JPS5853872A - Surface illuminating type light emitting diode - Google Patents

Surface illuminating type light emitting diode

Info

Publication number
JPS5853872A
JPS5853872A JP56151718A JP15171881A JPS5853872A JP S5853872 A JPS5853872 A JP S5853872A JP 56151718 A JP56151718 A JP 56151718A JP 15171881 A JP15171881 A JP 15171881A JP S5853872 A JPS5853872 A JP S5853872A
Authority
JP
Japan
Prior art keywords
active layer
light emitting
layer
substrate
inp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56151718A
Other languages
Japanese (ja)
Inventor
Kuniaki Iwamoto
岩本 邦彬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP56151718A priority Critical patent/JPS5853872A/en
Publication of JPS5853872A publication Critical patent/JPS5853872A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies

Abstract

PURPOSE:To obtain a high coupling efficiency while the positioning accuracy is eased during coupling to an optical fiber by providing a semiconductor layer having a larger refraction index than that of substrate between the active layer and semiconductor substrate and making the thickness maximum on the same center axis as that of the light emitting region. CONSTITUTION:The plane (001) of an InP substrate 21 is etched in circular with the HCl+H3PO4 solution, difference in shape at the cross sections (0-1-1), (01-1) is eased by the melt-back of proper composition and a smooth concave 23 is formed with good reproducibility. Then, the N-InGaAsP 22, N-InP 12, InGaAsP active layer 13, P-InP clad 14, P<+> InGaAsP cap 15 are stacked. The composition of active layer 22 should be selected so that the wavelength of light emitted is longer than the band gap of active layer and it becomes transparent for such wavelength. The electrodes 17, 18 are provided and the light emitted from the restricted region of the active layer 13 is converted to the parallel light beam when curvature of plane 23 of the lens layer 22 is selected adequately and it can be obtainedd from the plane 24 with good efficiency. Thereby, the pertinent diode can be connected to optical fiber with an efficiency near to the theoretical value while easing the aligning accuracy.

Description

【発明の詳細な説明】 この発明は表面発光型発光ダイオードの構造に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to the structure of a surface emitting type light emitting diode.

I nGaAsP/I nP系の発光素子は、その組成
を変える仁とによって光ファイバーの伝送損失の極めて
少ない1.3μm及び1j5声m近傍の発光波長が容易
に得られ、信頼性が高く安価にできるので、中・長距離
の各種光通信用および光情報躯理用光源として実用化が
過んている。
By changing the composition of InGaAsP/InP light emitting elements, it is possible to easily obtain light emission wavelengths around 1.3 μm and 1.5 μm with extremely low optical fiber transmission loss, and they are highly reliable and can be made at low cost. It has been put into practical use as a light source for various medium- and long-distance optical communications and optical information systems.

表面発光源発光ダイオードを光7アイパー過信用光源に
用いるのにはその発光面積をファイバーのコア部と同S
*かそれ以下に小さくしてかつ、輝度を上げ光7フイパ
ーへの献金パワーを増大することが必要である0発光径
がコア径より小さいときには球レンズ中ロッドレンズ及
び光ファイバーの先端を丸めた先球ファイバー等の光学
的結合回路を用いて光ファイバーへの結合効率を上げる
ことができる。
To use a surface-emitting light emitting diode as an optical 7-eyeper reliable light source, its light-emitting area must be the same as the core of the fiber.
It is necessary to reduce the size to * or less, increase the brightness, and increase the power donated to the optical fiber.0 When the emission diameter is smaller than the core diameter, use a rounded tip of a rod lens in a spherical lens or an optical fiber. Optical coupling circuits such as spherical fibers can be used to increase coupling efficiency to optical fibers.

これらのレンズ系は発光ダイオードに近接させる必要が
ちヤ球レンズの場合にはそO保持上の問題もあって、発
光ダイオードの表面に樹脂で接着固定する方法が採られ
ている。先球日ツドレンズ及び先球ファイバー結合方式
では発光ダイオードのステムに対して、機械的に近接さ
せる冶^をつくり、その冶具を固定させる方法が使われ
ている。
These lens systems need to be placed close to the light emitting diode, and in the case of a spherical lens, there is a problem in maintaining O2, so a method of adhesively fixing the lens system to the surface of the light emitting diode with resin is adopted. In the first bulb lens and the first bulb fiber coupling method, a method is used in which a jig is created that is mechanically brought close to the stem of the light emitting diode, and the jig is fixed.

