JPS5855354A - Pile surface friction power developing grout material - Google Patents

Pile surface friction power developing grout material

Info

Publication number
JPS5855354A
JPS5855354A JP15206381A JP15206381A JPS5855354A JP S5855354 A JPS5855354 A JP S5855354A JP 15206381 A JP15206381 A JP 15206381A JP 15206381 A JP15206381 A JP 15206381A JP S5855354 A JPS5855354 A JP S5855354A
Authority
JP
Japan
Prior art keywords
water
grout material
weight
parts
grout
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP15206381A
Other languages
Japanese (ja)
Other versions
JPH0581546B2 (en
Inventor
郁夫 中村
俊宏 辻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Asahi Kasei Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd, Asahi Kasei Kogyo KK filed Critical Asahi Chemical Industry Co Ltd
Priority to JP15206381A priority Critical patent/JPS5855354A/en
Publication of JPS5855354A publication Critical patent/JPS5855354A/en
Publication of JPH0581546B2 publication Critical patent/JPH0581546B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B14/02Granular materials, e.g. microballoons
    • C04B14/04Silica-rich materials; Silicates

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Civil Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Consolidation Of Soil By Introduction Of Solidifying Substances Into Soil (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は既製杭を地中に埋設する工法に際して、杭と周
辺土砂との間に摩擦力を発現させるグラウト材に関する
ものである。既製杭を埋設する工法として、直打込み工
法、埋込み工法および中掘工法などがあるが、直打込み
工法は騒音および振動公害を惹起するため、その姿を消
しつつある。埋込み工法および中掘工法の近年の技術と
して、埋込み工法は依然としてセメン)(ルクエ法に代
表されているが、中掘工法においては拡大先行掘をした
工法が近年脚光を浴びてきている。しかしながら埋込工
法にしろ中掘工法にしろ、先端支持力をいかに大きくと
るかに重点がおかれ、杭周面摩擦力の発現方法に配慮が
欠けていたと言え、最近杭周面摩擦力を発現させる工法
が種々考案されるようになった。杭周面の摩擦力発現材
として、セメントミルク工法では根固め液を杭周固定用
に用いた方法、中掘工法においては先117リクシヨン
カツターに起因して抗体と局面土砂の間に生じる空隙部
に種々の方法によりグラウト材を注入しているが、いず
れの場合にも使用されるグラウト材はセメントまたはそ
の配合物が用いられ、未だ満足できるものが開発されて
いない。つまり注入可能な流動性をもたせるために多量
の水を必要とするため材料分離を生じたり、セメントペ
ースト中の水分が周辺土砂に吸収されたり、さらに多く
の浮氷現象を起こし、数回の追加注入を必要とする場合
がある。その手間の煩雑さおよび費やされる労力は多大
のものである。さらに伏流水の存在する場所においては
全てのグラウト材が流失する恐れがあり、耐伏流水性に
ついても軽視できない重大な問題である。このようなグ
ラウト材では抗体に均一で強固に付着することは期待で
きず、設計値を満足することができない。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a grout material that produces a frictional force between a pile and surrounding earth and sand when a ready-made pile is buried underground. Methods for burying prefabricated piles include direct driving, embedding, and tunneling, but the direct driving method is disappearing because it causes noise and vibration pollution. As for the recent technology of embedding method and medium excavation method, burying method is still typified by cement method (Lukue method), but among the medium excavation method, the method of enlarging advance excavation has been attracting attention in recent years. Whether it is the deep-in construction method or the medium-cut construction method, emphasis has been placed on how to increase the supporting capacity at the tip, and it can be said that consideration has been lacking in the method of expressing the friction force on the pile circumferential surface. Various methods have been devised.In the cement milk method, a hardening solution was used to fix the pile circumference as a friction force generating material for the pile circumference, and in the medium excavation method, a method was developed due to the use of the 117 riction cutter. Various methods have been used to inject grout into the voids created between the antibody and the surface earth and sand, but in all cases, the grout used is cement or its mixture, and none of them are yet satisfactory. This means that a large amount of water is required to create pourable fluidity, which may cause material separation, water in the cement paste may be absorbed by the surrounding soil, and even more ice formation may occur. , several additional injections may be required, which is complicated and requires a great deal of effort.Furthermore, in areas where underground water exists, there is a risk that all the grout material will be washed away. Underflow water resistance is also a serious problem that cannot be taken lightly. With such grout materials, it cannot be expected that they will adhere uniformly and firmly to the antibody, and the designed values cannot be satisfied.

