JPS5853934B2 - Self-purifying catalyst - Google Patents

Self-purifying catalyst

Info

Publication number
JPS5853934B2
JPS5853934B2 JP16823879A JP16823879A JPS5853934B2 JP S5853934 B2 JPS5853934 B2 JP S5853934B2 JP 16823879 A JP16823879 A JP 16823879A JP 16823879 A JP16823879 A JP 16823879A JP S5853934 B2 JPS5853934 B2 JP S5853934B2
Authority
JP
Japan
Prior art keywords
catalyst
self
purifying catalyst
oxide
activated alumina
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP16823879A
Other languages
Japanese (ja)
Other versions
JPS5691840A (en
Inventor
健一 井浦
高弘 会田
幸雄 浅見
好則 片岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
JGC Catalysts and Chemicals Ltd
Original Assignee
Nikki Kagaku KK
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikki Kagaku KK, Tokyo Shibaura Electric Co Ltd filed Critical Nikki Kagaku KK
Priority to JP16823879A priority Critical patent/JPS5853934B2/en
Publication of JPS5691840A publication Critical patent/JPS5691840A/en
Publication of JPS5853934B2 publication Critical patent/JPS5853934B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Application Of Or Painting With Fluid Materials (AREA)
  • Catalysts (AREA)
  • Cookers (AREA)

Description

【発明の詳細な説明】 この発明は電気オーブンなどの調理装置の内面およびそ
の他に被覆して油を分解する自己浄化型触媒に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a self-purifying catalyst that is coated on the inner surface and other surfaces of cooking appliances such as electric ovens to decompose oil.

電気オーブンなどの食品調理装置の調理室内壁は、加熱
食品からの飛散物や発生ガスなどによって汚染されやす
く、特に飛散被着物が油脂性物質であるときは内壁の加
熱、高温雰囲気との接触などによって酸化し、さらには
固化して薬品や洗剤などを使用しても、その除去をいち
ぢるしく困難にする。
The walls of the cooking chamber of food cooking equipment such as electric ovens are easily contaminated by flying debris and gas generated from heated foods, and especially when the flying debris is oily and fat-based, heating of the inner wall and contact with a high-temperature atmosphere may occur. It oxidizes and solidifies, making it extremely difficult to remove even with chemicals and detergents.

食品調理装置であることを考慮すれば明らかなようにこ
のような調理食品に接近して位置する内壁を清潔にして
おくことは食品衛生上きわめて重要なことであることは
いうまでもない。
Considering that the device is a food cooking device, it goes without saying that it is extremely important for food hygiene to keep the inner wall located close to the cooked food clean.

このような観点から近時油、脂肪性物質などを接触的に
酸化分解する触媒物質を調理室内壁に被覆する研究が進
められている。
From this point of view, research is currently underway to coat the walls of the cooking chamber with a catalytic material that catalytically oxidizes and decomposes oil, fatty substances, and the like.

ところで油脂性物質を分解する触媒としてはすでに種々
のものが知られているが、食品調理装置に使用されるこ
の種の触媒としては、通常の触媒の作用のほかに特に少
量の使用によって十分に効果を発揮すること、つまり分
解能が良好であること、各種雑多な食品から飛散発生す
る各種の油、脂肪性物質、ガスなどに対して被毒作用が
少なく長寿命であること、人体に無害であることなどが
要求されるため、いまだこれに適合するものが得られて
いない。
By the way, various catalysts are already known for decomposing oily substances, but this type of catalyst used in food cooking equipment has the ability to effectively decompose oil and fat substances, in addition to its normal catalytic action, especially when used in small amounts. It must be effective, that is, it must have good resolution, it must have a long lifespan with little poisoning effect against various oils, fatty substances, gases, etc. that are scattered from various miscellaneous foods, and it must be harmless to the human body. Because certain things are required, we have not yet found anything that meets these requirements.

