JPS5854097B2 - Manufacturing method of optical fiber base material - Google Patents

Manufacturing method of optical fiber base material

Info

Publication number
JPS5854097B2
JPS5854097B2 JP14731879A JP14731879A JPS5854097B2 JP S5854097 B2 JPS5854097 B2 JP S5854097B2 JP 14731879 A JP14731879 A JP 14731879A JP 14731879 A JP14731879 A JP 14731879A JP S5854097 B2 JPS5854097 B2 JP S5854097B2
Authority
JP
Japan
Prior art keywords
optical fiber
treatment
base material
dehydroxylation
fiber base
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP14731879A
Other languages
Japanese (ja)
Other versions
JPS5673636A (en
Inventor
浩一 稲田
隆夫 枝広
和夫 真田
長 福田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP14731879A priority Critical patent/JPS5854097B2/en
Publication of JPS5673636A publication Critical patent/JPS5673636A/en
Publication of JPS5854097B2 publication Critical patent/JPS5854097B2/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/01446Thermal after-treatment of preforms, e.g. dehydrating, consolidating, sintering

Description

【発明の詳細な説明】 本発明は、VAD法により製造された多孔質ガラスプリ
フォームを脱水酸基処理して無水の光フアイバ母材を製
造する方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing an anhydrous optical fiber preform by subjecting a porous glass preform produced by the VAD method to a dehydroxyl treatment.

従来より、光通信に使用される光ファイバは各種の方法
により製造されているが、VAD法が最近注目されつつ
ある。
Conventionally, optical fibers used for optical communications have been manufactured by various methods, but the VAD method has recently been attracting attention.

VAD法(気相軸付法)は、回転しながら上方向に移動
する棒状基材の下端に煤状ガラス微粒子を付着堆積し、
棒状基材を引き上げながら煤状ガラス微粒子を軸方向に
成長させて棒状の多孔質ガラスプリフォームを形成した
後、脱水酸基処理などの処理を施して光フアイバ母材を
形成する方法である。
In the VAD method (vapor phase attachment method), soot-like glass particles are attached and deposited on the lower end of a rod-shaped base material that moves upward while rotating.
In this method, a rod-shaped porous glass preform is formed by growing soot-like glass particles in the axial direction while pulling up a rod-shaped base material, and then a treatment such as dehydroxylation treatment is performed to form an optical fiber preform.

そして、この光フアイバ母材を紡糸して光ファイバを形
成している。
Then, this optical fiber base material is spun to form an optical fiber.

ところで、従来の脱水酸基処理は、多孔質ガラスプリフ
ォームをC12等のハロゲンガスや5OC12等のハロ
ゲン化物ガス中で800〜1000℃において熱処理す
ることにより実施されている。
By the way, conventional dehydroxylation treatment is carried out by heat-treating a porous glass preform at 800 to 1000° C. in a halogen gas such as C12 or a halide gas such as 5OC12.

しかしながら、脱水酸基処理すべき多孔質ガラスプリフ
ォームごとにその中心部の嵩密度や煤状ガラス微粒子の
粒径が異なるため、脱水酸基処理して得られた光フアイ
バ母材の水酸基量も異なり、無水の光フアイバ母材を再
現性良く製造するのは困難であった。
However, since the bulk density of the center and the particle size of the sooty glass particles differ depending on the porous glass preform to be dehydroxylated, the amount of hydroxyl groups in the optical fiber base material obtained by dehydroxylation also differs. It has been difficult to produce anhydrous optical fiber matrix with good reproducibility.

そして、例えば二乗分布型の光フアイバ母材の場合には
、光のパワーが中心部に集まる傾向があり、中心部の水
酸基量によって非常に大きな影響が生じて耘り、無水の
光フアイバ母材を再現性良く製造できる方法の出現が要
望されている。
For example, in the case of an optical fiber base material with a square distribution type, the optical power tends to concentrate in the center, and the amount of hydroxyl groups in the center has a very large effect. There is a need for a method that can produce the same with good reproducibility.

本発明は上記要望に答えるためになされたもので、その
目的とするところは、無水の光フアイバ母材を短時間で
かつ再現性良く製造できる等の利点を有する光フアイバ
母材の製造方法を提供することにある。
The present invention was made in response to the above-mentioned needs, and its purpose is to provide a method for manufacturing an optical fiber preform that has advantages such as being able to manufacture an anhydrous optical fiber preform in a short time and with good reproducibility. It is about providing.

