JPS5853856B2 - Hydrogen detection device - Google Patents

Hydrogen detection device

Info

Publication number
JPS5853856B2
JPS5853856B2 JP54036930A JP3693079A JPS5853856B2 JP S5853856 B2 JPS5853856 B2 JP S5853856B2 JP 54036930 A JP54036930 A JP 54036930A JP 3693079 A JP3693079 A JP 3693079A JP S5853856 B2 JPS5853856 B2 JP S5853856B2
Authority
JP
Japan
Prior art keywords
gas
measured
temperature
wall
flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54036930A
Other languages
Japanese (ja)
Other versions
JPS55129721A (en
Inventor
章男 角田
望 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Nippon Genshiryoku Jigyo KK
Original Assignee
Nippon Genshiryoku Jigyo KK
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Genshiryoku Jigyo KK, Tokyo Shibaura Electric Co Ltd filed Critical Nippon Genshiryoku Jigyo KK
Priority to JP54036930A priority Critical patent/JPS5853856B2/en
Publication of JPS55129721A publication Critical patent/JPS55129721A/en
Publication of JPS5853856B2 publication Critical patent/JPS5853856B2/en
Expired legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Description

【発明の詳細な説明】 この発明は気体中に含有する水素の濃度を連続的に測定
し得る水素検出装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a hydrogen detection device that can continuously measure the concentration of hydrogen contained in a gas.

金属ナトリウム冷却高速炉プラントにネ・ける蒸気発生
器にわずかな水洩れが生じると、隣接する伝熱管を破損
して大規模なリーク事故を誘発する恐れがある。
A small leak in the steam generator of a sodium metal-cooled fast reactor plant could damage adjacent heat exchanger tubes and cause a large-scale leak accident.

そのため迅速にわずかな水洩れを検出して事故を未然に
防止する必要がある。
Therefore, it is necessary to quickly detect small water leaks and prevent accidents from occurring.

この水洩れを検出するには感度が高く、長時間にわたっ
て使用できる検出方法が要求される。
To detect this water leak, a detection method that is highly sensitive and can be used for a long time is required.

水洩れ検出には、いろいろな手段が検討されているがな
かでも、ナトリウムと水の反応時にはナトリウム表面を
覆っているカバーガス中に放出される水素を検出する手
段が適している。
Various methods have been considered for detecting water leaks, but among them, a method that detects hydrogen released into the cover gas covering the sodium surface during the reaction between sodium and water is suitable.

この水素を検出するには、拡散膜部、真空計及び排気装
置からなる水素検出装置を使用している。
To detect this hydrogen, a hydrogen detection device consisting of a diffusion membrane section, a vacuum gauge, and an exhaust device is used.

この装置は第1図のように構成されている。This device is constructed as shown in FIG.

すなわち蒸気発生器または、試験タンクの壁面を部分的
に示したカバーガス部の試験室壁体1に取付はフランジ
2が水平に接着されており、このフランジ2の内面に被
測定ガスたとえばアルゴンと水素との混合ガスが流通す
る筒状体3が固定されている。
That is, a flange 2 is horizontally glued to the test chamber wall 1 of the steam generator or the cover gas section, which partially shows the wall surface of the test tank, and a gas to be measured, such as argon, is attached to the inner surface of the flange 2. A cylindrical body 3 through which a gas mixture with hydrogen flows is fixed.

この筒状体3内にはステンレス鋼製管状体6が配置され
その上端開口部は取付はフランジ2を貫挿して固定され
ている。
A stainless steel tubular body 6 is disposed within this cylindrical body 3, and its upper end opening is fixed by penetrating the flange 2.

この管状体6には中央部から下方に吊下してスリーブ状
拡散膜部7が接続されている。
A sleeve-shaped diffusion membrane section 7 is connected to the tubular body 6 so as to be suspended downward from the central portion.

拡散膜部Iとしては、水素を選択的に透過させるパラジ
ウム、鉄、ニッケル等が使用される。
As the diffusion membrane part I, palladium, iron, nickel, etc., which selectively permeate hydrogen, are used.

この拡散膜部7の上下すなわち、筒状容器3の上端開口
部4付近の管状休転よび筒状容器3の下端開口部5の内
部には第1加熱源8および第2加熱源9がそれぞれ設け
られている。
A first heat source 8 and a second heat source 9 are provided above and below this diffusion membrane portion 7, that is, in the tubular rest area near the upper end opening 4 of the cylindrical container 3 and inside the lower end opening 5 of the cylindrical container 3. It is provided.

第1ふ・よび第2加熱源8,9は熱電対10,11と温
度制御装置12,13によシ、所定温度に調整される。
The first and second heating sources 8, 9 are adjusted to a predetermined temperature by thermocouples 10, 11 and temperature control devices 12, 13.

フランジ2の上方には、センサ14が前記管状体6と連
通するパイプ15を介して接続されている。
A sensor 14 is connected above the flange 2 via a pipe 15 communicating with the tubular body 6.

センサ14は水素検出器用コントローラ16により制御
される。
The sensor 14 is controlled by a hydrogen detector controller 16.

この装置にむいて、筒状容器3の下端開口部5から流入
する被測定ガス温度と流路18内の被測定ガスの温度差
により起る自然対流により被測定ガスが流入すると水素
ガスは拡散膜部7を透過してセンサ14つ筐り水素検出
部17で検出される。
For this device, when the gas to be measured flows in due to natural convection caused by the temperature difference between the temperature of the gas to be measured flowing in from the lower end opening 5 of the cylindrical container 3 and the gas to be measured in the flow path 18, hydrogen gas diffuses. The hydrogen passes through the membrane section 7 and is detected by the hydrogen detection section 17, which has 14 sensors.