これらの結合回路を通常の表面発光種発光ダイオードに
適用する場合、理論値通シの高い結合効率を得るために
はその位置決めを極めて高い精度で行わなければならな
い。
When these coupling circuits are applied to ordinary surface-emitting type light-emitting diodes, their positioning must be performed with extremely high precision in order to obtain a coupling efficiency as high as the theoretical value.

例えば、発光径35μmφの発光ダイオードとコア径5
0μmφの先球ンアイパーを結合させる場合、±10μ
mの位置ずれで結合効率は0.5〜1dBの低下が生ず
る。こうした欠点を除くため、これまでに発光ダイオー
ドの出射面をドーム状に加工し高い結合効率を得るため
の位置決め精度を緩和する方法が提案されている0発大
ダイオード表面をドーム状に加工するためには、1個1
個機械的に研磨する方法とか、化学エツチング或いはイ
オンビームエツチング等の方法がある。しかしこれらの
方法はいずれも量産性や制御性の点で問題があり、良質
の球面を得ることは非常に難しい。
For example, a light emitting diode with a light emitting diameter of 35 μmφ and a core diameter of 5
When combining 0μmφ tip ball and eyeper, ±10μ
A positional shift of m causes a decrease in coupling efficiency of 0.5 to 1 dB. In order to eliminate these drawbacks, a method has been proposed to reduce the positioning accuracy by machining the emission surface of the light emitting diode into a dome shape to obtain high coupling efficiency. 1 piece 1
There are methods such as individual mechanical polishing, chemical etching, and ion beam etching. However, all of these methods have problems in terms of mass production and controllability, and it is extremely difficult to obtain high-quality spherical surfaces.

この発明の目的は、以上の欠点を解決するためになされ
た4ので表面発光型発光ダイオードにおいて、光ファイ
バーへの結合を行なうとき、位置決め精度を緩和しなが
ら結合効率の高い結合回路が設置てきる構造の発光ダイ
オードを提供することにある。
An object of the present invention was to solve the above-mentioned drawbacks.4 When coupling a surface-emitting type light emitting diode to an optical fiber, it is an object of the present invention to provide a structure in which a coupling circuit with high coupling efficiency can be installed while alleviating positioning accuracy when coupling to an optical fiber. Our goal is to provide light emitting diodes.

この発明によれば発光波長に対して透明な第1の半導体
からなる基板@から光を取出す表面発光波発光ダイオー
ドにおいて、活性層と前記基板との間に、前記基板よ)
屈折率の大きな第2の半導体層を有し、かつ、前記第2
の半導体層は、発光領域と同一中心軸上で層厚がもつと
も厚く、探方向に層厚が減少する部分を有する形状にな
っていることを特徴とする表面発光型発光ダイオードが
得られる。
According to the present invention, in a surface emitting wave light emitting diode that extracts light from a substrate made of a first semiconductor transparent to the emission wavelength, there is a space between the active layer and the substrate.
a second semiconductor layer having a large refractive index;
A surface-emitting light-emitting diode is obtained in which the semiconductor layer has a shape that is thick on the same central axis as the light-emitting region and has a portion where the layer thickness decreases in the probing direction.

この発明は、半導体材料によらず適用できるが、発光波
長に対して、透明な基板を用いる場合にもっとも大きな
効果を与えるので、以下の説明には主として、IIIG
!IAIP  IIIP系からなるダブルへテロ構造発
光ダイオードの場合について図面を参照して詳細に説明
する。
Although this invention can be applied regardless of the semiconductor material, it has the greatest effect on the emission wavelength when using a transparent substrate, so the following description will mainly focus on IIIG.
! The case of a double heterostructure light emitting diode made of IAIP IIIP system will be explained in detail with reference to the drawings.