そして、本発明の特徴は、VAD法により製造された多
孔質ガラスプリフォームを加圧下で脱水酸基処理するこ
とである。
A feature of the present invention is that a porous glass preform produced by the VAD method is subjected to dehydroxyl treatment under pressure.

以下、図面を参照して本発明について詳細に説明する。Hereinafter, the present invention will be explained in detail with reference to the drawings.

先ず、VAD法により棒状基材1の下端に多孔質ガラス
プリフォーム2を反応容器(図示せず)において形成す
る。
First, a porous glass preform 2 is formed at the lower end of a rod-shaped substrate 1 in a reaction vessel (not shown) by the VAD method.

そして、この多孔質ガラスプリフォーム2を加熱管3と
発熱体4と反射板5と気密用の回転シール6とを具備す
る脱水酸基処理炉7内に収容させる。
Then, this porous glass preform 2 is housed in a dehydroxylation furnace 7 that includes a heating tube 3, a heating element 4, a reflection plate 5, and an airtight rotary seal 6.

そして、脱水酸基処理用ガスの導入管8からC12等の
ハロゲンガスや5OC12等のハロゲン化物ガスを主体
とする脱水酸基処理用ガスを導入し、脱水酸基処理炉7
内の圧力を例えば大気圧よりも5〜20ymH20程度
高い加圧状態に保持しつつ脱水酸基処理を施して無水の
光フアイバ母材を形成する。
Then, a dehydroxylation gas mainly composed of a halogen gas such as C12 or a halide gas such as 5OC12 is introduced from the dehydration gas introduction pipe 8,
While maintaining the internal pressure at a pressure higher than atmospheric pressure by, for example, about 5 to 20 ymH20, a dehydroxyl group treatment is performed to form an anhydrous optical fiber preform.

上記のように加圧状態に保持するのは、例えば図面に示
すように脱水酸基処理炉γ内の圧力を圧力計9で検知し
つつ排気管10に設けられたニードルバルブ11でガス
流量を調節することにより行うことができる。
To maintain the pressurized state as described above, for example, as shown in the drawing, the pressure inside the dehydroxylation treatment furnace γ is detected by the pressure gauge 9, and the gas flow rate is adjusted by the needle valve 11 provided in the exhaust pipe 10. This can be done by

なお、比較的高い圧力下で行うと脱水酸基処理ガスの拡
散速度が非常にはやくなり、短時間で脱水酸基処理でき
るようになる。
Note that if the dehydroxylation treatment is carried out under a relatively high pressure, the diffusion rate of the dehydroxylation treatment gas becomes extremely fast, and the dehydroxylation treatment can be carried out in a short time.

さらに、脱水酸基処理温度は、脱水酸基処理炉γ内の圧
力や脱水酸基処理ガスの種類や被処理の多孔質ガラスプ
リフォーム2の種類等に応じて変化するが、一般に10
00℃〜1200℃が使用される。
Furthermore, the dehydroxylation treatment temperature varies depending on the pressure inside the dehydroxylation treatment furnace γ, the type of dehydroxylation treatment gas, the type of porous glass preform 2 to be treated, etc., but is generally 10
00°C to 1200°C is used.

ところで、脱水酸基の機構は次のようであると考えられ
る。
By the way, the mechanism of dehydroxylation is thought to be as follows.

C12等のハロゲンガスや5OC12等のハロゲン化物
ガスを主体とする脱水酸基処理用ガスは熱圧下において
一部分原子化されて、塩素原子のラジカルが発生する。
The dehydroxylation treatment gas, which is mainly composed of a halogen gas such as C12 or a halide gas such as 5OC12, is partially atomized under heat and pressure to generate radicals of chlorine atoms.

そして、この塩素原子のラジカルが加圧下に多孔質ガラ
スプリフォームの中心部にまで迅速に拡散し、中心部の
5iOHも確実に5iOCA!となる。
Under pressure, these chlorine atom radicals quickly diffuse into the center of the porous glass preform, ensuring that the 5iOH in the center becomes 5iOCA! becomes.

この5iOClは後の透明ガラス化工程において高温で
熱分解されてSiO2となる。
This 5iOCl is thermally decomposed at high temperature in the subsequent transparent vitrification step to become SiO2.

