JPH0581546B2 - - Google Patents

Info

Publication number
JPH0581546B2
JPH0581546B2 JP15206381A JP15206381A JPH0581546B2 JP H0581546 B2 JPH0581546 B2 JP H0581546B2 JP 15206381 A JP15206381 A JP 15206381A JP 15206381 A JP15206381 A JP 15206381A JP H0581546 B2 JPH0581546 B2 JP H0581546B2
Authority
JP
Japan
Prior art keywords
weight
parts
water
grout material
cement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP15206381A
Other languages
Japanese (ja)
Other versions
JPS5855354A (en
Inventor
Ikuo Nakamura
Toshihiro Tsuji
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP15206381A priority Critical patent/JPS5855354A/en
Publication of JPS5855354A publication Critical patent/JPS5855354A/en
Publication of JPH0581546B2 publication Critical patent/JPH0581546B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B14/02Granular materials, e.g. microballoons
    • C04B14/04Silica-rich materials; Silicates

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Civil Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Consolidation Of Soil By Introduction Of Solidifying Substances Into Soil (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はグラウト材に関するものである。 従来、たとえば既製杭を埋設する工法において
グラウト材を注入しているが、このグラウト材は
セメントまたはその配合物が用いられ、未だ満足
できるものが開発されていない。つまり注入可能
な流動性をもたせるために多量の水を必要とする
ため材料分離を生じたり、セメントペースト中の
水分が周辺土砂に吸収されたり、さらに多くの浮
水現象を起こし、数回の追加注入を必要とする場
合がある。その手間の煩雑さおよび費やされる労
力は多大のものである。さらに伏流水の存在する
場所においては全てのグラウトが流失する恐れが
あり、耐伏流水性についても軽視できない重大な
問題である。このようなグラウト材では、既製杭
の埋設工法に使用した場合でも、杭体に均一で強
固に付着することは期待できず、設計値を満足す
ることができない。 本発明は従来と同様な多量の水の存在下で、材
料分離および浮水現象を防止し、しかも伏流水存
在下においてもグラウト材が流失することなく、
既製杭に埋設工法に使用した場合でも杭体に均一
で強固に付着し、しかも安価なグラウト材を開発
すべく研究を重ねた結果、けい酸カルシウム水和
物を主体とした粉末をセメントに混入することに
より、従来と同様な多量の水の存在下においても
種々の特長を示すことを見出し完成するに至つ
た。 即ち本発明は、(1)セメント100重量部に対し20
〜500重量部のけい酸カルシウム水和物を主体と
した粉末を水と共存させ混練することを特徴とす
るグラウト材および、(2)セメント重量部に対し20
〜500重量部のけい酸カルシウム水和物を主体と
した粉末およびセメント重量部とケイ酸カルシウ
ム水和物を主体とした粉末の重量部の和に対し
0.5〜5重量部の塩基性炭酸マグネシウムを水と
共存させ混練することを特徴とするグラウト材に
係る。 本発明に用いるセメントは市販されているもの
を用いてもよい。けい酸カルシウム水和物はn1
(CaO)・n2(SiO2)・n3(H2O)の組成をもつもの
であり、熱合成、あるいは高温高圧蒸気養生等で
得られる。このようにして得られた物として例え
ば軽量気泡コンクリート、けい灰レンガ、けい酸
カルシウム板などがあるが、これ等をロツドミル
あるいはボールミル等で粉砕し粉末状とする。こ
の際、粒径は5mm以下2〜3ミクロンになるよう
粉砕するが、粒径5mm以上にすると注入性能が悪
くなり、長距離注入が不可能となるためであり、
粒径2〜3ミクロンの微粒子が多ければ多い程良
く、全体として比表面積が2000cm2/g以上とし、
セメント100重量部に対し20〜500重量部とする。
20重量部より少ないと浮水現象、材料分離および
伏流水への流失が起り、500重量部を越えると硬
化グラウト材の圧縮強度が低下し、また杭体や周
面土砂との付着力も低下する。 しかしながらけい酸カルシウム水和物を主体と
した粉末の粒径が5mm以下2〜3ミクロンであつ
ても大きな粒径が占める割合が多くあり全体の比
表面積として2000cm2/g以下の場合はセメント、
水のみの混合では保水性能、粘度が低下し、浮水
現象や土壌中のグラウト材の流失が起きる。この
ような場合、塩基生炭酸マグネシウムをセメント
重量部とけい酸アルシウム水和物を主体とした粉
末重量部の和に対し0.5〜5重量部添加し水と混
練することにより、第1の発明と同様な効果を発
現することを見出した。粒径5mm以下2〜3ミク
ロンで全体の比表面積として、2000cm2/g以下の
けい酸カルシウム水和物を主体とした粉末はセメ
ント100重量部に対し20〜500重量部である。塩基
性炭酸マグネシウムはグラウト材の練上り温度お
よび外気温度において、その添加量は異なるが、
0.5重量部より少ない添加量では浮水現象、伏流
水への流失および材料分離防止には効果がなく、
また5重量部を越えて添加しても、その効果が著
しく向上せず、ゼリー状となり、注入不可能とな
るためである。 塩基性炭酸マグネシウムは粒径5mm以下2〜3
ミクロンで比表面積が2000cm2/g以上のけい酸カ
ルシウム水和物を主体とした粉末に添加しても良
いが、無添加と比較して著しい効果の向上はない
ため添加する必要はない。 以上二つの発明によつて得られたグラウト材
は、構成成分のけい酸カルシウム水和物を主体と
する微粉末が水中で膨潤し、保水性に優れている
ため、水分が土壌中に流出るのを防止する。ま
た、本発明のグラウト材は、材料分離・浮水現象
および伏流水による流水などの不都合を防止する
ばかりでなく、既製杭の埋設工法に使用したとき
も杭体に均一かつ強固に付着するという効果も有
する。その結果、杭周面摩擦力を発現させること
ができる。また、本発明のグラウト材はは安価で
あり、経済的効果も大きい。 以下、杭周面摩擦力を発現するためのグラウト
材の実施例によつて本発明を更に詳しく説明す
る。 実施例1及び比較例1 普通ポルトランドセメント、けい酸カルシウム
水和物を主体として粉末、および塩基性炭酸マグ
ネシウムを表−1に示す割合(塩基性炭酸マグネ
シウムは、セメントとけい酸カルシウム水和物の
重量部の和に対する割合)で混合し、この混合物
100重量部に対し水130重量部を加えて混練したグ
ラウト材につき、浮水量、伏流水に対する残存率
および材令28日の圧縮強度を測定した。実施例と
して実験No.3〜No.7、No.12〜No.16を、比較例とし
て実験No.1、2、No.8〜11、No.17〜19を表−1示
す。なお実施例および比較例において、浮水量は
グラウト材混練開始から3分後にポリエチレン製
袋に注入し、その時の容積に対する静置後3日間
に起る上部浮水容積の比で示し、伏流水に対する
残存率は流速15cm/secの流水中にグラウト材を
