JPH02187131A - Method for removing nitrogen oxide - Google Patents

Method for removing nitrogen oxide

Info

Publication number
JPH02187131A
JPH02187131A JP1007073A JP707389A JPH02187131A JP H02187131 A JPH02187131 A JP H02187131A JP 1007073 A JP1007073 A JP 1007073A JP 707389 A JP707389 A JP 707389A JP H02187131 A JPH02187131 A JP H02187131A
Authority
JP
Japan
Prior art keywords
catalyst
nitrogen oxides
waste gas
sulfur dioxide
reducing agent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1007073A
Other languages
Japanese (ja)
Inventor
Masafumi Yoshimoto
吉本 雅文
Tadao Nakatsuji
忠夫 仲辻
Kazuhiko Nagano
永野 一彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sakai Chemical Industry Co Ltd
Original Assignee
Sakai Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sakai Chemical Industry Co Ltd filed Critical Sakai Chemical Industry Co Ltd
Priority to JP1007073A priority Critical patent/JPH02187131A/en
Publication of JPH02187131A publication Critical patent/JPH02187131A/en
Pending legal-status Critical Current

Links

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Abstract

PURPOSE:To reductively decompose nitrogen oxides in a waste gas into N2 and O2 and remove in high efficiency by adding CO as a reducing agent to a catalyst and bringing the waste gas into contact with the catalyst in the co-existence of sulfur dioxide. CONSTITUTION:CO as a reducing agent is added to a catalyst, such as a ZSM-5 whose alkali metal is substituted with Cu<+2>, containing nitrogen oxides present in a waste gas. The nitrogen oxides can be reductively decomposed into N2 and O2 by bringing nitrogen oxides-containing waste gas into contact with the catalyst in the co-existence of sulfur dioxide.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は排ガス中に含まれる窒素酸化物を除去する方法
に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for removing nitrogen oxides contained in exhaust gas.

(従来技術) 従来排ガス中に含まれる窒素酸化物は、■窒素酸化物を
酸化しアルカリ吸収させる方法、■窒素酸化物をNH3
、N2、CO等の還元剤により、N2とする方法などに
より除去されてきた。これらの方法は■の場合排水処理
が必要となり、■の場合NH3等の還元剤が必要である
ため処理コストが高く、特にNH3を還元剤とする場合
SOxとの反応による塩類生成による活性低下があるな
どの問題を有してきた。またCOを還元剤とする場合上
記問題点を有しないが、酸素の共存下ではCOが02と
反応し、効率的に遣元反応が起こらないという問題点が
あった。
(Prior art) Nitrogen oxides contained in exhaust gas have been conventionally treated by: ■ oxidizing nitrogen oxides and absorbing alkali; ■ converting nitrogen oxides to NH3
, N2, CO, and other reducing agents. These methods require wastewater treatment in the case of ①, and require a reducing agent such as NH3 in the case of ①, resulting in high treatment costs.In particular, when NH3 is used as the reducing agent, activity decreases due to salt formation due to reaction with SOx. There have been some problems. Further, when CO is used as a reducing agent, the above-mentioned problems do not occur, but there is a problem that in the coexistence of oxygen, CO reacts with 02 and the sending reaction does not occur efficiently.

(発明が解決しようとする問題点) 本発明は、上記の欠点を解決し、還元剤COを添加し、
酸素の共存下で窒素酸化物を高効率に還元分解すること
ができる方法に係るものである。
(Problems to be Solved by the Invention) The present invention solves the above drawbacks by adding a reducing agent CO,
The present invention relates to a method capable of highly efficiently reductively decomposing nitrogen oxides in the presence of oxygen.