本発明は従来と同様な多量の水の存在下で、材料分離お
よび浮水現象を防止し、しかも伏流水存在下においても
グラウト材が流失することなく抗体に均一で強固に付着
し、しかも安価な杭周面摩擦力発現グラウト材を開発す
べく研究を重ねた結果、けい酸カルシウム水和物を主体
とした粉末をセメントに混入することにより、従来と同
様な多量の水の存在下においても種々の特長を示すこと
を見出し完成するに至った。
The present invention prevents material separation and floating water phenomenon in the presence of a large amount of water as in the past, and even in the presence of underground water, the grout material adheres uniformly and firmly to the antibody without being washed away, and is inexpensive. As a result of repeated research to develop a grout material that exerts friction force on the circumferential surface of piles, we found that by mixing powder mainly composed of calcium silicate hydrate into cement, various types of grout material can be developed, even in the presence of a large amount of water as in conventional methods. We found that it shows the features of this technology and completed it.

本発明に用いるセメントは市販されているものを用いて
よい。けい酸カルシウム水和物はnx(C’aO)・n
z(”io) ・n5(H2O)の組成をもつものであ
り、熱合成、あるいは高温高圧蒸気養生等で得られる。
Commercially available cement may be used in the present invention. Calcium silicate hydrate is nx(C'aO)・n
It has a composition of z("io) .n5(H2O) and can be obtained by thermal synthesis or high-temperature, high-pressure steam curing.

このようにして得られた物として例えば軽量気泡コンク
リート、けい灰レンガ、けい酸カルシウム板などがある
が、これ等をロッドミルあるいはボールミル等で粉砕し
粉末状とする。この際1粒径は5fl以下2〜6ミクロ
ンになるよう粉砕するが、粒径5H以上にすると注入性
能が悪くなり、長距離注入が不可能となるためであり、
粒径2〜3ミクロンの微粒子が多ければ多い程良く、全
体として比表面積が2,000σ2/9以上とし、セメ
ント100重量部に対し10〜5001重量部とする。
Examples of the products thus obtained include lightweight aerated concrete, silica bricks, and calcium silicate plates, which are ground into powder using a rod mill, ball mill, or the like. At this time, the particle size is pulverized to 2 to 6 microns below 5fl, but if the particle size exceeds 5H, injection performance will deteriorate and long-distance injection will be impossible.
The more fine particles with a particle size of 2 to 3 microns, the better.The specific surface area as a whole should be 2,000σ2/9 or more, and the amount should be 10 to 5001 parts by weight per 100 parts by weight of cement.

けい酸カルシウム水和物を主体とする微粉末は水中で膨
潤し、保水性に優れているため水分が土壌中に流出する
のを防止する。このようなグラウト材は粘度をあげ浮氷
現象、材料分離および伏流水への流失を防止し、硬化後
は均一に強固に付着する、非常に有効なグラウト材であ
る。10重量部以下にすると浮氷現象、材料分離および
伏流水への流失が起り、500重量部以上以下ると硬化
グラウト材の圧縮強度が低下し、また抗体や周面土砂と
の付着力も低下する。このため所期の目的が達成できな
くなる。セメント、けい酸カルシウム水和物を主体とす
る粉末および水のみでの混合により上述したような有効
なグラウト材となる。
The fine powder, which is mainly composed of calcium silicate hydrate, swells in water and has excellent water retention properties, which prevents water from leaching into the soil. Such a grouting material is a very effective grouting material that increases viscosity and prevents the phenomenon of floating ice, material separation, and water loss into underground water, and adheres uniformly and firmly after hardening. If the amount is less than 10 parts by weight, floating ice phenomenon, material separation and loss to underground water will occur, and if it is less than 500 parts by weight, the compressive strength of the hardened grout material will decrease, and the adhesion force with antibodies and surrounding earth and sand will also decrease. . As a result, the intended purpose cannot be achieved. An effective grout material as described above can be obtained by mixing only cement, a powder mainly composed of calcium silicate hydrate, and water.