静置し、その時の重量に対し5分後の残存流量と
の比で示し、圧縮強度はJIS A 1108に準じて測
定した。杭周面摩擦力発現グラウト材として満足
する機能を発揮させるためには浮水量2.0%以下、
伏流水残存率80%以上、圧縮強度20Kg/cm2以上は
必要である。表−1から判るように比較例No.1、
2、No.8〜11、No.17〜19は浮水量、伏流水残存率
および圧縮強度において全ての条件は満足してい
ないのに対し実施例No.3〜No.7、No.12〜No.16は杭
周面摩擦力発現グラウト材の必要な条件を全て満
足する顕著な効果を現わした。特に浮水量および
伏流水残存率においては著しい効果の相異が認め
られた。 実施例 2 杭体と周辺土砂との界面付着力を確認すべく、
長さ90cm、有効直径15cmのコンクリート模型杭を
飽和した砂に埋設すると同時に、杭周辺に比較例
No.1、2、8、9、10および17、実施例No.3、
4、7、12、13および15のグラウト材を厚さ2cm
注入した後、材令7日で載荷押し抜き試験をおこ
なつた。比較例No.1、2、9および10のグラウト
材においては試験の途中に浮水量が20〜30%確認
された、際荷押し抜き試験の結果は表−2のとお
りである。比較例のグラウト材の効果がでていな
い理由として多量の浮水が生じたため実付着面
積が小さくなつた。グラウト材の圧縮強度が小
さい。等であり実施例グラウト材は顕著な効果を
示している。また実施例グラウト材は全て杭体に
は均一かつ強固に付着硬化していた。 実施例 3 杭体とグラウト材の界面付着力を確認すべく実
施例2と同じ実験No.のグラウト材と模型杭を用い
てグラウト材5cmを杭周面に注入し押し抜き試験
をおこなつた。その結果は表−2のとおりであ
り、実施例2と同様に実施例グラウト材は比較例
グラウト材に比し顕著な硬化を示しグラウト材が
強固に杭体に着していることを裏付けた。
The present invention relates to a grout material. Conventionally, for example, a grouting material has been injected in a method of burying ready-made piles, but this grouting material uses cement or a mixture thereof, and a satisfactory grouting material has not yet been developed. In other words, a large amount of water is required to create pourable fluidity, which may cause material separation, water in the cement paste may be absorbed by the surrounding soil, and even more floating water may occur, requiring several additional injections. may be required. The time and effort involved and the amount of effort required are enormous. Furthermore, in areas where underground water exists, there is a risk that all of the grout will be washed away, and resistance to underground water is also a serious problem that cannot be ignored. Even when such grout material is used in the burying method of ready-made piles, it cannot be expected to adhere uniformly and firmly to the pile body, and the design value cannot be satisfied. The present invention prevents material separation and floating water phenomenon in the presence of a large amount of water similar to conventional methods, and also prevents the grout material from being washed away even in the presence of underground water.
As a result of repeated research to develop an inexpensive grout material that adheres uniformly and firmly to the pile body even when used in the burying method for ready-made piles, we have mixed powder mainly composed of calcium silicate hydrate into cement. By doing so, they discovered and completed that they exhibit various features even in the presence of large amounts of water, similar to conventional methods. That is, the present invention provides (1) 20 parts by weight of cement for 100 parts by weight of cement.
A grout material characterized by kneading powder mainly composed of ~500 parts by weight of calcium silicate hydrate, and (2) 20 parts by weight of cement.
~500 parts by weight of powder based on calcium silicate hydrate and the sum of parts by weight of cement and powder based on calcium silicate hydrate
The present invention relates to a grout material characterized in that 0.5 to 5 parts by weight of basic magnesium carbonate is coexisting with water and kneaded. Commercially available cement may be used in the present invention. Calcium silicate hydrate n 1
It has a composition of (CaO)・n 2 (SiO 2 )・n 3 (H 2 O) and can be obtained by thermal synthesis or high-temperature and high-pressure steam curing. Examples of the products thus obtained include lightweight aerated concrete, silica bricks, and calcium silicate plates, which are ground into powder using a rod mill, ball mill, or the like. At this time, the particle size is pulverized to 5 mm or less and 2 to 3 microns, but if the particle size is 5 mm or more, injection performance will deteriorate and long-distance injection will be impossible.