この発明は上記の点にかんがみて研究開発されたもので
あって、周期表第4周期の遷移金属から選ばれた少なく
とも1種の遷移金属の酸化物を高純度の活性アルミナに
担持させることにより、食品加熱調理に好適する油脂性
物質を分解する自己浄化型触媒としたものである。
This invention has been researched and developed in view of the above points, and is made by supporting high-purity activated alumina with an oxide of at least one transition metal selected from the transition metals in the fourth period of the periodic table. , a self-purifying catalyst that decomposes oily substances suitable for food cooking.

さらに評言すれば、この発明は担体として活性アルミナ
を用いた点に大きな意味を有する。
More specifically, this invention has great significance in that activated alumina is used as a carrier.

使用される活性アルミナは成分性状が油脂性物質の分解
能に大きく影響し、先ず第1に高純度であることを必要
とする。
The component properties of the activated alumina used greatly affect its ability to decompose oily substances, and first of all, it needs to be highly pure.

たとえば触媒として重量比で10%のMnO2を活性ア
ルミナが担持し、焼成温度400℃、3時間で触媒とし
たものを用いた結果を次の表−1に示す。
For example, the following Table 1 shows the results using a catalyst in which 10% by weight of MnO2 was supported by activated alumina and the catalyst was fired at a firing temperature of 400 DEG C. for 3 hours.

これかられかるように99.6%以上の純度の活性アル
ミナが適し、不純物としては特にアルカリ金属、珪素、
硫黄が好ましくなく、これらの何れかがNa20(又は
に20)。
As we will see, activated alumina with a purity of 99.6% or higher is suitable, and impurities include alkali metals, silicon,
Sulfur is not preferred, and any of these is Na20 (or Ni20).

S 1o2t SO3に換算して0.05重量φをこえ
て存在すると分解能をいちぢるしく劣化させることが判
明した。
It has been found that the presence of more than 0.05 weight φ in terms of S 1o2t SO3 significantly degrades the resolution.

油除去率は次のようにして測定した。The oil removal rate was measured as follows.

測定用試料板にサラダ油を20滴(約130η)滴下し
てのちオーブンで200℃、30分間加熱して測定し、
次の式によって油除去率を求めた。
After dropping 20 drops (approximately 130η) of salad oil onto a measurement sample plate, heat it in an oven at 200°C for 30 minutes and measure it.
The oil removal rate was determined using the following formula.

このような高純度活性アルミナは、金属アルミニウムま
たは有機アルミニウム塩などから容易に造ることができ
るが、他の原料からも造ることができる。
Such high-purity activated alumina can be easily made from metallic aluminum or organic aluminum salts, but it can also be made from other raw materials.

上記高純度活性アルミナに担持される遷移金属の酸化物
としては、比較的高い食品調理温度、すなわち3o0t
程度の温度において良好な分解能をもち、すぐれた安定
性をもつものがよく、特に油脂性物質以外による劣化を
考慮してCr 9Mn。
The transition metal oxide supported on the above-mentioned high-purity activated alumina can be used at relatively high food cooking temperatures, i.e., 3o0t.
Cr 9Mn should have good resolution at a certain temperature and excellent stability, especially considering deterioration caused by substances other than oily substances.

Fe 、CotNt 、Cuのうちから選ばれた少なく
とも1種の遷移金属の酸化物が好ましく、さらに油脂性
物質による着色を目立たなくすることを考慮すればMn
tCotCuの酸化物が最も実用的である。
An oxide of at least one transition metal selected from Fe, CotNt, and Cu is preferable, and Mn is preferable in order to make coloring caused by oily substances less noticeable.
The tCotCu oxide is the most practical.

遷移金属酸化物の含有量は次の表−2から明らかなよう
に、触媒全重量に対して5〜50重量φを含めば油分解
を促進し十分な効果を発揮する。
As is clear from the following Table 2, the content of the transition metal oxide is 5 to 50 weight φ based on the total weight of the catalyst to promote oil decomposition and exhibit a sufficient effect.