第1図は従来提案されているドーム付発光ダイオードの
構成を示す概念図で、n InP基板11の上にa−I
nPバy 7 y Plg、InGaAsP活性7w1
3及ヒP−InPクラッド層14とダブルへテロ構造に
し、さらにその上に良好なオーミック電極を得るための
P十−InGaAsPキャップ層15を順次成長しであ
る。n 1nP基板11の成長層と反対側にドームを形
成するためには発光症よ如大きい所定の直径の7オトレ
ジストを通常よシ高い温度でポストベークすることによ
ってフォトレジスト農表面を球面化する。このフォトレ
ジスト膜をマスクとしてArイオンビームによるエツチ
ングを施す。このときイオンビームの入射角を適当に選
び、試料を同転させることによって、フォトレジストの
面形状をInP基板11に転写することができる。この
ようにしてn InP基板11に所定の形状のドーム1
6を形成し、そのあと通常のプロセスに従って、P十−
InGaAsPキャップ層15の表面の中心部には発光
径を限定するための小面積電極17を形成する。
FIG. 1 is a conceptual diagram showing the structure of a conventionally proposed light emitting diode with a dome.
nP by 7 y Plg, InGaAsP activity 7w1
3 and P-InP cladding layer 14 to form a double heterostructure, and furthermore, a P-InGaAsP cap layer 15 is successively grown thereon to obtain a good ohmic electrode. To form a dome on the opposite side of the n1nP substrate 11 from the growth layer, the photoresist surface is sphericalized by post-baking a photoresist of a predetermined diameter as large as luminescence, usually at a higher temperature. Using this photoresist film as a mask, etching is performed using an Ar ion beam. At this time, by appropriately selecting the incident angle of the ion beam and simultaneously rotating the sample, the surface shape of the photoresist can be transferred to the InP substrate 11. In this way, a dome 1 of a predetermined shape is formed on the nInP substrate 11.
6 and then following the normal process to form P-
A small-area electrode 17 is formed at the center of the surface of the InGaAsP cap layer 15 to limit the emission diameter.

このP電極17はAuZn合金を主な材料としている。This P electrode 17 is mainly made of AuZn alloy.

限定され九P電極17の周辺には、例えば別02のよう
な絶縁膜19を形成しその後、全面にJl;iLQ、に
なじみやすい金属層20を蒸着し、所定のヒートシンク
ないしは、ステ五に固定できるようにする。
For example, an insulating film 19 as shown in Part 02 is formed around the 9P electrode 17, and then a metal layer 20 that is easily compatible with Jl;iLQ is deposited on the entire surface, and fixed to a predetermined heat sink or step It can be so.

他方n基板110表面のドーム16の外ISKはkuO
eNi等のn電極18を形成しである。
On the other hand, the ISK outside the dome 16 on the surface of the n-substrate 110 is kuO.
An n-electrode 18 made of eNi or the like is formed.

このようにして、n電4118とP電極17間Klj方
向電圧を印加すると活性層13の一部がP電極17より
若干大きい面積で発光する。この光が上面に取出される
ときドーム16ケレンズの働きをし光ファイバーへの結
合効率は高くなる。しかしコノドーム状レンズ16の形
状はそれ程任意てはなく、通常理論値通〕の結合効率社
得られない。
In this way, when a voltage in the Klj direction is applied between the n-electrode 4118 and the p-electrode 17, a part of the active layer 13 emits light in an area slightly larger than the p-electrode 17. When this light is extracted to the upper surface, it acts as a dome lens and the coupling efficiency to the optical fiber becomes high. However, the shape of the conodome-shaped lens 16 is not so arbitrary, and the coupling efficiency cannot usually be obtained in accordance with the theoretical value.

そこで先球ファイバーや先球ロッドレンズ畔の第2のレ
ンズを用いて結合効率を更に高めることが行われている
。光学的には検数のレンズでレンズ系を組むと各種収差
を改善することができると同時にそれぞれのレンズの設
計に任意性が生ずる。
Therefore, the coupling efficiency is further increased by using a tipped fiber or a second lens on the edge of the tipped rod lens. Optically, if a lens system is assembled using multiple lenses, various aberrations can be improved, and at the same time, the design of each lens becomes arbitrary.