しかしながらけい酸カルシウム水和物を主体とした粉末
の粒径が5fl以下2〜3ミクロンであっても大きな粒
径が占める割合が多くあり全体の比表面積として2,0
00 tML”/9以下の場合はセメント、水のみの混
合では保水性能、粘度が低下し、浮氷現象や土壌中への
グラウト材の流失が起きる。このような場合、塩基性炭
酸マグネシウムをセメント重量部とけい酸カルシウム水
和物を主体とした粉末重量部の和に対し0.5〜5重量
部添加し水と混練することにより、第1の発明と同様な
効果を発現することを見出した。粒径5闘以下2〜3ミ
クロンで全体の比表面積として% 2,000 ctu
2/g以下のけい酸カルシウム水和物を主体とした粉末
はセメント100重量部に対し10〜500重量部であ
る。塩基性炭酸マグネシウムはグラウト材の線上り温度
および外気温度において、その添加量は異なるが、0.
5重量部以下での添加では浮氷現象、伏流水への流失お
よび材料分離防止には効果がなく、また5重量部以上添
加しても、その効果が著しくは向上せず、ゼリー状とな
り、注入不可能となるためである。
However, even if the particle size of the powder mainly composed of calcium silicate hydrate is 2 to 3 microns below 5 fl, the large particle size accounts for a large proportion, and the total specific surface area is 2.0 μm.
00 tML"/9 or less, water retention performance and viscosity will decrease if only cement and water are mixed, resulting in floating ice phenomenon and the grout being washed away into the soil. In such cases, basic magnesium carbonate should be added to the cement by weight. It has been found that by adding 0.5 to 5 parts by weight to the sum of parts by weight and parts by weight of powder mainly composed of calcium silicate hydrate and kneading with water, the same effects as in the first invention can be obtained. %2,000 ctu as a total specific surface area with a particle size of 2 to 3 microns or less
The amount of powder mainly composed of calcium silicate hydrate of 2/g or less is 10 to 500 parts by weight per 100 parts by weight of cement. The amount of basic magnesium carbonate added differs depending on the temperature at which the grout rises and the temperature of the outside air, but the amount is 0.
If less than 5 parts by weight is added, it is not effective in preventing the floating ice phenomenon, loss of water to underground water, and material separation, and even if more than 5 parts by weight is added, the effect does not improve significantly, and the material becomes jelly-like, causing the injection This is because it would be impossible.

塩基性炭酸マグネシウムは粒径5H以下2〜3ミクロン
で比表面積が2,000crrL2/9以上のけい酸カ
ルシウム水和物を主体とした粉末に添加しても良いが、
無添加と比較して著しい効果の向上はないため添加する
必要はない。以上2つの発明によって得られたグラウト
材は材料分離、浮氷現象および伏流水による流失などの
不都合を防止するばかりでなく抗体に均一かつ強固に付
着し、従来の直打込み工法と同程度、また埋込み工法お
よび中掘工法以上の杭周面摩擦力を発現させ、しかも安
価なグラウト材である。
Basic magnesium carbonate may be added to powder mainly composed of calcium silicate hydrate with a particle size of 5H or less 2 to 3 microns and a specific surface area of 2,000 crrL2/9 or more.
There is no need to add it since there is no significant improvement in the effect compared to no addition. The grout material obtained by the above two inventions not only prevents inconveniences such as material separation, floating ice phenomenon, and being washed away by underground water, but also adheres uniformly and firmly to the antibody, and can be used to the same extent as the conventional direct pouring method. It is an inexpensive grout material that exhibits a greater frictional force on the pile circumferential surface than the pile construction method and the hollow excavation method.

以下実施例によって本発明を説明する。The present invention will be explained below with reference to Examples.