酸化触媒としてはMnO2を用い、担体アルミナの不純
物含量(重量%)はNa2O0,04,5i020.0
3 、 SO3トレースであって、400℃、3時間焼
成して得られたものを用いた。
MnO2 was used as the oxidation catalyst, and the impurity content (wt%) of the carrier alumina was Na2O0,04,5i020.0
3. An SO3 trace obtained by firing at 400°C for 3 hours was used.

他の酸化触媒を用いても同じような結果が得られた。Similar results were obtained using other oxidation catalysts.

このような遷移金属酸化物の製造は一般に公知の方法に
よって造り得るものである。
Such transition metal oxides can be produced by generally known methods.

その代表的な例について以下に説明する。A representative example thereof will be explained below.

マンカン酸化物(Mn Ox )については、過マンガ
ン酸カリを硝酸で分解して造られるほか、電解二酸化マ
ンガン、炭酸マンガン、硝酸マンガン等から造られる。
Mancan oxide (MnOx) is produced by decomposing potassium permanganate with nitric acid, and is also produced from electrolytic manganese dioxide, manganese carbonate, manganese nitrate, etc.

この内価格や品質の安定性の点から電解二酸化マンガン
から造るのが好ましい。
Among these, it is preferable to make it from electrolytic manganese dioxide in terms of price and quality stability.

銅酸化物(CuOx)については、2価鋼塩の熱溶液に
アルカリを加えて得られる水和酸化鋼や塩基性炭酸銅や
酸化鋼から造られる。
Copper oxide (CuOx) is produced from hydrated oxidized steel, basic copper carbonate, and oxidized steel obtained by adding alkali to a hot solution of divalent steel salt.

この内比表面積および担体アルミナ上への発散性の点か
ら上記水和酸化銅から造るのが好ましい。
It is preferable to use the above-mentioned hydrated copper oxide in view of the internal specific surface area and the ability to diffuse onto the alumina carrier.

コバルト酸化物(CoOx)については、2価コバルト
塩の熱溶液にアルカリと次亜塩素酸ソーダの混合溶液を
加えて得られる水和酸化コバルトや塩基性炭酸コバルト
や酢酸コバルトから造られ、この内比表面積および担体
アルミナ上への分散性の点から上記水和酸化コバルトか
ら造るのが好ましい。
Cobalt oxide (CoOx) is produced from hydrated cobalt oxide, which is obtained by adding a mixed solution of alkali and sodium hypochlorite to a hot solution of divalent cobalt salt, basic cobalt carbonate, and cobalt acetate. From the viewpoint of specific surface area and dispersibility on the alumina carrier, it is preferable to use the above-mentioned hydrated cobalt oxide.

このような酸化触媒成分は2000〜250℃に焼成す
ることによって、電解二酸化マンガンは主にβ−−Mn
02とα−Mn203に変態し、水和酸化銅は上記温度
で熱分解してCuOに、水和酸化コバルトはCO3O4
に変化するものである。
By calcining such an oxidation catalyst component at 2000 to 250°C, electrolytic manganese dioxide mainly becomes β--Mn.
02 and α-Mn203, hydrated copper oxide thermally decomposes to CuO at the above temperature, and hydrated cobalt oxide transforms into CO3O4.
It is something that changes.

また触媒の比表面積については、触媒に油が吸着し、酸
化分解される反応を効果的に行うためには、触媒の比表
面積が大きいことが必要であって、次の表−3に示すよ
うに、少なくとも100mンgは必要であり、100
m”/f!未満のときにはその効果を十分に発揮するこ
とができない。
Regarding the specific surface area of the catalyst, in order to effectively carry out the reaction in which oil is adsorbed onto the catalyst and oxidized and decomposed, the catalyst needs to have a large specific surface area, as shown in Table 3 below. , at least 100 mg is required, and 100
When it is less than m''/f!, the effect cannot be fully exhibited.

試料はMnO2を活性アルミナに担持させた触媒をそれ
ぞれの温度で3時間焼成したものを用いた。
The samples used were catalysts in which MnO2 was supported on activated alumina and were fired at each temperature for 3 hours.