(問題を解決するための手段) 本発明に係る方法は、ガス中に含有する窒素酸化物を有
する触媒 例えば、 (1)(a)A1.03,5in2.Zr09゜Fe2
O3,wo3.MoO3,Sn 021 B ’ 203 * Z n O2、T i 
02、Nb2O,から選択される1種以 上の金属酸化物と (b)Cub、Nip、Cr20a+ Ag2O、Co
3O4,MnO2,Ru。
(Means for Solving the Problem) The method according to the present invention uses a catalyst having nitrogen oxides contained in a gas, for example: (1) (a) A1.03,5in2. Zr09゜Fe2
O3, wo3. MoO3, Sn 021 B' 203 * Z n O2, T i
02, Nb2O, and (b) Cub, Nip, Cr20a+ Ag2O, Co
3O4, MnO2, Ru.

Rh、Pd、Pt、Auから選択され る金属酸化物もしくは、金属とからな ることを特徴とする触媒 (2)(a)C0304、Cu2O、Cr2O3Mn−
203、Ni01pbo、B1゜03、MoO2から選
択される1種以 上の金属酸化物及び (b)Ru、Rh、Ag、Pt、、Auから選択される
1種以上の金属もしくは、 金属酸化物とからなることを特徴とす る触媒 (3)その主たる成分を、組成式F(A(Ml)B(N
2)。C(AIO□)X・(S t O2) Y]−2
H20(ここでM、、N2は金属、n1n2はそれぞれ
の価数。A+n I B+n 2 C=X)であられせ
るゼオライトとし、 (a)Mtをアルカリ金属及びもしくは、アルカリ土類
金属 (b)N2をRu、Rh、PdSAg5PtAu、Co
、Cu1Cr、Niから選択される金属からなることを
特徴とする触媒。
Catalyst (2) characterized in that it consists of a metal oxide or metal selected from Rh, Pd, Pt, and Au (a) C0304, Cu2O, Cr2O3Mn-
203, Ni01pbo, B1°03, MoO2, and (b) one or more metals or metal oxides selected from Ru, Rh, Ag, Pt, Au. Catalyst (3) whose main components are represented by the composition formula F(A(Ml)B(N
2). C(AIO□)X・(S t O2) Y]-2
H20 (where M, N2 are metals, n1n2 are respective valences. A+n I B+n 2 C=X), (a) Mt is an alkali metal and/or alkaline earth metal (b) N2 Ru, Rh, PdSAg5PtAu, Co
, Cu1Cr, and Ni.

(4)(a)組成式HAMB[(AlO2)X(Si0
2)、] ・2H20(ここでMは金属、nはそれの価
数。A+nB =X)であられされ、Mがアルカリ金 属、及びもしくはアルカリ土類金属で あることを特徴とするゼオライト(モ ルデナイトも含む)。
(4) (a) Compositional formula HAMB [(AlO2)X(Si0
2),] - Zeolite (also known as mordenite) which is composed of 2H20 (where M is a metal and n is its valence; A+nB =X), and is characterized in that M is an alkali metal and/or an alkaline earth metal. include).

(b)Ru、Rh、Pd、Ag、Pt、Au、Co5C
u、Cr、Niから選択 される金属もしくは金属酸化物とから なることを特徴とする触媒。
(b) Ru, Rh, Pd, Ag, Pt, Au, Co5C
A catalyst comprising a metal or metal oxide selected from u, Cr, and Ni.

(5) L a bxS r XB O3La2.X、
AX、Cu1−y、B↓04YBa2Cu30.、で表
されるベロアスカイト化合物からなることを特徴とする
触媒。
(5) L a bxS r XB O3La2. X,
AX, Cu1-y, B↓04YBa2Cu30. A catalyst comprising a velorskite compound represented by .

ただしBはCo、Mn、Fe、N、Cu、Zr、AIか
ら選択される1種以上の元素であり、AはSr、Ce、
B’はZr、Alから選択される1種以上の元素であり
、0≦X≦0.6.0≦xl≦0゜2、O≦y’≦0゜
2である。
However, B is one or more elements selected from Co, Mn, Fe, N, Cu, Zr, and AI, and A is Sr, Ce,
B' is one or more elements selected from Zr and Al, and satisfies 0≦X≦0.6.0≦xl≦0°2 and O≦y'≦0°2.