なお、脱水酸基処理は図面に示すように多孔質ガラスプ
リフォーム2を降下させつつ行っても良いが、上昇させ
つつ行っても良い。
Note that the dehydroxylation treatment may be performed while the porous glass preform 2 is being lowered as shown in the drawing, but it may also be performed while being raised.

また、脱水酸基処理炉7を加圧状態に保持するのは、図
面に示すようにニードルバルブで行うことができるが、
他のキャピラリ等の圧力調整部材で行っても差し支えな
い。
In addition, the dehydroxylation furnace 7 can be maintained in a pressurized state using a needle valve as shown in the drawing.
It is also possible to use other pressure adjusting members such as capillaries.

以上説明したように、本発明においては1.、VAD法
により製造された多孔質ガラスプリフォームを熱圧下で
脱水酸基処理用ガスにより脱水酸基処理している。
As explained above, in the present invention, 1. , a porous glass preform manufactured by the VAD method is subjected to dehydroxylation treatment using a dehydroxylation treatment gas under hot pressure.

従って、本発明によれば、脱水酸基処理用ガスを多孔質
ガラスプリフォームの中心部まで迅速に拡散させること
ができるため、多孔質ガラスプリフォームの嵩密度や煤
状ガラス微粒子の粒径に関係なく外部側は勿論中心部も
確実に脱水酸基処理できる。
Therefore, according to the present invention, the gas for dehydroxylation treatment can be rapidly diffused to the center of the porous glass preform, so that the bulk density of the porous glass preform and the particle size of the sooty glass particles can be Dehydroxylation treatment can be performed reliably not only on the outside but also on the center.

そのため、本発明によれば、実質上無水の光フアイバ母
材を短時間でかつ再現性良く製造できる等の効果が奏さ
れる。
Therefore, according to the present invention, it is possible to produce a substantially water-free optical fiber base material in a short time and with good reproducibility.

以下、実施例を示し、本発明を具体的に説明する。EXAMPLES Hereinafter, the present invention will be specifically explained with reference to Examples.

〔実施例〕〔Example〕

図面に示す脱水酸基処理装置を使用してVAD法により
製造された多孔質ガラスプリフォームを脱水酸基処理し
た。
A porous glass preform produced by the VAD method was subjected to dehydroxyl treatment using the dehydroxyl group treatment apparatus shown in the drawings.

但し、脱水酸基処理炉7内の温度を1500℃とし、棒
状基材1の回転数と降下速度をそれぞれ20r 2
00TtrIL/時と設定す・p、m。
However, the temperature inside the dehydroxylation treatment furnace 7 was set to 1500°C, and the rotational speed and descending speed of the rod-shaped base material 1 were each set to 20r2.
Set as 00TtrIL/hour・p,m.

ると共に1.脱水酸基処理用ガスの導入管8から5OC
1250CC/分、He1OA/分、02500cc/
分を脱水酸基処理炉γ内に導入した。
1. Introductory pipe 8 to 5OC for gas for dehydroxylation treatment
1250CC/min, He1OA/min, 02500cc/
was introduced into the dehydroxylation furnace γ.

また、ニードルバルブ11により圧力を大気圧よりも5
mmH2O高い加圧状態にして脱水酸基処理した後、大
気圧よりも15 mmH20高い加圧状態にして脱水酸
基処理し、その後大気圧よりも20 mmH20高い加
圧状態にして脱水酸基処理した。
In addition, the needle valve 11 lowers the pressure by 5 % below atmospheric pressure.
After dehydroxyl treatment at a pressure higher than atmospheric pressure by 15 mmH20, dehydroxyl treatment was performed at a pressure higher than atmospheric pressure by 20 mmH20.

即ち、三段階で脱水酸基処理した。That is, the dehydroxyl group treatment was carried out in three stages.

それぞれの加圧状態で脱水酸基処理された光フアイバ母
材中の残留水酸基量を測定し、得られた結果を次の表に
示す。
The amount of residual hydroxyl groups in the dehydroxylated optical fiber base material was measured under each pressurized state, and the results are shown in the table below.

上記表から、加圧下で脱水酸基処理するとほとんどの水
酸基が除去されていることがわかる。
From the above table, it can be seen that most of the hydroxyl groups are removed when the dehydroxyl group is treated under pressure.

