JPH0230633A - Production of matrix for optical fiber - Google Patents

Production of matrix for optical fiber

Info

Publication number
JPH0230633A
JPH0230633A JP18039988A JP18039988A JPH0230633A JP H0230633 A JPH0230633 A JP H0230633A JP 18039988 A JP18039988 A JP 18039988A JP 18039988 A JP18039988 A JP 18039988A JP H0230633 A JPH0230633 A JP H0230633A
Authority
JP
Japan
Prior art keywords
glass
atmosphere
base material
matrix
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18039988A
Other languages
Japanese (ja)
Inventor
Masumi Ito
真澄 伊藤
Hiroshi Yokota
弘 横田
Toshio Danzuka
弾塚 俊雄
Masahiro Takagi
政浩 高城
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP18039988A priority Critical patent/JPH0230633A/en
Publication of JPH0230633A publication Critical patent/JPH0230633A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/01446Thermal after-treatment of preforms, e.g. dehydrating, consolidating, sintering

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Thermal Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Abstract

PURPOSE:To obtain the title matrix freed from bubbles or crystal grains by treating, in an atmosphere of inert gas of specified partial pressure, a sintered form produced by sintering a porous glass matrix in a He atmosphere. CONSTITUTION:A burner 2 for synthesizing glass fine particles is fed with a glass material gas, combustion gas and auxiliary combustion gas to subject said glass material gas to flame hydrolysis with a flame 3 from the burner 2, and the resultant glass fine particles produced are accumulated on the tip of a rotating starting material 4 to obtain a porous glass matrix 5. Thence, this matrix 5 is heated in a He atmosphere at 1,500-1,650 deg.C into a transparently vitrified sintered form, which is then heat-treated in an atmosphere of an inert gas consisting of N2 or Ar >= 0.8 in the partial pressure at 800-1,000 deg.C for >=180min.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は光ファイバ用母材の製造方法に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for manufacturing an optical fiber preform.

[従来の技術] 一般に火炎加水分解反応を用いた光ファイバ用多孔質ガ
ラス母材(以下多孔質母材と略記する)の製造において
は、第1−1図に示すように反応容器l内にてバーナ2
から燃焼ガス、ガラス原料ガラス等を混合噴出し、酸水
素火炎3中において上記ガラス原料が加水分解反応する
ことにより生じたガラス微粒子を回転する出発材の先端
に堆積させ、回転軸4の方向に多孔質母材5を成長させ
る方法が用いられている。そして、多孔質母材5を第1
−2図に示すようなHe雰囲気とした加熱炉内に入れ、
回転させながら徐々にヒータ6内を下降させることによ
り焼結して透明ガラス化した焼結体(透明ガラス母材)
を製造している。
[Prior Art] Generally, in the production of a porous glass base material for optical fibers (hereinafter abbreviated as porous base material) using a flame hydrolysis reaction, as shown in Fig. burner 2
A mixture of combustion gas, frit glass, etc. is ejected from the oxyhydrogen flame 3, and glass fine particles generated by a hydrolysis reaction of the glass raw material are deposited on the tip of the rotating starting material, and are deposited in the direction of the rotating shaft 4. A method of growing a porous base material 5 is used. Then, the porous base material 5 is
- Place it in a heating furnace with a He atmosphere as shown in Figure 2,
A sintered body (transparent glass base material) that is sintered and made into transparent glass by gradually lowering it inside the heater 6 while rotating it.
is manufactured.