The more fine particles with a particle size of 2 to 3 microns, the better, and the overall specific surface area should be 2000 cm 2 /g or more,
The amount should be 20 to 500 parts by weight per 100 parts by weight of cement.
If it is less than 20 parts by weight, floating water phenomenon, material separation and loss to underground water will occur, and if it exceeds 500 parts by weight, the compressive strength of the hardened grout material will decrease, and the adhesion force with the pile body and surrounding earth and sand will also decrease. . However, even if the particle size of powder mainly composed of calcium silicate hydrate is 5 mm or less and 2 to 3 microns, there is a large proportion of large particles, and if the total specific surface area is 2000 cm 2 /g or less, cement,
If only water is mixed, the water retention performance and viscosity will decrease, causing floating water phenomenon and washing away of the grout material in the soil. In such a case, by adding 0.5 to 5 parts by weight of basic raw magnesium carbonate to the sum of parts by weight of cement and parts by weight of powder mainly composed of aluminum silicate hydrate, and kneading with water, the same method as in the first invention can be obtained. We have found that this has a significant effect. The powder mainly composed of calcium silicate hydrate, which has a particle size of 5 mm or less, 2 to 3 microns, and a total specific surface area of 2000 cm 2 /g or less, is used in an amount of 20 to 500 parts by weight per 100 parts by weight of cement. The amount of basic magnesium carbonate added varies depending on the mixing temperature of the grout material and the outside temperature, but
If the amount added is less than 0.5 part by weight, it will not be effective in preventing floating water phenomenon, water loss into underground water, and material separation.
Moreover, even if more than 5 parts by weight is added, the effect will not be significantly improved, and it will become jelly-like, making it impossible to pour. Basic magnesium carbonate has a particle size of 5 mm or less2-3
It may be added to a powder mainly composed of calcium silicate hydrate with a specific surface area of 2000 cm 2 /g or more in microns, but there is no need to add it because there is no significant improvement in the effect compared to when it is not added. The grout material obtained by the above two inventions has a fine powder mainly composed of calcium silicate hydrate that swells in water and has excellent water retention, so water does not flow into the soil. to prevent In addition, the grout material of the present invention not only prevents inconveniences such as material separation, floating water phenomenon, and water flow due to underground water, but also has the effect of uniformly and firmly adhering to the pile body when used in the burying method of ready-made piles. It also has As a result, the pile peripheral surface friction force can be developed. Furthermore, the grout material of the present invention is inexpensive and has great economic effects. Hereinafter, the present invention will be explained in more detail with reference to examples of grout materials for expressing the friction force on the circumferential surface of piles. Example 1 and Comparative Example 1 Ordinary Portland cement, powder mainly composed of calcium silicate hydrate, and basic magnesium carbonate in the proportions shown in Table 1 (basic magnesium carbonate is the weight of cement and calcium silicate hydrate). This mixture is mixed in proportion to the sum of parts
