JPS5924743B2 - Manufacturing method of optical fiber base material - Google Patents

Manufacturing method of optical fiber base material

Info

Publication number
JPS5924743B2
JPS5924743B2 JP975680A JP975680A JPS5924743B2 JP S5924743 B2 JPS5924743 B2 JP S5924743B2 JP 975680 A JP975680 A JP 975680A JP 975680 A JP975680 A JP 975680A JP S5924743 B2 JPS5924743 B2 JP S5924743B2
Authority
JP
Japan
Prior art keywords
optical fiber
base material
porous glass
manufacturing
rod
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP975680A
Other languages
Japanese (ja)
Other versions
JPS56109833A (en
Inventor
隆夫 枝広
和夫 真田
浩一 稲田
長 福田
隆 森山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP975680A priority Critical patent/JPS5924743B2/en
Publication of JPS56109833A publication Critical patent/JPS56109833A/en
Publication of JPS5924743B2 publication Critical patent/JPS5924743B2/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/01446Thermal after-treatment of preforms, e.g. dehydrating, consolidating, sintering
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/30Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi
    • C03B2201/31Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi doped with germanium

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Thermal Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Description

【発明の詳細な説明】 本発明は、VAD法により光ファイバ母材を製造する方
法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method of manufacturing an optical fiber preform by a VAD method.

従来より、光通信に使用される光ファイバは各種の方法
により製造されているが、VAD法が最近注目されつつ
ある。
Conventionally, optical fibers used for optical communications have been manufactured by various methods, but the VAD method has recently been attracting attention.

VAD法(気相軸付法)は、回転しながら上方向に移動
する棒状基材の下端に煤状ガラス微粒子を付着堆積し、
棒状基材を引き上げながら煤状ガラス微粒子を軸方向に
成長させて棒状の多孔質ガラスラリフォームを形成した
後、所定の処理を施して光ファイバ母材を形成する方法
である。そして、この光ファイバ母材を紡糸して光ファ
イバを形成している。ところで、光ファイバ母材の一製
造法として、VAD法により多孔質ガラスラリフォーム
を形成した後、加熱して透明ガラス化し、延伸して延伸
ロッドを形成し、然る後この延伸ロッドに石英ジャケッ
トを設けて所定のコア/外径の比率を有する光ファイバ
母材を製造する方法がある。
In the VAD method (vapor phase attachment method), soot-like glass particles are attached and deposited on the lower end of a rod-shaped base material that moves upward while rotating.
In this method, soot-like glass particles are grown in the axial direction while pulling up a rod-shaped base material to form a rod-shaped porous glass lariform, and then a predetermined process is performed to form an optical fiber preform. Then, this optical fiber preform is spun to form an optical fiber. By the way, as a manufacturing method for an optical fiber preform, a porous glass lariform is formed by the VAD method, heated to make it transparent, and stretched to form a stretched rod, and then a quartz jacket is attached to the stretched rod. There is a method of manufacturing an optical fiber preform having a predetermined core/outer diameter ratio by providing a predetermined core/outer diameter ratio.

しかしながら、この方法で製造された光ファイバ母材を
紡糸して得られた光ファイバは、光伝送損失が2dB/
に1n〜5dB/ klnと大きくかつバラツキがあ
るというのが実情である。本発明者等がその原因を調べ
たところ、延伸ロッド表面に遊離した状態で存在するG
e02やGeOが高い蒸気圧を有するために高温での紡
糸時に蒸気となり、延伸ロッドと石英ジャケットとの境
界面において成長して泡となり、その結果それらの境界
面に間隙が生じるためであり、特に石英ジャケット内壁
に損傷がある場合には、上記のGeO2やGeOの泡に
より損傷が拡大してしまい、光伝送損失の大きな光ファ
イバとなつてしまうことが判明した。
However, the optical fiber obtained by spinning the optical fiber preform manufactured by this method has an optical transmission loss of 2 dB/
The reality is that there is a large variation between 1n and 5dB/kln. When the inventors investigated the cause of this, they found that G exists in a free state on the surface of the stretching rod.
This is because e02 and GeO have high vapor pressure, so they turn into vapor during spinning at high temperatures, grow into bubbles at the interface between the drawing rod and the quartz jacket, and as a result, gaps are created at the interface between them. It has been found that if the inner wall of the quartz jacket is damaged, the damage is amplified by the above-mentioned GeO2 and GeO bubbles, resulting in an optical fiber with a large optical transmission loss.