このため、発光ダイオードと光ファイバーの結合回路に
おいて奄結合効率を最上にするのに、1個のレンズで行
なうより2個のレンズで行なった方が設計が楽になシ、
この場合には位置合せ精度の緩和をはかることが可能と
なる。
Therefore, in order to maximize the coupling efficiency in a light emitting diode and optical fiber coupling circuit, it is easier to design it using two lenses than using one lens.
In this case, it is possible to reduce alignment accuracy.

しかし、この従来知られている例では、ドーム状レンズ
16の形成が難しく、沢山の素子が並んだウエリー内で
の均一性、再現性に問題があシ、品質のよいドーム付発
光ダイオードを量産することは極めて困難であり喪。を
九、ウェハー表面に凸凹を形成しているということ杜、
プロセス中破壊させる勢の問題もあ転、製作歩留を下げ
るという欠点もあった。
However, in this conventionally known example, it is difficult to form the dome-shaped lens 16, and there are problems with uniformity and reproducibility within the well where many elements are lined up. It is extremely difficult and mourning. Nine, the formation of unevenness on the wafer surface means that
There was also the problem of the tendency to break during the process, and there was also the drawback of lowering the manufacturing yield.

第2図は、この発明の一実施例の概念i示す断面図であ
る。第1図と同一の部材には同一の番号を附しである。
FIG. 2 is a sectional view showing the concept i of an embodiment of the present invention. The same members as in FIG. 1 are given the same numbers.

予じめ、n−InPの一方の表面に発光径より大きい所
定の直径で所定の深さの凹部23を化学的エツチング等
で形成、これを基板21として凹部のある面上にn I
nGaAsP層22、n InPクラッド層12、In
GaAsP活性層13及びP InPクラッド層14、
さらにその上K FiP” InGmAsPキャップ層
15を順次成長しである。ここでu−(i−P層22の
組成は、発光波長に対して透明になるようにInGaA
sP活性層13のバンドギャップより大きく表るように
蓋んでおく必!がある。P、n両電極の形成は、第1図
O場合と同様にして得られる。
In advance, a recess 23 with a predetermined diameter larger than the emission diameter and a predetermined depth is formed on one surface of n-InP by chemical etching, etc., and this is used as a substrate 21, and an n-InP film is formed on the surface with the recess.
nGaAsP layer 22, nInP cladding layer 12, In
GaAsP active layer 13 and PInP cladding layer 14,
Furthermore, a K FiP'' InGmAsP cap layer 15 is sequentially grown thereon. Here, the composition of the u-(i-P layer 22 is InGaA) so as to be transparent to the emission wavelength.
It must be covered so that it appears larger than the band gap of the sP active layer 13! There is. Both the P and n electrodes are formed in the same manner as in the case O in FIG.

InPやInGaAsPの屈折率は、波長に対して変化
する。既に知られている値として、波長が1−の光に対
する屈折率はInPで約3.2、IaGaAsP で約
3!sとなって込る。
The refractive index of InP and InGaAsP changes with respect to wavelength. As already known values, the refractive index for light with a wavelength of 1- is about 3.2 for InP and about 3 for IaGaAsP! It becomes s and enters.

つtn、n IEIGaAsP層22の屈折率は、その
両側にあるn InP21及び12より大きくなってい
ゐ。
The refractive index of the tn,n IEIGaAsP layer 22 is larger than that of the nInP 21 and 12 on both sides thereof.

従って、第2図の実施例のようffcliHより屈折率
の大きい層22に滑らかな曲面23を形成すればこれは
基本的な壌込みレンズになりていることがわかる。従っ
て、活性層13の限定された領斌で発光し九光は、レン
ズ層220−面23の曲率を適当に選ぶことによ)平行
光線秦に蜜更され効率よく光取出しm24かも外部に取
出す仁とができる。
Therefore, it can be seen that if a smooth curved surface 23 is formed on the layer 22 having a higher refractive index than ffcliH as in the embodiment shown in FIG. 2, this becomes a basic embedded lens. Therefore, by appropriately selecting the curvature of the lens layer 220-plane 23, the nine lights emitted in a limited area of the active layer 13 are converted into parallel rays, and the light can be efficiently extracted and extracted to the outside. I can do it with Jin.