この発明の触媒について以下に説明する。The catalyst of this invention will be explained below.

実施例 1 アルミン酸ソーダ262gを純水に溶解して2.51と
し、これにクエン酸ソーダ94.59を加えて完全に溶
解させる。
Example 1 262 g of sodium aluminate is dissolved in pure water to give a concentration of 2.51 g, and 94.59 g of sodium citrate is added thereto to completely dissolve it.

次いでこれを50℃に保温して攪拌しなから7規定の硝
酸溶液を滴下し、pH7になったときに滴下を中止し、
次いでよく知られた方法で濾過、洗浄、乾燥、粉砕を行
って、150メツシユ以下のアルミナ水和物粉末を得る
Next, a 7N nitric acid solution was added dropwise to this while keeping it warm at 50°C and stirring, and when the pH reached 7, the dropping was stopped.
Then, filtration, washing, drying, and pulverization are performed by well-known methods to obtain an alumina hydrate powder having a size of 150 mesh or less.

このアルミナ水和物217gに電解二酸化マンガン20
g、ヒドロキシエチルセルローズ4gを加えて乾式混合
したのち、純水172gを加え十分に混練する。
20 g of electrolytic manganese dioxide to 217 g of this alumina hydrate.
After adding 4 g of hydroxyethyl cellulose and dry mixing, 172 g of pure water was added and thoroughly kneaded.

このようにして得られた混合物を130℃で16時間乾
燥し、400℃で3時間焼成してのち150メツシユ以
下に粉砕する。
The mixture thus obtained is dried at 130° C. for 16 hours, calcined at 400° C. for 3 hours, and then ground to 150 meshes or less.

このようにして活性化した触媒が得られる。An activated catalyst is thus obtained.

この触媒の組成は重量比でMnO2:A1203−10
:90である。
The composition of this catalyst is MnO2:A1203-10 in weight ratio.
:90.

この触媒を用いたときの油除去率は45%で、従来のも
のに比べ格段によくなった。
The oil removal rate when using this catalyst was 45%, which was much better than conventional catalysts.

実施例 2 アルミン酸ソーダ262gをとり、実施例1.と同じ方
法でアルミナ水和物粉末の150メツシユ以下のものを
得る。
Example 2 262g of sodium aluminate was taken, and Example 1. Alumina hydrate powder of 150 mesh or less is obtained in the same manner as above.

このアルミナ水和物217gに電解二酸化マンガン76
g、ヒドロキシエチルセルローズ4gを加えて乾式混合
してのち純水172gを加え十分に混練する。
To 217 g of this alumina hydrate, 76 g of electrolytic manganese dioxide was added.
After adding 4 g of hydroxyethyl cellulose and dry mixing, 172 g of pure water was added and thoroughly kneaded.

このようにして得られた混合物を実施例1.と同じ方法
で活性化した触媒とした。
The mixture thus obtained was used in Example 1. The catalyst was activated in the same manner as above.

この触媒の組成は重量比でMnO2:A1203=30
ニア0である。
The composition of this catalyst is MnO2:A1203=30 in weight ratio.
Near 0.

この触媒を用いたときの油除去率は42%で、従来のも
のよりも良好であった。
The oil removal rate when using this catalyst was 42%, which was better than the conventional catalyst.

実施例 3 Cu(NO3)2” 3H201639を純水11に溶
解した硝酸鋼溶液を生成し、苛性力IJ 91 gを純
水ll中に溶解して75℃に保温した苛性カリ溶液中に
前記硝酸銅溶液を滴下する。
Example 3 A steel nitrate solution was prepared by dissolving Cu(NO3)2" 3H201639 in 11 parts of pure water, and 91 g of the copper nitrate was dissolved in 1 l of pure water and the copper nitrate was dissolved in a caustic potash solution kept at 75°C. Drop the solution.