多孔質母材の気孔率(多孔質母材1 cm3中の気孔の
体積%)は80〜90%程度であり、焼結時に気孔が完
全に消滅するには、He雰囲気で焼結することが必須と
されている。これは、焼結の進行過程において、ガラス
微粒子の粒子と粒子の境界すなわち粒界に存在する気孔
が成長するか消滅するかは、気孔内のガスの透過速度に
依存している。つまり、透過速度の値の大きいガスを含
む気孔はど消滅し易く、Heガスはその他のガスに比べ
て石英ガス中の透過速度が大きいからである。
The porosity of the porous base material (volume % of pores in 1 cm3 of the porous base material) is approximately 80 to 90%, and in order to completely eliminate the pores during sintering, sintering in a He atmosphere is necessary. It is considered mandatory. This is because, in the progressing process of sintering, whether pores existing at the boundaries between particles of glass fine particles, that is, grain boundaries, grow or disappear depends on the permeation rate of gas within the pores. In other words, pores containing a gas with a high permeation rate are easily eliminated, and He gas has a higher permeation rate in quartz gas than other gases.

[発明が解決しようとする課題] 上記の従来法により製造された焼結体(透明ガラス母材
)は、次の線引き工程において外径100〜200μ−
の細い光ファイバに引き伸ばされる。
[Problems to be Solved by the Invention] The sintered body (transparent glass base material) manufactured by the above conventional method has an outer diameter of 100 to 200 μ-
is stretched into a thin optical fiber.

この線引工程では焼結体をまず適当な外径の線引可能形
状に加工する必要があるため、1900℃以上の高温に
加熱して延伸成形される。このとき、焼結体が上記従来
法による製造工程において、例えば気泡、結晶粒、不純
物等の微小な欠点を有して製造されていると、これらの
欠点を核として、延伸成形後の母材(線引用母材)中に
直径1〜51程度の気泡が発生し、製品歩留まりを低下
させるという問題があった。このような大型の気泡が存
在する線引用母材を線引すると、ファイバの断線をきた
し、安定な製造が不可能である。
In this wire drawing step, the sintered body must first be processed into a shape that can be drawn with an appropriate outer diameter, so it is heated to a high temperature of 1900° C. or higher and then stretched. At this time, if the sintered body is manufactured with minute defects such as bubbles, crystal grains, impurities, etc. in the manufacturing process using the above conventional method, these defects will be used as the core of the base material after stretch forming. There was a problem in that bubbles with a diameter of about 1 to 51 mm were generated in the (line drawing base material), reducing the product yield. If a wire drawing base material containing such large bubbles is drawn, the fiber will break, making stable production impossible.

本発明の目的は、上記の問題点を解消して、延伸成形し
て線引用母材としても気泡や結晶粒がなく、安定なファ
イバ製造を可能とする光ファイバ用母材の製造方法を提
供することにあり、特にその多孔質母材から透明ガラス
母材を得る方法の改良にある。
An object of the present invention is to solve the above-mentioned problems and provide a method for producing an optical fiber preform that is free from bubbles and crystal grains even when stretched and formed as a wire drawing preform, making it possible to produce a stable fiber. The object of the present invention is to improve, in particular, a method for obtaining a transparent glass preform from a porous preform.

「課題を解決するための手段] 本発明者等は鋭意研究の結果、多孔質母材をI4C雰囲
気中で焼結して得られた焼結体を、さらに不活性ガス(
Haを除く)雰囲気中で加熱処理すれば、その後の延伸
成形工程における気泡の発生が低減できることを見出し
て、本発明に到達した。
"Means for Solving the Problems" As a result of intensive research, the present inventors have obtained a sintered body obtained by sintering a porous base material in an I4C atmosphere.
The present invention was achieved based on the discovery that the generation of bubbles in the subsequent stretch-molding process can be reduced by heat treatment in an atmosphere (excluding Ha).

すなわち、本発明は回転する出発材の先端にガラス微粒
子を堆積させて多孔質ガラス母材を合成し、該多孔質ガ
ラス母材をHe雰囲気下で焼結して透明ガラス化した後
に、得られた焼結体を不活性ガス(ト(eを除く)の分
圧が0.8 気圧以上の雰囲気下で熱処理することを特
徴とする光ファイバ用母材の製造方法である。
That is, the present invention synthesizes a porous glass base material by depositing glass fine particles on the tip of a rotating starting material, and then sintering the porous glass base material in a He atmosphere to turn it into transparent glass. This method of manufacturing an optical fiber preform is characterized in that a sintered body is heat-treated in an atmosphere of an inert gas (excluding e) having a partial pressure of 0.8 atmospheres or more.