(6)ZSM−5中のアルカリ金属をCu+2により置
換した触媒に還元剤としてCOを添加し二酸化硫黄の共
存下で接触させることにより高効率に窒素酸化物をN2
と02に還元分解することができる方法である。
(6) By adding CO as a reducing agent to the catalyst in which the alkali metal in ZSM-5 has been replaced with Cu+2 and bringing it into contact in the coexistence of sulfur dioxide, nitrogen oxides can be converted into N2 with high efficiency.
This method allows reductive decomposition into 02 and 02.

窒素酸化物のCOによる還元分解反応が二酸化硫黄の共
存下で促進される理由については定かではないが本発明
者らは、以下の様に考えている。
Although it is not clear why the reductive decomposition reaction of nitrogen oxides by CO is promoted in the presence of sulfur dioxide, the present inventors think as follows.

NOxのCOによる還元分解の反応は、NO+CO→N
2+CO,の反応に用いられるCOが、酸素の共存下に
おいては c o +”o□→COQの反応によって消費されNO
の還元反応に有効に利用されていなかったが、二酸化硫
黄が酸素の触媒吸着サイトに吸着するため、CO+HO
2→CO9の反応を限外抑制するため、NO+CO→N
2+C02が選択的に反応するためと考えられる。
The reaction of reductive decomposition of NOx by CO is NO + CO → N
In the coexistence of oxygen, the CO used in the reaction of 2+CO, is consumed by the reaction of co+”o□→COQ, and becomes NO.
However, since sulfur dioxide adsorbs to the oxygen catalyst adsorption site, CO+HO
In order to suppress the reaction of 2→CO9, NO+CO→N
This is thought to be because 2+C02 reacts selectively.

本発明反応に好ましい反応温度は触媒により異なるが1
00℃〜800℃である。またより好ましい反応温度は
(1)〜(5)の触媒の場合200°C〜600℃、(
6)の触媒の場合400℃〜600℃である。
The preferred reaction temperature for the reaction of the present invention varies depending on the catalyst, but 1
00°C to 800°C. Further, more preferable reaction temperatures are 200°C to 600°C for catalysts (1) to (5), (
In the case of the catalyst 6), the temperature is 400°C to 600°C.

本発明における二酸化硫黄の役割については上述した通
りであるが、本発明において共存させる二酸化硫黄の温
度は、二酸化硫黄が排ガス中に共存する酸素の触媒上へ
の吸着を阻外し、NOとcoとの反応を酸素の共存下に
おいても選択的に反応させるとともにN。
The role of sulfur dioxide in the present invention is as described above, but the temperature of the sulfur dioxide coexisting in the present invention is such that sulfur dioxide prevents oxygen coexisting in the exhaust gas from being adsorbed onto the catalyst, and NO and CO selectively reacts even in the presence of oxygen, and N.

がso2と反応し、NO+SO2−+HN 2 +SO
0によりNOをN2に1部転換するので酸素の高濃度条
件下において、NOのN2への転換率を高めるためには
高濃度であることが好ましい。しかし、SO9濃度を排
ガス中に多量に添加するのは有害性から好ましくなく、
110000pp以下好ましくは1000ppm以下と
する。
reacts with so2, NO+SO2−+HN 2 +SO
Since a portion of NO is converted to N2 by 0, the concentration is preferably high in order to increase the conversion rate of NO to N2 under conditions of high oxygen concentration. However, it is undesirable to add a large amount of SO9 concentration to exhaust gas because it is harmful.
The content should be 110,000 ppm or less, preferably 1,000 ppm or less.

以下に実施例とともに比較例を挙げて本発明を説明する
が、本発明はこれらの実施例により何ら限定されるもの
ではない。
The present invention will be explained below by giving Examples and Comparative Examples, but the present invention is not limited to these Examples in any way.