A grout material prepared by adding 130 parts by weight of water to 100 parts by weight and kneading the grout material was measured for the amount of floating water, the residual ratio to underground water, and the compressive strength at 28 days of age. Table 1 shows Experiments No. 3 to No. 7 and No. 12 to No. 16 as examples, and Experiments Nos. 1, 2, Nos. 8 to 11, and Nos. 17 to 19 as comparative examples. In Examples and Comparative Examples, the amount of floating water is injected into a polyethylene bag 3 minutes after the start of grout mixing, and is expressed as the ratio of the volume of upper floating water that occurs for 3 days after standing still to the volume at that time, and the amount of floating water is expressed as the ratio of the volume of upper floating water that occurs for 3 days after standing still. The grouting rate was measured by leaving the grout in flowing water at a flow rate of 15 cm/sec, and the ratio of the remaining flow rate after 5 minutes to the weight at that time, and the compressive strength was measured according to JIS A 1108. In order to perform satisfactorily as a grout material that expresses friction on the pile circumferential surface, the amount of floating water must be 2.0% or less.
Underground water residual rate of 80% or more and compressive strength of 20Kg/cm 2 or more are required. As can be seen from Table 1, Comparative Example No. 1,
2. Nos. 8 to 11 and No. 17 to 19 do not satisfy all conditions in terms of floating water amount, subsurface water residual rate, and compressive strength, whereas Examples No. 3 to No. 7 and No. 12 to No. 16 showed a remarkable effect in satisfying all the necessary conditions for a grout material that produces friction force on the pile circumferential surface. In particular, significant differences in effectiveness were observed in the amount of floating water and the residual rate of underground water. Example 2 In order to confirm the interfacial adhesion between the pile body and the surrounding earth and sand,
A concrete model pile with a length of 90 cm and an effective diameter of 15 cm was buried in saturated sand, and at the same time a comparative example was placed around the pile.
No. 1, 2, 8, 9, 10 and 17, Example No. 3,
4, 7, 12, 13 and 15 grout to a thickness of 2 cm
After injection, a loaded push-out test was conducted 7 days after the material was aged. In the grout materials of Comparative Examples Nos. 1, 2, 9, and 10, 20 to 30% of floating water was observed during the test. The results of the load push-out test are shown in Table 2. The reason why the grout material of the comparative example was not effective was that a large amount of floating water was generated, resulting in a small actual adhesion area. The grout material has low compressive strength. etc., and the example grout material shows remarkable effects. In addition, all of the example grout materials adhered and hardened to the pile body uniformly and firmly. Example 3 In order to confirm the interfacial adhesion between the pile body and the grout material, a push-out test was conducted by injecting 5 cm of grout material into the pile circumferential surface using the same experiment number grout material and model pile as in Example 2. . The results are shown in Table 2, and as in Example 2, the example grout material showed remarkable hardening compared to the comparative example grout material, confirming that the grout material was firmly attached to the pile body. .