本発明の特に好ましい実施態様としては、不活性ガスが
N、又は八rであり、不活性ガスの分圧が0.8 気圧
以」二の雰囲気下での熱処理が800〜+ 000℃の
温度範囲内で180分間以上保持する上記方法が挙げら
れる。
In a particularly preferred embodiment of the present invention, the inert gas is N or 8r, and the heat treatment is carried out at a temperature of 800 to + 000°C under an atmosphere in which the partial pressure of the inert gas is 0.8 atm or less. The above-mentioned method of holding within the range for 180 minutes or more is exemplified.

以下、図面を参照して本発明を具体的に説明すると、本
発明において多孔質母材を製造し、これを焼結して焼結
体とするところまでは、従来技術により行う。すなわち
、第1−1図に示す構成で、ガラス微粒子合成用バーナ
2に例えばS iC1,等のガラス原料ガス、H,、C
H,等の燃焼ガス、02等の助燃ガスを導入して、この
バーナ2の火炎3内で上記ガラス原料を火炎加水分解反
応させることによりガラス微粒子を生成させて、これを
回転する出発材4の先端に堆積させて多孔質母材5を合
成する。ガラス原料中にGeC1,等の添加物を加える
ことも差し支えない。
Hereinafter, the present invention will be described in detail with reference to the drawings. In the present invention, the steps from manufacturing a porous base material to sintering it to form a sintered body are performed using conventional techniques. That is, with the configuration shown in FIG.
By introducing a combustion gas such as H, etc. and an auxiliary combustion gas such as 02, the glass raw material is subjected to a flame hydrolysis reaction in the flame 3 of this burner 2 to produce glass fine particles, which are rotated as a starting material 4. The porous base material 5 is synthesized by depositing it on the tip of the porous base material 5. Additives such as GeCl may also be added to the glass raw material.

次に第12図に示したような加熱炉中で、He雰囲気下
、温度1500〜1650℃に加熱して多孔質母材5を
透明ガラス化して焼結体とする。
Next, in a heating furnace as shown in FIG. 12, the porous base material 5 is heated to a temperature of 1,500 to 1,650 DEG C. in a He atmosphere to turn it into transparent glass and form a sintered body.

図はいわゆるゾーン加熱炉であるが、均熱炉を用いても
よい。
Although the figure shows a so-called zone heating furnace, a soaking furnace may also be used.

本発明の特徴とするところは、この透明化した焼結体を
、さらに第1−3図に示すように不活性ガス(Heを除
く)の分圧が0.8 気圧以上の雰囲気、好ましくはN
、又はArの分圧が0.8 気圧以上の雰囲気下で80
0〜1000℃の温度範囲内で加熱処理するところにあ
る。処理時間は180分間以上が好ましい。加熱処理の
温度が高いほど、又、処理時間が長いほど気泡低減効果
は大きくなるが、焼結体の形状、焼結条件等により十分
である条件は異なり、本発明者等の実験では通常800
〜1000℃で180分間以上保持すれば、気泡の発生
は確実に防止できた。
A feature of the present invention is that the transparent sintered body is further heated in an atmosphere where the partial pressure of an inert gas (excluding He) is 0.8 atm or more, preferably, as shown in Figures 1-3. N
, or in an atmosphere where the partial pressure of Ar is 0.8 atm or more.
It involves heat treatment within a temperature range of 0 to 1000°C. The treatment time is preferably 180 minutes or more. The higher the heat treatment temperature and the longer the treatment time, the greater the bubble reduction effect, but the conditions that are sufficient vary depending on the shape of the sintered body, sintering conditions, etc., and in experiments conducted by the present inventors, it is usually
If the temperature was maintained at ~1000°C for 180 minutes or more, the generation of bubbles could be reliably prevented.