(触媒の調製) 実施例1 硝酸鋼と硝酸亜鉛を酸化物換算で各々6.4g、30.
6g含有する水溶液(溶液量250mk)に充分撹拌を
行いながら、アンモニアガスをPHが7.5となるまで
吹き込み、中和沈殿反応を行った。この後退・水洗・リ
パルプを3回行い充分に遊離塩類の除去を行った。これ
を100℃、18時間乾燥後600℃、3時間焼成した
。この焼成物をサンプルミルにて粉砕し、この粉砕物を
30g秤量し、これに水を100鑓加え充分撹拌した。
(Preparation of catalyst) Example 1 Nitrate steel and zinc nitrate were each 6.4g and 30g in terms of oxides.
Ammonia gas was blown into the aqueous solution containing 6 g (solution amount: 250 mK) while sufficiently stirring the solution until the pH reached 7.5 to perform a neutralization precipitation reaction. This regression, water washing, and repulping were performed three times to sufficiently remove free salts. This was dried at 100°C for 18 hours and then fired at 600°C for 3 hours. This baked product was pulverized in a sample mill, 30 g of this pulverized product was weighed, and 100 g of water was added thereto and thoroughly stirred.

このスラリー中に空隙率81%、ピッチ4mmのセラミ
ックファイバー製コルゲート状ハニカムを浸漬し、Cu
O−ZnO触媒を担持した。この時担持率は145%で
あった。これを常温通風乾燥後100℃、18時間乾燥
後、空気雰囲気中で500℃、3時間焼成し触媒を得た
A ceramic fiber corrugated honeycomb with a porosity of 81% and a pitch of 4 mm was immersed in this slurry.
An O-ZnO catalyst was supported. At this time, the loading rate was 145%. This was dried with ventilation at room temperature, then dried at 100°C for 18 hours, and then calcined in an air atmosphere at 500°C for 3 hours to obtain a catalyst.

実施例2 日本化学製モルデナイト(NM−100P)を90℃、
5N−HClの条件で20時間酸処理した。この後ろ過
・水洗・リパルプを3回行い充分に遊離塩類の除去を行
い、酸型モルデナイトを得た。これを30gfiP量し
、これに水をfood加え充分撹拌した。このスラリー
中に実施例1に用いたハニカムを浸漬し、モルデナイト
担持担体を得た。この時の担持率は158%であった。
Example 2 Nippon Kagaku mordenite (NM-100P) was heated at 90°C.
Acid treatment was performed under 5N-HCl conditions for 20 hours. After this, filtration, water washing, and repulping were performed three times to sufficiently remove free salts and obtain acid type mordenite. This was weighed in an amount of 30 gfiP, and water was added thereto and thoroughly stirred. The honeycomb used in Example 1 was immersed in this slurry to obtain a mordenite supporting carrier. The loading rate at this time was 158%.

これを塩化白金酸水溶液(12,5g/gL)に浸漬し
常温乾燥後100℃、18時間乾燥した後500℃、3
時間焼成した。
This was immersed in a chloroplatinic acid aqueous solution (12.5 g/gL), dried at room temperature, 100°C for 18 hours, and then 500°C for 3 hours.
Baked for an hour.

実施例3 比表面積が98d/gであるアナタース型酸化チタンを
40g、塩化ルテニウムをRuO2として2.0g秤量
し、これに水を加え、蒸気乾固した後、空気中500°
C13時間焼成した。これをサンプルミルにて粉砕し、
この粉砕物を30g秤量し、以下実施例1と同様にして
触媒を得た。この時担持率は116%であった。
Example 3 Weighed 40 g of anatase-type titanium oxide with a specific surface area of 98 d/g and 2.0 g of ruthenium chloride as RuO2, added water thereto, dried with steam, and heated at 500° in air.
It was fired for 13 hours. Grind this in a sample mill,
30g of this pulverized material was weighed and the same procedure as in Example 1 was carried out to obtain a catalyst. At this time, the loading rate was 116%.

実施例4 硝酸鉄と硝酸ニッケルを酸化物換算で各々5゜4g、3
0.6g含有する水溶液(溶液量50〇−)を用いて実
施例1と同様にして触媒を得た。
Example 4 Iron nitrate and nickel nitrate were each 5°4g in terms of oxide, 3
A catalyst was obtained in the same manner as in Example 1 using an aqueous solution containing 0.6 g (solution amount: 500 -).