また一度平行光にされ九光線束は光球ファイバーや光球
ロッドレンズ等の別のレンズ系を用いることによりて位
置会せ精度を緩和しながら理論値に近い結合効率で光フ
ァイバーへの結合が可能になる。しかも素子111iK
は凹凸のない構造とな9、製造歩留シも着しく改善され
る。
In addition, by using another lens system such as a photosphere fiber or photosphere rod lens, the nine-ray bundle, which is once made into parallel light, can be coupled to an optical fiber with coupling efficiency close to the theoretical value while reducing alignment accuracy. become. Moreover, the element 111iK
The structure has no irregularities9, and the manufacturing yield is significantly improved.

第3図には、埋込みレンズの形成方法の具体的−例を示
す図である。 InP基板21の(100)面にHQI
−((3PO4系のエツチング液で円状に選択エラなり
、これと直角な(011)断面では第3図Bのような形
状になる。そこで通常の多層連続成長のできる液相成長
装置にセットし、適当な組成のメルトによりてメルト・
バックを行なうことにより、再現性よく第3図Cのよう
に異方性が緩和され、かつ滑らかな形状の凹部23が形
成される。仁の上に第3図りのようにn−InGaAm
P層22を形成し、七の偵第2図に示し九層構造に形成
する。これ以外のエツチング液でも使用で龜るが、異方
性の現われ方が異なシ、従って非対称なレンズが得られ
る。これらの工程は通常の液相成長法によって極めて安
定に再現性よく行なうことができる。
FIG. 3 is a diagram showing a specific example of a method for forming an embedded lens. HQI on the (100) plane of the InP substrate 21
-((3PO4-based etching solution creates a circular selection error, and a (011) cross section perpendicular to this produces a shape as shown in Figure 3B.Then, set it in a liquid phase growth apparatus that can perform normal multilayer continuous growth. By melting the melt with an appropriate composition,
By performing backing, the anisotropy is relaxed and a smooth recess 23 is formed as shown in FIG. 3C with good reproducibility. As shown in the third diagram on top of the n-InGaAm
A P layer 22 is formed to have a nine-layer structure as shown in FIG. Etching liquids other than these may also be used, but the anisotropy will be different, and therefore an asymmetrical lens will be obtained. These steps can be carried out extremely stably and with good reproducibility by a conventional liquid phase growth method.

第4図は、この発明の別の実施例を示す断面図である。FIG. 4 is a sectional view showing another embodiment of the invention.

第2WjAのn IaPクラッド層1層上2略した場合
でシングル・ペテロ構造に近くなる0発光ダイオードの
発光効率はダブル・ヘテ四構造に比べて若干劣るものの
、暦数が一層一る九め、製造コストが低くなるという特
徴を有している。
The luminous efficiency of the 2nd WjA n IaP cladding layer, which is close to the single Peter structure when omitted, is slightly inferior to that of the double Peter structure, but it has a further calendar number of 19, It has the characteristic of low manufacturing cost.

以上InGaAsP / InP系の表面発光型発光ダ
イオードについて詳細に説明してきたが、この発明は表
面発光型発光ダイオードなら他のいかなる半導体材料0
発光ダイオードにも適用できるとともに導電型を入れ換
えた構造においても適用できるととけいうまでもない。
Although the InGaAsP/InP-based surface-emitting light emitting diode has been described in detail above, this invention can be applied to surface-emitting light-emitting diodes using any other semiconductor material.
Needless to say, the present invention can be applied to light emitting diodes as well as structures in which the conductivity types are switched.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来のドーム付発光ダイオードの一例の断面図
、第2図はこの発明の第一の実施例の断面図、第3図人
〜第3図りはこの発明の特徴である埋込みレンズの形成
方法の一例を説明する九めの断面図、第4図はこの発明
の第二の実施例の断面図である。 11.21 ・−n−InP基板、12 ・=・n−I
nP層、22− n−InGaAsP層、13− Ia
GaAs)’活性層、14−− P InPクラッド層
、l 5 =−P”−InGaAsPキャップ層、17
・・・・・P t &、 18−− n電極、20・・
・・・・金属層、16・・・・・・ドーム状レンズ、2
3・・・・・・埋込みレンズ用の凹部、24・・・・・
・光取出し部面。 伐理人弁理士 内原  晋 第7図 t 第2図 7F? A         B 3
Fig. 1 is a sectional view of an example of a conventional dome-equipped light emitting diode, Fig. 2 is a sectional view of a first embodiment of the present invention, and Figs. The ninth sectional view for explaining an example of the forming method, and FIG. 4 is a sectional view of a second embodiment of the present invention. 11.21 ・-n-InP substrate, 12 ・=・n-I
nP layer, 22- n-InGaAsP layer, 13- Ia
GaAs)' active layer, 14--P InP cladding layer, l5=-P''-InGaAsP cap layer, 17
...P t &, 18-- n electrode, 20...
...Metal layer, 16...Dome-shaped lens, 2
3... Concavity for embedded lens, 24...
・Light extraction part. Forestry agent Susumu Uchihara Figure 7 t Figure 2 7F? A B 3