このようにして生成した沈澱を濾過し、これを温水(6
00〜65℃)107にけん濁し、十分に攪拌してのち
再濾過する。
The precipitate thus formed was filtered and mixed with hot water (6
00-65°C) 107, thoroughly stirred, and then filtered again.

NO3イオンが検知されなくなるまでこの洗浄操作をく
り返す。
This cleaning operation is repeated until NO3 ions are no longer detected.

このようにして得られた沈澱を130℃で乾燥してのち
150メツシユ以下に粉砕して水和酸化銅を得る。
The precipitate thus obtained is dried at 130° C. and then ground to 150 mesh or less to obtain hydrated copper oxide.

実施例1.の方法で得られたアルミナ水和物252gに
、水和酸化鋼66g、電解二酸化マンガン29g、ヒド
ロキシエチルセルローズ7!!を加えて乾式混合しての
ち純水183gを加え、十分に混練する。
Example 1. To 252 g of alumina hydrate obtained by the method described above, 66 g of hydrated oxidized steel, 29 g of electrolytic manganese dioxide, and 7! of hydroxyethyl cellulose were added. ! After dry mixing, 183 g of pure water was added and thoroughly kneaded.

このようにして得られた混合物を実施例1.と同じ方法
で活性化した触媒とした。
The mixture thus obtained was used in Example 1. The catalyst was activated in the same manner as above.

この触媒の組成は重量比でMnO2:CuO:A#20
3= 10 : 20 : 70である。
The composition of this catalyst is MnO2:CuO:A#20 in weight ratio
3=10:20:70.

この触媒を用いたときの油除去率は47%で、従来のも
のより格段に良くなった。
The oil removal rate when using this catalyst was 47%, which was much better than the conventional catalyst.

実施例 4 実施例3と同じように、硝酸銅溶液と苛性カリ溶液から
得られた水和酸化鋼66gに、電解二酸化マンガン88
g、実施例1.の方法で得られたアルミナ水和物180
g、ヒドロキシエチルセルローズ6gを加えて乾式混合
してのち純水144gを加えて十分に混練する。
Example 4 In the same manner as in Example 3, 88 g of electrolytic manganese dioxide was added to 66 g of hydrated oxidized steel obtained from a copper nitrate solution and a caustic potassium solution.
g, Example 1. Alumina hydrate 180 obtained by the method
After adding 6 g of hydroxyethyl cellulose and dry mixing, 144 g of pure water was added and thoroughly kneaded.

このようにして得られた混合物を実施例1.と同じ方法
で活性化した触媒とした。
The mixture thus obtained was used in Example 1. The catalyst was activated in the same manner as above.

この触媒の組成は重量比でMnO2:CuO:A120
3−30:20:50である。
The composition of this catalyst is MnO2:CuO:A120 in weight ratio.
3-30:20:50.

この触媒を用いたときの油除去率は42%で、従来のも
のに比べ良好であった。
The oil removal rate when using this catalyst was 42%, which was better than the conventional catalyst.

実施例 5 Co (NO3) 2 ・6H20181gを純水11
に溶解して硝酸コバルト溶液を生成し、KOH126g
とNa0CA464 gを純水11に溶解した苛性カリ
と次亜塩素酸ソーダとの混合溶液中に上記硝酸コバルト
溶液を滴下し、生成した沈澱は実施例3゜と同じように
して、濾過、洗浄、乾燥、粉砕を行って150メツシユ
以下の水和酸化コバルトを得る。
Example 5 20181 g of Co (NO3) 2 .6H was added to 11 g of pure water
to produce a cobalt nitrate solution, 126 g of KOH
The above cobalt nitrate solution was dropped into a mixed solution of caustic potash and sodium hypochlorite in which 464 g of Na0CA and 464 g of pure water were dissolved, and the resulting precipitate was filtered, washed, and dried in the same manner as in Example 3. , and grinding to obtain hydrated cobalt oxide of 150 mesh or less.