この時担持率は144%であった。At this time, the loading rate was 144%.

実施例5 硝酸コバルトをCo3O4として5.4g秤量し、これ
に水を50J加え溶液を得た。またモリブデン酸アンモ
ニウムをMoO2として30.6g1?Pfikシ、こ
れにアンモニア水100mftを加え、溶液を得た。硝
酸コバルト溶液中にモリブデン酸アンモニウムl′a液
を加え、沈殿を生成させた。以下実施例1と同様にして
触媒を得た。この時担持率波153%であった。
Example 5 5.4 g of cobalt nitrate as Co3O4 was weighed out, and 50 J of water was added thereto to obtain a solution. Also, ammonium molybdate is 30.6g1 as MoO2? 100 mft of aqueous ammonia was added to the Pfik to obtain a solution. Ammonium molybdate l'a solution was added to the cobalt nitrate solution to form a precipitate. Thereafter, a catalyst was obtained in the same manner as in Example 1. At this time, the carrier ratio wave was 153%.

実施例6 塩化ルテニウムと塩化金酸を各々0.63g秤量し、こ
れをエチルアルコール200mL水を800+aK含有
する溶液中に溶解し、この溶液を撹拌しつつ実施例3で
用いた酸化チタンを投入し充分に分散させた。このスラ
リーに波長350nmの紫外線を20時間常温にて照射
し、TiO□上にRu−Auを析出させた。このスラリ
ーをろ過・水洗・リパルプし遊離塩類を除去し、100
℃、18時間乾燥後500℃、3時間焼成し以下実施例
1と同様にして触媒を得た。
Example 6 Ruthenium chloride and chloroauric acid were each weighed in an amount of 0.63 g, and dissolved in a solution containing 200 mL of ethyl alcohol water containing 800+ aK, and while stirring this solution, the titanium oxide used in Example 3 was added. Thoroughly dispersed. This slurry was irradiated with ultraviolet rays with a wavelength of 350 nm for 20 hours at room temperature to precipitate Ru-Au on TiO□. This slurry was filtered, washed with water, and repulped to remove free salts.
After drying at 18°C for 18 hours, the mixture was calcined at 500°C for 3 hours, and the same procedure as in Example 1 was carried out to obtain a catalyst.

た。Ta.

(1)ガス組成 No    200ppm 02   10% Co    200ppm SO2■Oppm  ■1100pp  ■250pp
m  ■1000ppm N2   バランス (2)SV   1000  Hr’ (3)反応温度  300℃、400℃、600℃、6
00℃ 試験結果を第1表に示した。
(1) Gas composition No. 200ppm 02 10% Co 200ppm SO2 ■Oppm ■1100pp ■250pp
m ■1000ppm N2 Balance (2) SV 1000 Hr' (3) Reaction temperature 300℃, 400℃, 600℃, 6
00°C The test results are shown in Table 1.

なお第1表中の値はN2への転換率を示した。The values in Table 1 indicate the conversion rate to N2.

Claims (1)

【特許請求の範囲】[Claims] ガス中の窒素酸化物をCOにより還元分解する方法にお
いて排ガス中に二酸化硫黄を共存させ反応させることを
特徴とする窒素酸化物除去方法
A method for removing nitrogen oxides, characterized in that in a method of reductively decomposing nitrogen oxides in gas using CO, sulfur dioxide is allowed to coexist and react in exhaust gas.
JP1007073A 1989-01-13 1989-01-13 Method for removing nitrogen oxide Pending JPH02187131A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1007073A JPH02187131A (en) 1989-01-13 1989-01-13 Method for removing nitrogen oxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1007073A JPH02187131A (en) 1989-01-13 1989-01-13 Method for removing nitrogen oxide

Publications (1)

Publication Number Publication Date
JPH02187131A true JPH02187131A (en) 1990-07-23

Family

ID=11655906

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1007073A Pending JPH02187131A (en) 1989-01-13 1989-01-13 Method for removing nitrogen oxide