Claims (1)

【特許請求の範囲】[Claims] 発光波長に対して透明な第1の半導体からなる基板伺か
ら光を取出す表面発光型発光ダイオードにおいて、活性
層と前記基板との間に、前記基板よシ屈折率の大きな第
2の半導体層を有し、かつ前記第2の半導体層は、発光
領域と同一中心軸上で層厚がもつとも厚く、後方向に層
厚が減少する部分を有する形状になっている仁とを特徴
とする表面発光型発光ダイオード。
In a surface-emitting light emitting diode that extracts light from a substrate made of a first semiconductor transparent to the emission wavelength, a second semiconductor layer having a higher refractive index than the substrate is disposed between the active layer and the substrate. and the second semiconductor layer has a shape in which the second semiconductor layer is on the same central axis as the light emitting region and has a portion where the layer thickness is thicker and decreases in the rearward direction. type light emitting diode.
JP56151718A 1981-09-25 1981-09-25 Surface illuminating type light emitting diode Pending JPS5853872A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56151718A JPS5853872A (en) 1981-09-25 1981-09-25 Surface illuminating type light emitting diode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56151718A JPS5853872A (en) 1981-09-25 1981-09-25 Surface illuminating type light emitting diode

Publications (1)

Publication Number Publication Date
JPS5853872A true JPS5853872A (en) 1983-03-30

Family

ID=15524759

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56151718A Pending JPS5853872A (en) 1981-09-25 1981-09-25 Surface illuminating type light emitting diode

Country Status (1)

Country Link
JP (1) JPS5853872A (en)

Similar Documents

Publication Publication Date Title
US6860621B2 (en) LED module and methods for producing and using the module
US7306960B2 (en) High radiance LED chip and a method for producing same
US4605942A (en) Multiple wavelength light emitting devices
US8613536B2 (en) System and method for combining laser arrays for digital outputs
JP3117107B2 (en) Assembly structure of optical integrated circuit device
JPS60113979A (en) Optical device for concentrating light ray emitted by light emitting diode and light emitting diode having same optical device
US8358892B2 (en) Connection structure of two-dimensional array optical element and optical circuit
CA1147050A (en) Light emitting diode and method of making the same
WO2007047086A2 (en) Diode laser array coupling optic and system
JP2737563B2 (en) Semiconductor light emitting device
JPH0744313B2 (en) Semiconductor laser device
CN112448268A (en) VCSEL chip with lens structure and preparation method thereof
US20090304323A1 (en) Optical coupling structure and substrate with built-in optical transmission function, and method of manufacturing the same
JPH06151972A (en) Lens-on-chip luminescent device and manufacture thereof
US4788161A (en) Method of producing an end surface light emission type semiconductor device
JPS5853872A (en) Surface illuminating type light emitting diode
JPH08255933A (en) Semiconductor light emission element integrated with lens and fabrication thereof
JPS61121373A (en) Surface light-emitting element and manufacture thereof
JP2012098756A (en) Optical path converting body and packaging structure thereof, and optical module with the same
JPS5853873A (en) Surface illuminating type light emitting diode
JP6133028B2 (en) Optical fiber, optical module, and optical module manufacturing method
JP4091279B2 (en) Semiconductor light emitting device
JP2001185811A (en) Semiconductor laser device
US20240120704A1 (en) Semiconductor laser device and method for manufacturing semiconductor laser device
JPS5839080A (en) Light emitting diode