実施例1.比較例1 普通ポルトランドセメント、けい酸カルシウム水和物を
主体とした粉末、および塩基性炭酸マグネシウムを第1
表に示す割合で混合し、得られた、グラウト材100重
量部に対し水130重量部を加えて混練したグラウト材
につき、浮水量、伏流水に対する残存率および材令28
日の圧縮強度を測定した。実施例として実験A6〜47
.412〜AI6を、比較例として実験AI、2,48
〜11、AI7〜19を第1表に示す。なお実施例およ
び比較例において、浮水量はグラウト材混線開始から6
分後にポリエチレン製袋に注入し、その時の容積に対す
る静置後6時間に起る上部浮氷容積の比で示し、伏流水
に対する残存率は流速15cysecの流水中にグラウ
ト材を静置し、その時の重量に対し5分後の残存重量と
の比で示し、圧縮強度は51日A1108に準じて測定
した。杭周面摩擦力発現グラウト材として満足する機能
を発揮させるためには浮水量2.0%以下、伏流水残存
率80%以上、圧縮強度2Q Kfl/an2以上は必
要である。表−1から判るように比較例AI、2゜&8
〜11.AI7〜19は浮水量、伏流水残存率および圧
縮強度において全ての条件は満足していないのに対し実
施例A6〜A7.AI 2〜屋16は杭周面摩擦力発現
グラウト材の必要な条件を全て満足する顕著な効果を現
わした。特に浮水量および伏流水残存率においては著し
い効果の相異が認められた。
Example 1. Comparative Example 1 Ordinary Portland cement, powder mainly composed of calcium silicate hydrate, and basic magnesium carbonate were used as the first
Regarding the grout material obtained by mixing and kneading 130 parts by weight of water to 100 parts by weight of the grout material in the proportions shown in the table, the amount of floating water, the residual ratio to underground water, and the age of 28
The compressive strength of each day was measured. Experiments A6-47 as examples
.. 412-AI6 as a comparative example, Experiment AI, 2,48
-11 and AI7-19 are shown in Table 1. In the Examples and Comparative Examples, the amount of floating water was 6.
minutes later, it is poured into a polyethylene bag and expressed as the ratio of the upper floating ice volume that occurs 6 hours after standing to the volume at that time. It is expressed as the ratio of the weight remaining after 5 minutes to the weight, and the compressive strength was measured according to A1108 on the 51st. In order to exhibit a satisfactory function as a grout material for expressing frictional force on the circumferential surface of a pile, it is necessary to have a floating water amount of 2.0% or less, an underground water residual rate of 80% or more, and a compressive strength of 2Q Kfl/an2 or more. As can be seen from Table 1, Comparative Example AI, 2° & 8
~11. Examples A6 to A7 did not satisfy all conditions in terms of floating water amount, subsurface water residual rate, and compressive strength. AI 2-Ya 16 exhibited a remarkable effect of satisfying all the necessary conditions for a grout material that exhibits friction force on the circumferential surface of a pile. In particular, significant differences in effectiveness were observed in the amount of floating water and the residual rate of underground water.

実施例2 抗体と周辺土砂との界面付着力を確認すべく、長さ90
cIIL1有効直径15cWLのコンクリート模型状を
飽和した砂に埋設すると同時に、杭周辺に比較例AI、
2.8.9.10および17、実施例A3.4.7.1
2.13および15のグラウト材を厚さ2crrL注入
した後、材令7日で載荷押し抜き試験をおこなった。比
較例A1.2.9および10のグラウト材においては試
験の途中に浮水量が20〜30%確認された。載荷押し
抜き試験の結果は表−2のとおりである。比較例のグラ
ウト材の効果がでていない理由として■多量の浮氷が生
じたため実付着面積が小さくなった。■グラウト材の圧
縮強度が小さい。等であり実施例グラウト材は顕著な効
果を示している。また実施例グラウト材は全て抗体には
均一かつ強固に付着硬化していた。
Example 2 In order to confirm the interfacial adhesion between the antibody and the surrounding soil, the length was 90 mm.
cIIL1 A concrete model with an effective diameter of 15 cWL was buried in saturated sand, and at the same time, Comparative Example AI,
2.8.9.10 and 17, Example A3.4.7.1
After injecting grout materials No. 2.13 and No. 15 to a thickness of 2 crrL, a loaded push-out test was conducted when the materials were 7 days old. In the grout materials of Comparative Examples A1.2.9 and 10, a floating water amount of 20 to 30% was confirmed during the test. The results of the loaded push-out test are shown in Table-2. The reason why the grout material of the comparative example was not effective was that (1) a large amount of floating ice was formed, so the actual adhesion area became small. ■The compressive strength of the grout material is low. etc., and the example grout material shows remarkable effects. Furthermore, all of the grout materials of the examples adhered uniformly and firmly to the antibodies and were cured.

実施例3 抗体とグラウト材の界面付着力を確認すべ〈実施例2と
同じ実験屋のグラ・ウド材と模型状を用いてグラウト厚
5cWLを杭周面に注入し押し抜き試験をおこなった。
Example 3 To confirm the interfacial adhesion between the antibody and the grout material. Using the grout material and model made by the same laboratory as in Example 2, a 5 cWL grout was injected onto the peripheral surface of the pile and a push-out test was conducted.