本発明者等は、これらの欠点を解消するために更に鋭意
研究を行つた結果、多孔質ガラスラリフォームをH2雰
囲気中で熱処理して多孔質ガラスラリフォーム表面近僕
におけるe02やGeOを蒸発除去し、多孔質ガラスラ
リフォーム外側近傍にSiO2の多い層を形成し、然る
後通常の爾後処理を施して光フアイバ母材を形成してか
ら光フアイバを形成すると、光伝送損失の少ない光フア
イバが形成されることを知見した。本発明はこの知見に
基づいて完成されたもので、その特徴はVAD法により
多孔質ガラスプリフオームを形成した後、透明ガラス化
し、延伸し、然る後石英ジヤケツトを設けて光フアイバ
母材を製造するに際し、上記多孔質ガラスプリフオーム
をH2雰囲気中で熱処理することにある。以下、本発明
を詳細に説明する。
As a result of further intensive research to eliminate these drawbacks, the present inventors heat-treated porous glass lariform in an H2 atmosphere to evaporate and remove e02 and GeO near the surface of porous glass lariform. However, if a layer containing a large amount of SiO2 is formed near the outside of the porous glass lariform, and then normal post-treatment is performed to form an optical fiber base material and then an optical fiber is formed, an optical fiber with low optical transmission loss can be obtained. was found to be formed. The present invention was completed based on this knowledge, and its characteristics are that after forming a porous glass preform by the VAD method, it is made into transparent glass, stretched, and then a quartz jacket is provided to form an optical fiber base material. During manufacturing, the porous glass preform is heat treated in an H2 atmosphere. The present invention will be explained in detail below.

先ず、VAD法により、回転しながら上方向に移動する
棒状基材の下端に煤状ガラス微粒子を付着堆積し、棒状
基材を引き上げながら煤状ガラス微粒子を軸方向に成長
させて棒状の多孔質ガラスプリフオームを形成する。
First, by the VAD method, soot-like glass particles are deposited on the lower end of a rod-shaped base material that moves upward while rotating, and the soot-like glass particles are grown in the axial direction while pulling up the rod-shaped base material to form a rod-shaped porous material. Form a glass preform.

次いで、上記のようにして形成された多孔質ガラスプリ
フオームをH2雰囲気中で800〜1000℃程度の高
温において熱処理する。
Next, the porous glass preform formed as described above is heat treated at a high temperature of about 800 to 1000° C. in an H2 atmosphere.

すると、多孔質ガラスプリフオーム表面近傍に遊離した
状態で存在するGeO2やGeOはより揮発されやすい
形で蒸発除去され、多孔質ガラスプリフオーム外側近傍
にSiO2の多い層が形成される。次いで、上記のよう
にH2雰囲気中で熱処理された多孔質ガラスプリフオー
ムを加熱して透明ガラス化し、延伸して延伸ロツドを形
成し、この延伸ロツドに石英ジヤケツトを設けてから加
熱融着して光フアイバ母材を形成する。然る後、光フア
イバ母材を紡糸して光フアイバを形成する。この方法に
より、ステツプ型、二乗分布型いずれの光フアイバも形
成できる。ところで、前記のように本発明においては、
多孔質ガラスプリフオームをH2雰囲気中で熱処理して
多孔質ガラスプリフオーム表面近傍のGeO2やGeO
を蒸発除去し、その外側近傍にSiO2の多い層を形成
している。
Then, GeO2 and GeO existing in a free state near the surface of the porous glass preform are evaporated and removed in a form that is more easily volatilized, and a layer containing a large amount of SiO2 is formed near the outside of the porous glass preform. Next, the porous glass preform heat-treated in an H2 atmosphere as described above is heated to make it transparent, stretched to form a stretched rod, and a quartz jacket is provided on the stretched rod, which is then heated and fused. Form an optical fiber base material. Thereafter, the optical fiber preform is spun to form an optical fiber. By this method, both step type and square distribution type optical fibers can be formed. By the way, as mentioned above, in the present invention,
The porous glass preform is heat-treated in an H2 atmosphere to remove GeO2 and GeO near the surface of the porous glass preform.
is removed by evaporation, and a layer containing a large amount of SiO2 is formed near the outside.