[作用] 従来法により、多孔質母材をHe雰囲気下で焼結して焼
結体とした後延伸加工して得たガラスロッド中に発生し
た気泡をガス分析したところ、そのY成分はHeである
と判明した。この事実から、焼結時にガラス内に溶解し
たHeが延伸加工時に発泡することが気泡発生の原因と
考えられる。
[Function] Gas analysis of bubbles generated in a glass rod obtained by sintering a porous base material in a He atmosphere to form a sintered body and then drawing it using a conventional method revealed that the Y component was He. It turned out to be. From this fact, it is considered that the bubble generation is caused by He dissolved in the glass during sintering and foaming during stretching.

一般にガラス中への気体の溶解度は温度の関数であり、
高温になるほど小さくなる傾向がある。
In general, the solubility of gases in glass is a function of temperature;
It tends to become smaller as the temperature increases.

したがって、ガラスに含まれるガス量よりも溶解度が小
になるまで温度を高くすると、ガス中のガスは過飽和に
なり、ガラス中に湧きでてくる。このときのガラス温度
がガラスの軟化点以上の場合に、ガスは微小な欠陥を中
心の核として気泡としてガラス内に発泡すると考えられ
ている。光ファイバ用母材(透明ガラス化した焼結体等
)の延伸工程では、焼結温度より高い1700°C以上
の高温にしてガラスを十分に軟化させるので、焼結時に
ガラス内に閉じ込められたH eが気泡となってガラス
中に気化することは十分に考えられることである。
Therefore, when the temperature is raised until the solubility becomes smaller than the amount of gas contained in the glass, the gas in the gas becomes supersaturated and bubbles up into the glass. It is believed that when the glass temperature at this time is equal to or higher than the softening point of the glass, the gas bubbles into the glass as bubbles centered around minute defects. In the process of drawing optical fiber base materials (transparent vitrified sintered bodies, etc.), the glass is heated to a high temperature of 1700°C or higher, which is higher than the sintering temperature, to sufficiently soften the glass. It is quite conceivable that He becomes bubbles and evaporates into the glass.

そこで、本発明者等は延伸工程におけるガラス中の気泡
発生の防止のためには、焼結された透明ガラス体中のH
e 含、flLを延伸温度におけるガラス中へのHeの
溶解度以下に下げておくことが仔効である、と考えつい
た。例えば、1500’Cで焼結したガラス1す材を2
000℃で延伸加工したとする。Heのガラス中への溶
解度は1600℃のとき1.0 であるとすると、20
00℃てせは0゜96程度となる。したがって、延伸工
程における気泡の発生を防止するには、焼結体中のHe
の約4%を除去すれば十分である。
Therefore, in order to prevent the generation of bubbles in the glass during the drawing process, the present inventors have determined that
We have come up with the idea that it is effective to lower the He content and flL below the solubility of He in the glass at the drawing temperature. For example, one glass material sintered at 1500'C is
Suppose that the stretching process was carried out at 000°C. Assuming that the solubility of He in glass is 1.0 at 1600°C, it is 20
The temperature at 00°C is approximately 0°96. Therefore, in order to prevent the generation of bubbles in the drawing process, it is necessary to
It is sufficient to remove about 4% of the

このようにガラス中から気体を除去するには、除去対象
ガス不含の雰囲気中に当該ガラスを保持することにより
、ガラス表面から対象ガスを雰囲気(外界)へ蒸発させ
る方法が有効である。この外界雰囲気としては、l−(
e以外の不活性ガス、すなわちN、又はArが分圧0,
8 気圧以上の不活性ガスが好ましく、さらにコストが
安(、ガラスへの溶解性が小さい点から、N7分圧0,
8 気圧以」二の空気を雰囲気として用いることもでき
る。
In order to remove the gas from the glass in this way, an effective method is to hold the glass in an atmosphere that does not contain the target gas to be removed, and then evaporate the target gas from the glass surface into the atmosphere (outside world). This external atmosphere is l-(
Inert gas other than e, that is, N or Ar, has a partial pressure of 0,
An inert gas with a pressure of 8 atmospheres or more is preferable, and is also inexpensive (because of its low solubility in glass, N7 partial pressure of 0,
Air with a pressure of less than 8 atmospheres can also be used as the atmosphere.

