11にろう付は部14で接続するようにしたが
、チューブ11と除霜用過熱チューブ13を一体に形成
してもよい。
In this embodiment, the overheating tube 13 for defrosting is connected to the tube 11 at the brazing portion 14, but the tube 11 and the overheating tube 13 for defrosting may be formed integrally.

さらに、前記各実施例は、ヒートポンプ式ルームエアコ
ンについて説明したが、本発明は、ヒートポンプ式ルー
ムエアコンに限らず、容量制御可能な圧縮機をもつ冷房
専用ルームエアコン、その他などにも適用できるもので
ある。
Furthermore, although each of the above embodiments describes a heat pump type room air conditioner, the present invention is not limited to a heat pump type room air conditioner, but can be applied to a cooling-only room air conditioner with a compressor whose capacity can be controlled, and others. be.

以上説明した各実施例によれば、冷房時に、圧縮機容量
を小さく制御して運転したシ、外気温度が低く冷媒が凝
縮しやすい場合においても、室外熱交換器で凝縮しだ液
冷媒は、流れ方向に沿って下方へ流れ落ちるため、前記
室外熱交換器を出た冷媒は、過冷却された液冷媒あるい
はかわき度の小さい状態で流出することができる。この
ため、冷房用キャピラリチューブ前の冷媒の状態はほと
んど液となシ、容量の小さい場合にも冷房効果が得られ
る。
According to each of the embodiments described above, even when the compressor capacity is controlled to be small during cooling and the outside air temperature is low and the refrigerant is likely to condense, the liquid refrigerant condensed in the outdoor heat exchanger will Since the refrigerant flows downward along the flow direction, the refrigerant exiting the outdoor heat exchanger can exit as a supercooled liquid refrigerant or in a state with a low degree of freshness. Therefore, the state of the refrigerant in front of the cooling capillary tube is almost liquid, and a cooling effect can be obtained even when the capacity is small.

なお、第4図に係る実施例によれば、除霜時、高温高圧
ガス冷媒を熱交換器本体の下方に配設した除霜用過熱チ
ューブに流入させるようにしたので、室外熱交換器の下
部に流れ落ちた霜の融解に、前記高温高圧ガス冷媒の熱
を利用するため、霜の融解時間は従来と変らない。
According to the embodiment shown in FIG. 4, during defrosting, the high-temperature, high-pressure gas refrigerant is made to flow into the defrosting superheating tube disposed below the heat exchanger main body, so that the temperature of the outdoor heat exchanger is Since the heat of the high-temperature, high-pressure gas refrigerant is used to melt the frost that has fallen to the bottom, the time required to melt the frost remains the same as before.

以上詳細に説明したように本発明によれば、少なくとも
、容量制御可能な圧縮機、室内熱交換器および室外熱交
換器を備えたルームエアコンにおいて、室外熱交換器の
冷房時冷媒入口を、その熱交換器本体の上部に、また冷
房時冷媒出口を前記熱交換器本体の下部に、それぞれ設
けるようにしたので、冷房時、圧縮機容量を小さく制御
した場合や外気温度が低い場合でも、室外熱交換器を出
た冷媒のかわき度を小さく保ち、安定した運転を実施す
ることができるルームエアコンを提供することができる
As described in detail above, according to the present invention, in a room air conditioner equipped with at least a capacity-controllable compressor, an indoor heat exchanger, and an outdoor heat exchanger, the refrigerant inlet of the outdoor heat exchanger during cooling is controlled. The refrigerant outlet for cooling is provided at the top of the heat exchanger body, and the refrigerant outlet for cooling is provided at the bottom of the heat exchanger body. It is possible to provide a room air conditioner that can maintain stable operation by keeping the degree of refrigerant discharged from a heat exchanger small.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、容量制御可能な圧縮機を備えたヒートポンプ
式ルームエアコンのサイクル構成図、第2図は、第1図
における室外熱交換器の詳細と、冷房時に、その内部を
流れる冷媒の状態を併せて示す部分拡大断面図、第3図
は、本発明の一実施例に係るルームエアコンの、室外熱
交換器の詳細と、冷房時に、その内部を流れる冷媒の状
態を併せて示す部分拡大断面図、第4図は、本発明の他
の実施例に係るルームエアコンの、室外熱交換器の詳細
と、冷房時に、その内部を流れる冷媒の状態を併せて示
す部分拡大断面図である。 1・・・容量制御可能な圧縮機、3・・・室内熱交換器
、6A、6B・・・室外熱交換器、11・・・チューブ
、11a・・・冷房時冷媒入口、llb・・・冷房時冷
媒出口、13・・・除霜用過熱チューブ、13a・・・
除霜用過熱チューブ入口。 $ I 目 、S          δ
Figure 1 is a cycle configuration diagram of a heat pump room air conditioner equipped with a compressor that can control the capacity. Figure 2 shows the details of the outdoor heat exchanger in Figure 1 and the state of the refrigerant flowing inside it during cooling. FIG. 3 is a partially enlarged cross-sectional view that also shows the details of the outdoor heat exchanger of a room air conditioner according to an embodiment of the present invention, and the state of the refrigerant flowing inside it during cooling. The cross-sectional view, FIG. 4, is a partially enlarged cross-sectional view showing details of the outdoor heat exchanger of a room air conditioner according to another embodiment of the present invention, and the state of the refrigerant flowing inside the air conditioner during cooling. DESCRIPTION OF SYMBOLS 1... Capacity controllable compressor, 3... Indoor heat exchanger, 6A, 6B... Outdoor heat exchanger, 11... Tube, 11a... Refrigerant inlet during cooling, llb... Refrigerant outlet during cooling, 13... Overheating tube for defrosting, 13a...
Inlet of superheated tube for defrosting. $ I eyes, S δ