Country Status (1)

Country Link
JP (1) JPH02187131A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5106602A (en) * 1990-07-03 1992-04-21 The Research Foundation Of State University Of New York Low temperature catalytic reduction of nitrogen oxides
US5208198A (en) * 1990-12-18 1993-05-04 Tosoh Corporation Catalyst for purifying exhaust gas
US5306684A (en) * 1991-06-18 1994-04-26 N. E. Chemcat Corporation Catalyst for purification of exhaust gases
US5336651A (en) * 1990-05-03 1994-08-09 Sakai Chemical Industry Co., Ltd. Catalysts and methods for denitrization
CN102989447A (en) * 2012-12-18 2013-03-27 天津大学 Manganese-tin-titanium type SCR (Selective Catalytic Reduction) NOx removal catalyst and preparation method thereof
CN107537505A (en) * 2016-06-23 2018-01-05 中国石油化工股份有限公司 A kind of hydrogenation catalyst, its preparation method and application

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5336651A (en) * 1990-05-03 1994-08-09 Sakai Chemical Industry Co., Ltd. Catalysts and methods for denitrization
US5106602A (en) * 1990-07-03 1992-04-21 The Research Foundation Of State University Of New York Low temperature catalytic reduction of nitrogen oxides
US5208198A (en) * 1990-12-18 1993-05-04 Tosoh Corporation Catalyst for purifying exhaust gas
US5306684A (en) * 1991-06-18 1994-04-26 N. E. Chemcat Corporation Catalyst for purification of exhaust gases
CN102989447A (en) * 2012-12-18 2013-03-27 天津大学 Manganese-tin-titanium type SCR (Selective Catalytic Reduction) NOx removal catalyst and preparation method thereof
CN107537505A (en) * 2016-06-23 2018-01-05 中国石油化工股份有限公司 A kind of hydrogenation catalyst, its preparation method and application
CN107537505B (en) * 2016-06-23 2019-09-10 中国石油化工股份有限公司 A kind of hydrogenation catalyst, preparation method and application

Similar Documents

Publication Publication Date Title
JP2682628B2 (en) Nitrogen oxide removal method and removal catalyst
US5128305A (en) Catalyst for denitrization
US5516741A (en) Reduced chlorine containing platinum catalysts
US6171566B1 (en) Selective catalytic reduction for the removal of nitrogen oxides and catalyst body thereof
JPS5915022B2 (en) Catalyst for removing nitrogen oxides from exhaust gas
EP0208434A1 (en) Process for removing nitrogen oxides and carbon monoxide simultaneously
JPS63291628A (en) Method for removing nitrogen oxide
JPH02187131A (en) Method for removing nitrogen oxide
JP3254742B2 (en) Catalyst for decomposition of nitrous oxide
JPH02187130A (en) Method for nitrogen oxide removal
US4225462A (en) Catalyst for reducing nitrogen oxides and process for producing the same
CN111437875A (en) Cerium-iron molecular sieve based catalyst with wide temperature range and preparation method thereof
CN114917753B (en) Use of a support for selectively catalyzing ammonia
JPH09501348A (en) Base metal catalysts and catalyst supports for automobile exhaust gas purification and a further two-step process.
JP4427357B2 (en) Ammonia purification catalyst, and ammonia purification method and ammonia purification apparatus using the same
JP2000167406A (en) Organic halogen compound remover and treatment of waste gas using same
JPH0299142A (en) Nitrogen oxide decomposing catalyst
JPS5823136B2 (en) How to remove nitrogen oxides from exhaust gas
JPH0824651A (en) Ammonia decomposition catalyst and method for decomposing ammonia using the same
JPS6312348A (en) Catalyst for catalytic reduction of nitrogen oxide by ammonia
JPH02184324A (en) Method for removing nitrogen oxide
JPH08150324A (en) Method for catalytically reducing nitrogen oxide
JP2921517B2 (en) Nitrogen oxide decomposition catalyst
JPH02268810A (en) Method for removing nitrogen oxide
JPS6335298B2 (en)