また15 mmH20程度の加圧下で脱水酸基処理する
と、残留水酸基の量が非常に少なくなることがわかる。
Furthermore, it can be seen that the amount of residual hydroxyl groups becomes extremely small when the dehydroxyl group is treated under a pressure of about 15 mmH20.

【図面の簡単な説明】[Brief explanation of drawings]

図面は、本発明の方法を実施するのに使用される脱水酸
基処理装置の概略縦断面図である。 1・・・・・・棒状基材、2・・・・・・多孔質ガラス
プリフォーム、7・・・・・・脱水酸基処理炉、8・・
・・・・脱水酸基処理用ガスの導入管、9・・・・・・
圧力計、10・・・・・・排気管、11・・・・・・ニ
ードルバルブ。
The drawing is a schematic longitudinal sectional view of a dehydroxyl group treatment apparatus used to carry out the method of the present invention. 1... Rod-shaped base material, 2... Porous glass preform, 7... Dehydroxylation treatment furnace, 8...
...Introduction pipe for gas for dehydroxylation treatment, 9...
Pressure gauge, 10... Exhaust pipe, 11... Needle valve.

Claims (1)

【特許請求の範囲】[Claims] I VAD法により製造された多孔質ガラスプリフォ
ームを加熱下で脱水酸基処理用ガスにより脱水酸基処理
して光フアイバ母材を製造する方法において、脱水酸基
処理を加圧下で行うことを特徴とする光フアイバ母材の
製造方法。
I A method for producing an optical fiber base material by dehydrating a porous glass preform produced by the VAD method with a dehydroxyl treatment gas under heating, characterized in that the dehydroxyl treatment is carried out under pressure. A method for manufacturing an optical fiber base material.
JP14731879A 1979-11-14 1979-11-14 Manufacturing method of optical fiber base material Expired JPS5854097B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14731879A JPS5854097B2 (en) 1979-11-14 1979-11-14 Manufacturing method of optical fiber base material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14731879A JPS5854097B2 (en) 1979-11-14 1979-11-14 Manufacturing method of optical fiber base material

Publications (2)

Publication Number Publication Date
JPS5673636A JPS5673636A (en) 1981-06-18
JPS5854097B2 true JPS5854097B2 (en) 1983-12-02

Family

ID=15427465

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14731879A Expired JPS5854097B2 (en) 1979-11-14 1979-11-14 Manufacturing method of optical fiber base material

Country Status (1)

Country Link
JP (1) JPS5854097B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS593032A (en) * 1982-06-24 1984-01-09 Hitachi Cable Ltd Manufacture of base material for optical fiber
JPS6046938A (en) * 1983-08-19 1985-03-14 Hitachi Cable Ltd Manufacture of optical fiber preform

Also Published As

Publication number Publication date
JPS5673636A (en) 1981-06-18

Similar Documents

Publication Publication Date Title
JPH0196039A (en) Production of optical fiber preform
JPS5844619B2 (en) Manufacturing method of optical fiber base material
JPS565339A (en) Manufacture of high purity quartz glass
JPH029727A (en) Production of optical fiber preform
JPS6186436A (en) Production of parent material for optical fiber
JPS5854097B2 (en) Manufacturing method of optical fiber base material
JPH03109223A (en) Quartz glass and production thereof
JPH01286932A (en) Production of optical fiber preform
JPS5924743B2 (en) Manufacturing method of optical fiber base material
JPS649831A (en) Production of preform for optical fiber
JPS5849494B2 (en) Manufacturing method of fiber base material for optical communication
JPS591218B2 (en) Manufacturing method of glass base material for optical fiber
JPH06500530A (en) Optical fiber manufacturing method and optical fiber
JPS5915093B2 (en) Manufacturing equipment for anhydrous silica optical fiber base material
JPS596819B2 (en) Method for manufacturing doped quartz glass rod
JPS63242938A (en) Storage of porous preform for optical fiber
JPH03232732A (en) Production of glass preform for hydrogen-resistant optical fiber
JPS63123829A (en) Production of preform for optical fiber
JPH0226848A (en) Production of high-purity quartz glass
JPH01203238A (en) Production of optical fiber preform
JPH0672027B2 (en) Processing method of glass rod for optical fiber
JPS6054936A (en) Manufacture of preform rod
JPH0218333A (en) Heat treatment of porous base material
JPH0230633A (en) Production of matrix for optical fiber
JPS62230638A (en) Production of glass article