このため、石英ジヤケツトを施した後紡糸処理を施して
も、延伸ロツドの外側部分と石英ジヤケツトとは同材質
となるので、GeO2やGeOによる泡は発生しないだ
けではなく局部的膨張も生じず、それらの境界面には間
隙は生じない。また、仮に石英ジヤケツトに損傷があつ
たとしても損傷が拡大するような不都合は生じず、光伝
送損失の少ない光フアイバが得られる。以上説明したよ
うに、本発明においては、VAD法により形成された多
孔質ガラスプリフオームをH2雰囲気中で熱処理してい
る。従つて、熱処理後の多孔質ガラスプリフオームを透
明ガラス化し、延伸し、次いで石英ジヤケツトを設けて
光フアイバ母材を製造し、然る後光フアイバ母材を高温
で紡糸して光フアイバを製造する際にも、従来法のよう
にGeO2やGeOによる泡は生じず、延伸ロツドと石
英ジヤケツトとの境界付近には間隙は生じず、光伝送損
失の少ない光フアイバが確実に形成される。また、石英
ジヤケツトに損傷があつたとしてもその損傷が拡大され
るような不都合が生じないため、規格品の石英ジヤケツ
トをそのまま何の処理も施さずに使用でき、従つて安価
な製造コストで光フアイバを製造できる等の実用的効果
も奏される。以下、実施例を示し、本発明を具体的に説
明する。
Therefore, even if a spinning process is performed after applying a quartz jacket, the outer part of the drawing rod and the quartz jacket are made of the same material, so not only no bubbles due to GeO2 or GeO are generated, but also no local expansion occurs. No gaps occur at their interfaces. Further, even if the quartz jacket is damaged, the damage will not be magnified, and an optical fiber with low optical transmission loss can be obtained. As explained above, in the present invention, a porous glass preform formed by the VAD method is heat-treated in an H2 atmosphere. Therefore, the porous glass preform after heat treatment is made into transparent glass, stretched, and then provided with a quartz jacket to produce an optical fiber preform, and the optical fiber preform is spun at a high temperature to produce an optical fiber. During this process, unlike the conventional method, no bubbles are generated due to GeO2 or GeO, and no gaps are formed near the boundary between the drawing rod and the quartz jacket, and an optical fiber with low optical transmission loss is reliably formed. In addition, even if the quartz jacket is damaged, the damage will not be magnified, so standard quartz jackets can be used as is without any treatment, and therefore light production can be achieved at low manufacturing costs. Practical effects such as the ability to manufacture fibers are also achieved. EXAMPLES Hereinafter, the present invention will be specifically explained with reference to Examples.

〔実施例 1〕 先ず、VAD法により棒状基材の下端に直径60mmφ
、長さ300muの多孔質ガラスプリフオームを形成し
た。
[Example 1] First, a diameter of 60 mmφ was attached to the lower end of a rod-shaped base material using the VAD method.
, a porous glass preform with a length of 300 mu was formed.

次いで、第1図に示すように、この棒状基材1の下端に
形成された多孔質ガラスプリフオーム1aを加熱炉2と
石英管3とH2導入管4とH2排気管5とを具備する加
熱装置6内に配設し、次の条件下で熱処理した。H2流
速 21/分 熱処理温度 1200分C 熱処理時間 1時間 上記H2雰囲気中で熱処理された多孔質ガラスプリフオ
ームを加熱して透明ガラス化し、延伸して延伸ロツドを
形成し、この延伸ロツドに石英ジヤケツトを設け、然る
後加熱融着してから紡糸して光フアイバを形成した。
Next, as shown in FIG. 1, the porous glass preform 1a formed at the lower end of this rod-shaped base material 1 is heated in a heating furnace 2, a quartz tube 3, an H2 inlet pipe 4, and an H2 exhaust pipe 5. It was placed in apparatus 6 and heat treated under the following conditions. H2 flow rate: 21/min Heat treatment temperature: 1200 minutes C Heat treatment time: 1 hour The porous glass preform heat-treated in the above H2 atmosphere is heated to become transparent vitrified, stretched to form a stretched rod, and a quartz jacket is attached to this stretched rod. The fibers were then heat fused and spun to form an optical fiber.

長さ1500mの光フアイバの光伝送損失の波長特性を
測定したところ、第2図の曲線Aの結果が得られた。な
お、比較のため、H2雰囲気中で熱処理しない光フアイ
バについても光伝送損失の波長特性を測定したところ、
第2図の曲線Bが得られた。第2図の曲線A,Bを比較
することにより、未処理の曲線Bの場合には構造不完全
性による光伝送損失が高いのに対し、本発明の方法で処
理した光フアイバの曲線Aの場合には光伝送損失が少な
く、曲線Bの場合よりも約1dB/1Cff1減少して
いることがわかる。
When the wavelength characteristics of optical transmission loss of an optical fiber with a length of 1500 m were measured, the results shown by curve A in FIG. 2 were obtained. For comparison, we also measured the wavelength characteristics of optical transmission loss for an optical fiber that was not heat-treated in an H2 atmosphere.
Curve B in FIG. 2 was obtained. By comparing curves A and B in FIG. 2, it can be seen that the untreated curve B has a high optical transmission loss due to structural imperfections, whereas the curve A of the optical fiber treated by the method of the present invention has a high optical transmission loss due to structural imperfections. It can be seen that in the case of curve B, the optical transmission loss is small, and is reduced by about 1 dB/1Cff1 compared to the case of curve B.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の方法を実施するのに使用する加熱装置
の概略図、第2図は本発明の方法および従来法で得られ
る光フアイバの光伝送損失の波長特性を示すグラフであ
る。 1a・・・・・・多孔質ガラスプリフオーム、2・・・
・・・加熱炉、3・・・・・・石英管、6・・・・・・
加熱装置。
FIG. 1 is a schematic diagram of a heating device used to carry out the method of the present invention, and FIG. 2 is a graph showing wavelength characteristics of optical transmission loss of optical fibers obtained by the method of the present invention and the conventional method. 1a...Porous glass preform, 2...
...Heating furnace, 3...Quartz tube, 6...
heating device.