Claims (1)

【特許請求の範囲】 1、少なくとも、容量制御可能な圧縮機、室内熱交換器
および室外熱交換器を備えたルームエアコンにおいて、
室外熱交換器の冷房時冷媒入口を、その熱交換器本体の
上部に、また冷房時冷媒出口を前記熱交換器本体の下部
に、それぞれ設けたことを特徴とするルームエアコン。 2、室外熱交換器本体の下方に、その一端が前記熱交換
器本体の冷房時冷媒入口に接続され、他端に、冷房時に
冷媒を導入する入口を有する除霜用過熱チューブを設け
たものである特許請求の範囲第1 項記載ノルームエア
コン。
[Claims] 1. A room air conditioner equipped with at least a capacity controllable compressor, an indoor heat exchanger, and an outdoor heat exchanger,
A room air conditioner characterized in that a cooling refrigerant inlet of an outdoor heat exchanger is provided at the upper part of the heat exchanger main body, and a cooling refrigerant outlet is provided at the lower part of the heat exchanger main body. 2. A defrosting overheating tube is provided below the outdoor heat exchanger main body, one end of which is connected to the refrigerant inlet for cooling of the heat exchanger main body, and the other end of which has an inlet for introducing refrigerant during cooling. A room air conditioner as described in claim 1.
JP15386981A 1981-09-30 1981-09-30 Air conditioner for room Pending JPS5855663A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15386981A JPS5855663A (en) 1981-09-30 1981-09-30 Air conditioner for room

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15386981A JPS5855663A (en) 1981-09-30 1981-09-30 Air conditioner for room

Publications (1)

Publication Number Publication Date
JPS5855663A true JPS5855663A (en) 1983-04-02

Family

ID=15571878

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15386981A Pending JPS5855663A (en) 1981-09-30 1981-09-30 Air conditioner for room

Country Status (1)

Country Link
JP (1) JPS5855663A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6230341A (en) * 1985-07-31 1987-02-09 Fujitsu Ltd Wire bonding method
US5494206A (en) * 1993-06-11 1996-02-27 Kabushiki Kaisha Shinkawa Wire bonding method and apparatus
US10447775B2 (en) 2010-09-30 2019-10-15 A10 Networks, Inc. System and method to balance servers based on server load status
US10484465B2 (en) 2011-10-24 2019-11-19 A10 Networks, Inc. Combining stateless and stateful server load balancing
US10516577B2 (en) 2012-09-25 2019-12-24 A10 Networks, Inc. Graceful scaling in software driven networks

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6230341A (en) * 1985-07-31 1987-02-09 Fujitsu Ltd Wire bonding method
JPH0457100B2 (en) * 1985-07-31 1992-09-10 Fujitsu Kk
US5494206A (en) * 1993-06-11 1996-02-27 Kabushiki Kaisha Shinkawa Wire bonding method and apparatus
US10447775B2 (en) 2010-09-30 2019-10-15 A10 Networks, Inc. System and method to balance servers based on server load status
US10484465B2 (en) 2011-10-24 2019-11-19 A10 Networks, Inc. Combining stateless and stateful server load balancing
US10516577B2 (en) 2012-09-25 2019-12-24 A10 Networks, Inc. Graceful scaling in software driven networks

Similar Documents

Publication Publication Date Title
JP5956743B2 (en) Air conditioner
US20040069457A1 (en) Multi-channeled loop heat transfer device with high efficiency fins
WO1994000725A1 (en) Serpentine heat pipe and dehumidification application in air conditioning systems
CN110023694A (en) Refrigerating circulatory device
JP3888000B2 (en) Air conditioner
JPS5855663A (en) Air conditioner for room
JP3851403B2 (en) Indoor unit for air conditioner
US2223752A (en) Refrigeration
CN205119917U (en) Improve condensate coefficient of convective heat transfer's component and refrigerating system , warm air conditioner ware that cools
JPH10196984A (en) Air conditioner
US4393661A (en) Means and method for regulating flowrate in a vapor compression cycle device
JP2006242394A (en) Heat source unit of air conditioner and air conditioner having this unit
KR0139991Y1 (en) Orifice tube
JP3813348B2 (en) Absorption refrigerator
CN105135930A (en) Part for increasing convective heat transfer coefficient of condensate, refrigerating system and cooling and heating air conditioner
JPH05322323A (en) Freezer device
KR100241457B1 (en) Evaporating Temperature Compensation Structure of Heat Pump Outdoor Unit
JPS5847968A (en) Refrigerating cycle of air conditioner
JPS58148358A (en) Refrigerator
KR0184212B1 (en) Ammonia absorptive refrigerator
CN117355721A (en) Heat exchanger, outdoor unit of air conditioner provided with heat exchanger, and air conditioner provided with outdoor unit of air conditioner
JPH0375475A (en) Refrigerator
JPS6222391B2 (en)
JPS62225865A (en) Heat pump type air conditioner
KR980010183A (en) Heat pump air conditioner improving heating low-temperature performance