この水和酸化コバルト57gに電解二酸化マンガン25
g、実施例3.の方法で得た水和酸化鋼57g、実施例
1.の方法で得たアルミナ水和物154gおよびヒドロ
キシエチルセルローズ6gを加えて乾式混合してのち純
水144gを加え十分に混練する。
57g of this hydrated cobalt oxide and 25g of electrolytic manganese dioxide.
g, Example 3. 57 g of hydrated oxidized steel obtained by the method of Example 1. 154 g of alumina hydrate obtained by the method described above and 6 g of hydroxyethyl cellulose are added and dry mixed, and then 144 g of pure water is added and thoroughly kneaded.

このようにして得られた混合物を実施例1.と同じ方法
で活性化した。
The mixture thus obtained was used in Example 1. activated in the same way.

このようにして得られた触媒の組成は重量比でMnO2
:CuO:CO3O4:A1203=10=20=20
:50である。
The composition of the catalyst thus obtained was MnO2 in weight ratio.
:CuO:CO3O4:A1203=10=20=20
:50.

この触媒を用いたときの油除去率は40%であって、従
来のものよりも良好であった。
The oil removal rate when using this catalyst was 40%, which was better than the conventional catalyst.

これらの触媒6?:1よる油の酸化分解能すなわち油除
去率を次の表−4にまとめて示す。
These catalysts 6? The oxidative decomposition ability of oil, that is, the oil removal rate according to :1 is summarized in Table 4 below.

この表かられかるように、この発明のものを用いると、
油除去率は従来のものに比べてきわめてよくなった。
As can be seen from this table, when using the product of this invention,
The oil removal rate is much better than that of the conventional method.

上記の組成のものばかりでなく、この発明による他の触
媒の場合も同じように良好な油除去率を示した。
Not only the above compositions but also other catalysts according to the invention showed similarly good oil removal rates.

このようにこの発明の触媒は、きわめて純度の高い活性
アルミナを担体とし、酸化触媒としてMnなどの周期表
第4周期の遷移金属の酸化物を少なくとも1種5〜50
重量舜含有し、比表面積が100 m2/ 9以上のも
のであって、従来のものに比べ油除去率がきわめて良く
、特に電気オーブンなどの調理装置の内壁などに被覆し
てその油分解能が良好であるほか上記した諸行性を満た
し、工業的にきわめて有用な自己浄化型触媒である。
As described above, the catalyst of the present invention uses activated alumina of extremely high purity as a carrier, and contains at least one oxide of a transition metal in the fourth period of the periodic table such as Mn as an oxidation catalyst.
It has a specific surface area of 100 m2/9 or more, and has an extremely good oil removal rate compared to conventional products, and its oil decomposition ability is particularly good when coated on the inner walls of cooking equipment such as electric ovens. In addition, it satisfies the above-mentioned properties and is an industrially extremely useful self-purifying catalyst.

Claims (1)

【特許請求の範囲】 1 油を接触的に酸化して水および二酸化炭素に分解す
る触媒において、周期表第4周期の遷移金属から選択さ
れた少なくとも1種の遷移金属の酸化物を99.6多以
上の高純度の活性アルミナ担体に担持されたことを特徴
とする自己浄化型触媒。 2 遷移金属の酸化物含有量が触媒全量に対して5〜5
0重量φであることを特徴とする特許請求の範囲第1項
記載の自己浄化型触媒。 3 活性アルミナ担体は不純物としてアルカリ金属、珪
素および硫黄がそれぞれNa20(又はに20)。 SiO2およびSO3として何れも0.05重重量板下
であることを特徴とする特許請求の範囲第1項又は第2
項記載の自己浄化型触媒。 4 比表面積が100m2/g以上であることを特徴と
する特許請求の範囲第1項記載の自己浄化型触媒。
[Claims] 1. A catalyst for catalytically oxidizing oil to decompose it into water and carbon dioxide, which contains an oxide of at least one transition metal selected from transition metals in the fourth period of the periodic table. A self-purifying catalyst characterized by being supported on a highly purified activated alumina carrier. 2 Transition metal oxide content is 5 to 5 with respect to the total amount of catalyst
The self-purification type catalyst according to claim 1, characterized in that the weight φ is 0. 3. The activated alumina support contains impurities such as alkali metals, silicon, and sulfur, each containing Na20 (or Na20). Claim 1 or 2, characterized in that both SiO2 and SO3 have a weight of 0.05 tbw.
Self-purifying catalyst described in Section 1. 4. The self-purifying catalyst according to claim 1, which has a specific surface area of 100 m2/g or more.
JP16823879A 1979-12-26 1979-12-26 Self-purifying catalyst Expired JPS5853934B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16823879A JPS5853934B2 (en) 1979-12-26 1979-12-26 Self-purifying catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16823879A JPS5853934B2 (en) 1979-12-26 1979-12-26 Self-purifying catalyst