Claims (1)

【特許請求の範囲】[Claims] 1 VAD法により多孔質ガラスプリフォームを形成し
た後、この多孔質ガラスプリフォームをH_2雰囲気中
で熱処理し、ついでこれを透明ガラス化し、延伸し、然
る後石英ジャケットを設けて光ファイバ母材を製造する
ことを特徴とする光ファイバ母材の製法。
1 After forming a porous glass preform by the VAD method, this porous glass preform is heat-treated in an H_2 atmosphere, and then it is made into transparent glass and stretched. After that, a quartz jacket is provided and an optical fiber base material is formed. 1. A method for manufacturing an optical fiber base material, the method comprising: manufacturing an optical fiber base material.
JP975680A 1980-01-30 1980-01-30 Manufacturing method of optical fiber base material Expired JPS5924743B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP975680A JPS5924743B2 (en) 1980-01-30 1980-01-30 Manufacturing method of optical fiber base material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP975680A JPS5924743B2 (en) 1980-01-30 1980-01-30 Manufacturing method of optical fiber base material

Publications (2)

Publication Number Publication Date
JPS56109833A JPS56109833A (en) 1981-08-31
JPS5924743B2 true JPS5924743B2 (en) 1984-06-12

Family

ID=11729122

Family Applications (1)

Application Number Title Priority Date Filing Date
JP975680A Expired JPS5924743B2 (en) 1980-01-30 1980-01-30 Manufacturing method of optical fiber base material

Country Status (1)

Country Link
JP (1) JPS5924743B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59217640A (en) * 1983-05-26 1984-12-07 Fujikura Ltd Manufacture of optical fiber
JP2559395B2 (en) * 1987-02-17 1996-12-04 住友電気工業株式会社 High-purity transparent glass manufacturing method and manufacturing apparatus
JPH0653593B2 (en) * 1989-06-09 1994-07-20 信越石英株式会社 Synthetic silica glass optical body and method for producing the same
JPH04260630A (en) * 1991-02-08 1992-09-16 Sumitomo Electric Ind Ltd Production of preform optical fiber

Also Published As

Publication number Publication date
JPS56109833A (en) 1981-08-31

Similar Documents

Publication Publication Date Title
JP3202919B2 (en) Single mode optical transmission fiber and method of manufacturing the same
CA1271316A (en) Optical waveguide manufacture
US4082420A (en) An optical transmission fiber containing fluorine
JPH07223832A (en) Method of producing glass article and fiber optic coupler
JPH0123423B2 (en)
US4648891A (en) Optical fiber
US4643751A (en) Method for manufacturing optical waveguide
JP2007513862A (en) Alkali-doped optical fiber, preform thereof and method for producing the same
JPH044986B2 (en)
JP3941910B2 (en) Method for producing hydrogen-resistant optical waveguide fiber and soot preform as precursor thereof
US4242375A (en) Process for producing optical transmission fiber
US4165152A (en) Process for producing optical transmission fiber
CA1263807A (en) Optical waveguide manufacture
JP2003026438A (en) Method and apparatus for manufacturing optical fiber using improved oxygen stoichiometric ratio and deuterium exposure
CA1187291A (en) Method of making glass optical fiber
JPH10139460A (en) Heat treatment of silica-base glass
JPS5924743B2 (en) Manufacturing method of optical fiber base material
JPS591221B2 (en) Method for manufacturing rod-shaped base material for optical transmission fiber
JPH051221B2 (en)
US20040118164A1 (en) Method for heat treating a glass article
JPH01286932A (en) Production of optical fiber preform
JPS595532B2 (en) Manufacturing method of glass fiber for optical transmission
JPH03232732A (en) Production of glass preform for hydrogen-resistant optical fiber
JPS6131328A (en) Optical fiber
JPS6054936A (en) Manufacture of preform rod