【表】【table】

【表】【table】

【表】【table】

Claims (1)

【特許請求の範囲】 1 セメント100重量部に対し20〜500重量部のけ
い酸カルシウム水和物を主体とした粉末を水と共
存させ混練することを特徴とするグラウト材。 2 セメント100重量部に対し20〜500重量部のけ
い酸カルシウム水和物を主体とした粉末およびセ
メント重量部とけい酸カルシウム水和物を主体と
した粉末の重量部の和に対し0.5〜5重量部の塩
基性炭酸マグネシウムを水と共存させ混練するこ
とを特徴とするグラウト材。
[Scope of Claims] 1. A grout material characterized by mixing 20 to 500 parts by weight of powder mainly composed of calcium silicate hydrate per 100 parts by weight of cement in coexistence with water. 2 20 to 500 parts by weight of powder mainly composed of calcium silicate hydrate per 100 parts by weight of cement, and 0.5 to 5 parts by weight per the sum of parts by weight of cement and parts by weight of powder mainly composed of calcium silicate hydrate A grout material characterized by mixing basic magnesium carbonate with water.
JP15206381A 1981-09-28 1981-09-28 Pile surface friction power developing grout material Granted JPS5855354A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15206381A JPS5855354A (en) 1981-09-28 1981-09-28 Pile surface friction power developing grout material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15206381A JPS5855354A (en) 1981-09-28 1981-09-28 Pile surface friction power developing grout material

Publications (2)

Publication Number Publication Date
JPS5855354A JPS5855354A (en) 1983-04-01
JPH0581546B2 true JPH0581546B2 (en) 1993-11-15

Family

ID=15532240

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15206381A Granted JPS5855354A (en) 1981-09-28 1981-09-28 Pile surface friction power developing grout material

Country Status (1)

Country Link
JP (1) JPS5855354A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004292201A (en) * 2003-03-26 2004-10-21 Denki Kagaku Kogyo Kk Admixture for concrete and concrete composition
KR101968562B1 (en) * 2018-08-17 2019-04-12 유한회사 대림건설 Additives for grout injection material, Grout injection material containing the same, Pressurization device for grouting process, Grouting process using the same

Also Published As

Publication number Publication date
JPS5855354A (en) 1983-04-01

Similar Documents

Publication Publication Date Title
US3754954A (en) Altering the properties of concrete by altering the quality or geometry of the intergranular contact of filler materials
EP1945590B1 (en) Building material composition, especially bitumen-free sealant
CN102173693A (en) Clay slurry curing agent
US3941607A (en) Method for production of a surface layer for traffic areas and the like
US2313107A (en) Composition for densifying porous masses and structures
US20080134943A1 (en) Encapsulation Medium
CN110467395A (en) Filling concrete cementitious composite net slurry and its prepackaged concrete obtained
JP2017210407A (en) Polymer cement mortar and method using polymer cement mortar
JPH0581546B2 (en)
JP6203546B2 (en) Polymer cement mortar and method using polymer cement mortar
JPH08169779A (en) Foamed mortar cavity filler
JP3372684B2 (en) Cement inorganic admixture for nuclear waste
IL33706A (en) Altering the properties of concrete by altering the quality or geometry of the intergranular contact of filler materials
JP6969479B2 (en) Fast-hardening semi-flexible pavement injection material and injection milk using it
JPH02102162A (en) Grouting material
US3192720A (en) Anticorrosive back-fill method
US2434302A (en) Method of solidifying porous structures
JPS61176763A (en) Filling of cement paste or mortar for enhancing close adhesiveness with preceding concrete
JPS62864B2 (en)
JPS58173183A (en) Hydraulic cement graut
JP4438219B2 (en) Disaster prevention method
JPS6358775B2 (en)
JPS5948259B2 (en) Foundation void filling method
JP2002080253A (en) Segregation resisting type cavity packing material
JPH0721136B2 (en) Grout