Publications (2)

Publication Number Publication Date
JPS5691840A JPS5691840A (en) 1981-07-25
JPS5853934B2 true JPS5853934B2 (en) 1983-12-02

Family

ID=15864323

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16823879A Expired JPS5853934B2 (en) 1979-12-26 1979-12-26 Self-purifying catalyst

Country Status (1)

Country Link
JP (1) JPS5853934B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58186231U (en) * 1982-06-04 1983-12-10 日産自動車株式会社 vibration damping device
JPS5947541A (en) * 1982-09-11 1984-03-17 Tokai Rubber Ind Ltd Vibro-isolating supporting body

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58186231U (en) * 1982-06-04 1983-12-10 日産自動車株式会社 vibration damping device
JPS5947541A (en) * 1982-09-11 1984-03-17 Tokai Rubber Ind Ltd Vibro-isolating supporting body

Also Published As

Publication number Publication date
JPS5691840A (en) 1981-07-25

Similar Documents

Publication Publication Date Title
KR960006926B1 (en) Catalyst and method of preparing the catalyst
CN104759202A (en) Additive of removing catalytic-cracking regenerated flue gas pollutant and preparation method of same
TWI586430B (en) Oxidative dehydrogenation of olefins catalyst and methods of making and using the same
JP4974674B2 (en) Complex oxide
JP5441380B2 (en) Formaldehyde oxidation catalyst and method for producing the same
JPH11510730A (en) Method for selective oxidation
TW201726902A (en) Agent for reducing acid value of used cooking oil and method for regenerating used cooking oil using same capable of having deoxygenation and decolorization capabilities by subjecting to a sintering treatment
Abu-Zied et al. An investigation on the N2O decomposition activity of MnxCo1− xCo2O4 nanorods prepared by the thermal decomposition of their oxalate precursors
CN110721706A (en) Oxidation catalyst for purifying CO and preparation method and application thereof
JPS5853934B2 (en) Self-purifying catalyst
JPH05245376A (en) Copper oxide-aluminum oxide-magnesium oxide catalyst for conversion of carbon monoxide
Taylor et al. Reduction of metal oxides by hydrogen
KR20020035402A (en) Oxidation catalysts for elimination of the ethylene gas
CN111068746A (en) Multifunctional sulfur recovery catalyst and preparation method thereof
JPH0515501B2 (en)
JPH0114810B2 (en)
JP2903960B2 (en) Method for producing catalyst carrier for treating organochlorine compound, catalyst using obtained carrier, and method for producing the same
JP6759565B2 (en) Aldehyde removal catalyst and its manufacturing method, aldehyde gas removal method
JPS58207947A (en) Catalyst for oxidizing carbon monoxide
JPH02187131A (en) Method for removing nitrogen oxide
JPS6335298B2 (en)
JP2602337B2 (en) Decomposition and combustion treatment method for organic chlorine compounds
JPS63197548A (en) Manganese and ferrite catalyst
JPH04326940A (en) Catalyst for decomposition of ozone
JP3292989B2 (en) Catalyst for the production of methyl formate