その結果は表−2のとおりであり、実施例2と同様に実
施例グラウト材は比較例グラウト材に比し顕著な効果を
示しグラウト材が強固に抗体に付着していることを裏付
けた。
The results are shown in Table 2, and as in Example 2, the Example grout material showed a remarkable effect compared to the Comparative Example grout material, confirming that the grout material firmly adhered to the antibody.

(以下令b)(hereinafter referred to as Order b)

Claims (1)

【特許請求の範囲】 1、 セメント100重量部に対し10〜500重量部
のけい酸カルシウム水和物を主体とした粉末を水と共存
させ混練することを特徴とする杭周面摩擦力発現グラウ
ト材 2、セメント100重量部に対し10〜500重量部の
けい酸カルシウム水和物を主体とした粉末およびセメン
ト重量部とけい酸カルシウム水和物を主体とした粉末の
重量部の和に対し0.5〜5重量部の塩基性炭酸マグネ
シウムを水と共
[Claims] 1. A grout for expressing frictional force on the circumferential surface of a pile, characterized in that 10 to 500 parts by weight of powder mainly composed of calcium silicate hydrate is mixed with water in the presence of 100 parts by weight of cement. Material 2, 10 to 500 parts by weight of powder based on calcium silicate hydrate per 100 parts by weight of cement, and 0. 5 to 5 parts by weight of basic magnesium carbonate with water
JP15206381A 1981-09-28 1981-09-28 Pile surface friction power developing grout material Granted JPS5855354A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15206381A JPS5855354A (en) 1981-09-28 1981-09-28 Pile surface friction power developing grout material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15206381A JPS5855354A (en) 1981-09-28 1981-09-28 Pile surface friction power developing grout material

Publications (2)

Publication Number Publication Date
JPS5855354A true JPS5855354A (en) 1983-04-01
JPH0581546B2 JPH0581546B2 (en) 1993-11-15

Family

ID=15532240

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15206381A Granted JPS5855354A (en) 1981-09-28 1981-09-28 Pile surface friction power developing grout material

Country Status (1)

Country Link
JP (1) JPS5855354A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004292201A (en) * 2003-03-26 2004-10-21 Denki Kagaku Kogyo Kk Admixture for concrete and concrete composition
KR101968562B1 (en) * 2018-08-17 2019-04-12 유한회사 대림건설 Additives for grout injection material, Grout injection material containing the same, Pressurization device for grouting process, Grouting process using the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004292201A (en) * 2003-03-26 2004-10-21 Denki Kagaku Kogyo Kk Admixture for concrete and concrete composition
KR101968562B1 (en) * 2018-08-17 2019-04-12 유한회사 대림건설 Additives for grout injection material, Grout injection material containing the same, Pressurization device for grouting process, Grouting process using the same

Also Published As

Publication number Publication date
JPH0581546B2 (en) 1993-11-15

Similar Documents

Publication Publication Date Title
JPH07291703A (en) Backfillgrouting material
ATE255544T1 (en) METHOD AND INJECTABLE COMPOSITION FOR FILLING CRACKS IN STONE AND CONCRETE STRUCTURES
JPS5855354A (en) Pile surface friction power developing grout material
JP2831441B2 (en) Stabilized soil and construction method using stabilized soil
JP3372280B2 (en) Roadbed reinforcement method
JP6474180B1 (en) Method of pouring groundwater ground board into hardened grout
JPH0559060B2 (en)
US2434302A (en) Method of solidifying porous structures
JPH0291319A (en) Light-weight cellular concrete and related banking method
JPS5948259B2 (en) Foundation void filling method
JPH0721136B2 (en) Grout
JP2824327B2 (en) Mortar material and kneading-free method using it
JP2001234529A (en) Underwater concrete construction method
JPH09125397A (en) Surface preparation method for slope execution
JPH0913357A (en) Backfill method of buried article
JP2006169077A (en) Cavity-filling grout material using coal ash
JPS6141949B2 (en)
JP2510425B2 (en) Water glass two-component backfill injection method
JP4438219B2 (en) Disaster prevention method
JPS58173183A (en) Hydraulic cement graut
JPH07206503A (en) Back-filling material and shield process using the same
JPH07331234A (en) Consolidation type lubricant
JPH1150438A (en) Superplasticization backfilling method of buried substance
JP2004263148A (en) Soil quality stabilizing soil and preparation thereof
TW311957B (en) The improving method for weak foundation