また、ガラス内部に存在するガスがガラス表面に拡散移
動する速度を高めるためには、ある程度の温度が必要で
あり、この温度範囲は800〜1000℃が適切である
。800℃未満では十分な脱He効果が得られず、10
00℃を越えるとガラス母材表面の失透、不純物の拡散
、熱変形等の問題が生じ、好ましくない。さらに、ガラ
ス母材内部のHeが母材表面方向に拡散し、ガラス母材
全域において所望のHefi度以下とするには、加熱時
間180分間以上を要することが判った。
Further, in order to increase the rate at which the gas existing inside the glass diffuses and moves to the glass surface, a certain degree of temperature is required, and a suitable temperature range is 800 to 1000°C. At temperatures below 800°C, a sufficient He removal effect cannot be obtained;
If the temperature exceeds 00°C, problems such as devitrification of the surface of the glass base material, diffusion of impurities, and thermal deformation occur, which is not preferable. Furthermore, it has been found that He within the glass base material diffuses toward the surface of the base material, and that a heating time of 180 minutes or more is required to reduce the Hefi degree to a desired level or less throughout the glass base material.

第2−1図に、ガラス焼結体をNff1 O,8気圧雰
囲気下で加熱温度は800℃の一定に保持して処理した
ときの、処理時間と気泡発生数の関係を調べた結果を示
す。第2−1図から温度800°Cでは180分間以、
Hの処理で気泡を低減できることが判る。
Figure 2-1 shows the results of investigating the relationship between the processing time and the number of bubbles generated when a glass sintered body was processed in an atmosphere of Nff1 O and 8 atm while the heating temperature was kept constant at 800°C. . From Figure 2-1, at a temperature of 800°C, for more than 180 minutes,
It can be seen that bubbles can be reduced by H treatment.

また、N、雰囲気0.8 気圧で処理時間を180分間
の一定にして、処理温度を変えた時の気泡発生数を調べ
た結果を第2−2図に示す。この図から、温度800℃
以」二で十分な気泡低減効果が得られることが判る。な
お、温度+ 200℃において同様に処理したところ、
気泡発生は見られなかったものの、母材表面が失透する
問題が生じた。
Figure 2-2 shows the results of examining the number of bubbles generated when the treatment temperature was varied while the treatment time was kept constant at 180 minutes in a nitrogen atmosphere of 0.8 atm. From this figure, the temperature is 800℃
It can be seen that a sufficient bubble reduction effect can be obtained with the following steps. In addition, when treated in the same manner at a temperature of +200°C,
Although no bubbles were observed, a problem occurred in which the surface of the base material became devitrified.

[実施例] 気体のガラス原料としてS iC1,を、燃焼バーナの
酸水素火炎内に導入してガラス微粒子を生成させ、これ
を第11図のように回転する出発材先端に堆積させて回
転軸方向に成長させることにより、直径150 ffi
+s、長さ700mmの光ファイバ用多孔質母材を合成
した。これを第12図のようにHe雰囲気100%の加
熱炉内に挿入し、回転させなからヒータ内を徐々に下降
させて加熱し、直径7 ff1e、長さ400mmの焼
結体を得た。この焼結体を肉眼で観察したところ、特に
気泡の残留は見出し得なかった。しかし、この焼結体を
2000℃で30分間はどかけ°C延伸工程に付したと
ころ、延伸加工して得たガラスロッド中には4ケの気泡
が生じていた(比較例)。
[Example] SiC1, as a gaseous glass raw material, is introduced into the oxyhydrogen flame of a combustion burner to generate glass fine particles, which are deposited on the tip of the rotating starting material as shown in Fig. 11 and then rotated around the rotating shaft. By growing in the direction of 150 ffi diameter
A porous base material for an optical fiber having a length of +s and a length of 700 mm was synthesized. This was inserted into a heating furnace with a 100% He atmosphere as shown in FIG. 12, and heated by gradually lowering the inside of the heater without rotating, to obtain a sintered body with a diameter of 7 ff1e and a length of 400 mm. When this sintered body was visually observed, no residual air bubbles were found. However, when this sintered body was subjected to a stretching process at 2000°C for 30 minutes, four bubbles were found in the glass rod obtained by the stretching process (comparative example).

そこで、本発明の実施例として、」−記比較例と同様に
作成した焼結体を第1−3図のようにN、0゜8気圧の
雰囲気でヒータ7により800℃に加熱された加熱炉中
で5時間保持する処理を行った。
Therefore, as an example of the present invention, a sintered body prepared in the same manner as the comparative example described above was heated to 800°C by a heater 7 in an atmosphere of N, 0° and 8 atm as shown in Figure 1-3. A treatment was performed in which the sample was held in a furnace for 5 hours.

次にこの熱処理した焼結体を比較例と同様に2000℃
で延伸したところ、成形されたガラス中に気泡は1点も
見出されなかった(実施例)。
Next, this heat-treated sintered body was heated to 2000°C as in the comparative example.
When the glass was stretched, not a single bubble was found in the formed glass (Example).

以−にの結果から、本発明の熱処理が焼結体(透明ガラ
ス母材)のその後の延伸成形工程での気泡の発生成長の
低減に非常に有効であることが明らかに判る。
From the above results, it is clearly seen that the heat treatment of the present invention is very effective in reducing the generation and growth of bubbles in the subsequent stretch forming process of the sintered body (transparent glass base material).

[発明の効果] 以上説明したように、出発材の先端に火炎加水分解反応
によるガラス微粒子を堆積させて合成した多孔質母材を
He雰囲気下で焼結し、得られた焼結体を高温で延伸加
工するに先立ち、Hc以外の不活性ガス雰囲気下で熱処
理することにより、本発明は延伸加工時にガラス母材中
に気泡が発生することを防+F、でき、光ファイバ用母
材製造の歩留まりを著しく向上できるとともに、良質な
線引用母材を得ることができる。従って本発明による線
引用母材を用いれば、断線等な(、安定して光ファイバ
を製造することが可能となる。
[Effects of the Invention] As explained above, a porous base material synthesized by depositing glass particles by a flame hydrolysis reaction on the tip of a starting material is sintered in an He atmosphere, and the obtained sintered body is heated at a high temperature. By heat-treating in an inert gas atmosphere other than Hc before stretching, the present invention can prevent bubbles from forming in the glass base material during the stretching process, making it possible to improve the production of optical fiber base materials. The yield can be significantly improved and a high-quality wire base material can be obtained. Therefore, by using the wire-coating base material according to the present invention, it is possible to stably manufacture optical fibers without problems such as disconnection.

【図面の簡単な説明】[Brief explanation of the drawing]

第1−1図乃至第1−3図は本発明の実施態様を説明す
る図であって、第1〜1図は多孔質母材の作成工程、第
12図はHe雰囲気下で加熱して焼結体とする]−程、
第1−3図はHe以外の不活性ガス中で熱処理する工程
の概略説明図である。第2−1図は処理時間と気泡発生
個数の関係を示す図表、第2−2図は処理温度と気泡発
生個数の関係を示す図表である。
1-1 to 1-3 are diagrams explaining embodiments of the present invention, in which FIGS. 1 to 1 are steps for creating a porous base material, and FIG. sintered body] - Cheng,
1-3 are schematic explanatory diagrams of the process of heat treatment in an inert gas other than He. FIG. 2-1 is a chart showing the relationship between the processing time and the number of bubbles generated, and FIG. 2-2 is a chart showing the relationship between the processing temperature and the number of bubbles generated.

Claims (1)

【特許請求の範囲】 1)回転する出発材の先端にガラス微粒子を堆積させて
多孔質ガラス母材を合成し、該多孔質ガラス母材をHe
雰囲気下で焼結して透明ガラス化した後に、得られた焼
結体を不活性ガス(Heを除く)の分圧が0.8以上の
雰囲気下で熱処理することを特徴とする光ファイバ用母
材の製造方法。 2)不活性ガスの分圧が0.8以上の雰囲気下での熱処
理が、800〜1000℃の温度範囲内で180分間以
上保持することを特徴とする特許請求の範囲第1項記載
の光ファイバ用母材の製造方法。 3)不活性ガスがN_2又はArである特許請求の範囲
第1項記載の光ファイバ用母材の製造方法。
[Claims] 1) A porous glass base material is synthesized by depositing glass particles on the tip of a rotating starting material, and the porous glass base material is heated with He
For optical fibers, which is characterized in that after sintering in an atmosphere to make it transparent and vitrifying, the obtained sintered body is heat-treated in an atmosphere in which the partial pressure of an inert gas (excluding He) is 0.8 or more. Method of manufacturing base material. 2) The light according to claim 1, wherein the heat treatment in an atmosphere with an inert gas partial pressure of 0.8 or more is maintained within a temperature range of 800 to 1000°C for 180 minutes or more. Method for manufacturing fiber base material. 3) The method for manufacturing an optical fiber preform according to claim 1, wherein the inert gas is N_2 or Ar.
JP18039988A 1988-07-21 1988-07-21 Production of matrix for optical fiber Pending JPH0230633A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18039988A JPH0230633A (en) 1988-07-21 1988-07-21 Production of matrix for optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18039988A JPH0230633A (en) 1988-07-21 1988-07-21 Production of matrix for optical fiber

Publications (1)

Publication Number Publication Date
JPH0230633A true JPH0230633A (en) 1990-02-01

Family

ID=16082559

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18039988A Pending JPH0230633A (en) 1988-07-21 1988-07-21 Production of matrix for optical fiber

Country Status (1)

Country Link
JP (1) JPH0230633A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0626351A1 (en) * 1993-05-24 1994-11-30 Litespec, Inc. Process for sintering porous optical fibre preforms

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0626351A1 (en) * 1993-05-24 1994-11-30 Litespec, Inc. Process for sintering porous optical fibre preforms

Similar Documents

Publication Publication Date Title
US5547482A (en) Method of making fused silica articles
JPH0478568B2 (en)
JPS5844619B2 (en) Manufacturing method of optical fiber base material
KR940011118B1 (en) Method of producing glass preform for optical fiber
RU2179159C2 (en) Method of cutting down number of bubbles in glass product (variants) and glass product
KR890001123B1 (en) Method for crystalization of glass preform
JPH0230633A (en) Production of matrix for optical fiber
JPS63201025A (en) Production of high-purity transparent glass
JPH06263468A (en) Production of glass base material
JP3188517B2 (en) Manufacturing method of quartz glass
JP2002160930A (en) Porous quartz glass and method of producing the same
JPH0226848A (en) Production of high-purity quartz glass
JP4230073B2 (en) Method for producing aluminum-added glass base material
JPH0478567B2 (en)
JP2620275B2 (en) Glass manufacturing method
JPH05221674A (en) Production of preform of optical fiber
JP2828284B2 (en) Method for producing rare earth element doped glass
JP2002249342A (en) Glass body and method for manufacturing it
JPH03232732A (en) Production of glass preform for hydrogen-resistant optical fiber
WO2004101457A1 (en) Process for producing glass parent material of optical fiber
JP2003286034A (en) Method for manufacturing glass preform
JPS63176325A (en) Production of glass preform for optical fiber
JPS5854097B2 (en) Manufacturing method of optical fiber base material
CN117486480A (en) Preparation method of deep fluorine-doped material for low-loss optical fiber
JP2004338992A (en) Method for manufacturing glass preform