この水素検出部17には、たとえば、イオン電流や真空
度を測定する検出部とコントローラ16たとえばイオン
ポンプコントローラや真空計コントローラが組みこ渣れ
ている。
The hydrogen detection section 17 includes a detection section that measures ion current and degree of vacuum, and a controller 16 such as an ion pump controller and a vacuum gauge controller.

この従来の水素検出装置において特に下端開口部5から
流入する被測定ガス温度と流路18内の被測定ガス温度
差の小さい場合には上部開口部4から流出したガスが上
部開口部4付近に滞留するため、流路18のガスが流れ
難くなり温度制御に必要な流量が採れなくなる。
In this conventional hydrogen detection device, especially when the temperature difference between the temperature of the gas to be measured flowing in from the lower end opening 5 and the temperature of the gas to be measured in the flow path 18 is small, the gas flowing out from the upper opening 4 flows into the vicinity of the upper opening 4. Due to the stagnation, the gas in the flow path 18 becomes difficult to flow, and the flow rate necessary for temperature control cannot be obtained.

そのため拡散膜部7の温度制御が不可能となり水素濃度
の正確な測定が不可能となる欠点があった。
Therefore, there was a drawback that temperature control of the diffusion film portion 7 was impossible, and accurate measurement of hydrogen concentration was impossible.

また逆に温度差が大きい場合にもガスが流れすぎるため
第1ち・よび第2の加熱源8,9の容量の問題等から拡
散膜部7の温度制御を困難にする原因となった。
On the other hand, even when the temperature difference is large, too much gas flows, making it difficult to control the temperature of the diffusion membrane section 7 due to capacity problems of the first and second heating sources 8 and 9.

この発明の目的は対流する被測定ガスの流量を制御する
ことが可能であり、かつ流れを変化させることが出来る
ことにより、拡散膜部の温度制御が容易である水素検出
装置を提供することにある。
An object of the present invention is to provide a hydrogen detection device in which it is possible to control the flow rate of a convecting gas to be measured and to change the flow, thereby making it easy to control the temperature of the diffusion membrane part. be.

以下、この発明を第2図に示した一実施例により詳細に
説明する。
Hereinafter, this invention will be explained in detail with reference to an embodiment shown in FIG.

なお第2図において第1図と同一部分は同一符号で示し
重複した部分の説明は省略しである。
Note that in FIG. 2, the same parts as in FIG. 1 are indicated by the same reference numerals, and explanations of overlapping parts are omitted.

すなわち、この発明は筒状容器3内に被測定ガスを下端
開口部5から上端開口部4へ向けて流通させる流路18
と、この流路18内に配置された前記被測定ガス中に含
有した水素を透過させる拡散膜部7を有する管状体6と
前記被測定ガスの流通方向でかつ前記拡散膜部の前後に
それぞれ設けられた第1加熱源8及び第2加熱源9とこ
れら各加熱源8,9にそれぞれ接続された温度制御装置
12.13と、上端開口部4より流出したガスの温度を
変化させることにより流量を制御するための試験室の壁
体1とフランジ2との間に介在された流調壁19と、こ
の流調壁19の冷却効率を高めるためのフィン20及び
ファーン21からなる温度調整フィンとを具備したこと
を特徴とする水素検出装置である。
That is, the present invention provides a flow path 18 that allows the gas to be measured to flow in the cylindrical container 3 from the lower end opening 5 to the upper end opening 4.
and a tubular body 6 having a diffusion membrane section 7 disposed in the flow path 18 that allows hydrogen contained in the gas to be measured to permeate therethrough, and a tubular body 6 disposed in the flow path 18 and having a diffusion membrane section 7 that allows hydrogen contained in the gas to be measured to pass therethrough, and a tubular body 6 disposed in the flow path 18 in the flow direction of the gas to be measured and before and after the diffusion membrane section, respectively. By changing the temperature of the first heating source 8 and second heating source 9 provided, the temperature control device 12.13 connected to each of these heating sources 8 and 9, and the temperature of the gas flowing out from the upper end opening 4. A flow control wall 19 interposed between the test chamber wall 1 and the flange 2 for controlling the flow rate, and temperature control fins consisting of fins 20 and a fan 21 for increasing the cooling efficiency of the flow control wall 19. This is a hydrogen detection device characterized by comprising:

なお第2図中の11.10は温度検知素子でたとえば熱
電対であり、筒状容器3は熱しやすい体である。
Note that 11.10 in FIG. 2 is a temperature sensing element, such as a thermocouple, and the cylindrical container 3 is a body that is easily heated.

また前記の温度差が太きいためガスが流れすぎる場合は
流調壁19に加熱源を取り付は加熱する事により流調壁
19に加熱源を取り付は加熱する事により流量を制御す
ることが可能である。
In addition, if the gas flows too much due to the large temperature difference, a heating source can be attached to the flow control wall 19 to heat it.A heating source can be attached to the flow control wall 19 and the flow rate can be controlled by heating it. is possible.

ここで、この発明にむいて被測定ガスは、筒状容器3に
下端開口部5から流入し、第2加熱源9で加熱されて所
定の温度に維持され、拡散膜部7を通過し、上端開口部
4から装置外部へ放出された後、放出ガスは流調壁19
に接触することにより温度変化が起り、流量が制御され
る。
Here, according to the present invention, the gas to be measured flows into the cylindrical container 3 from the lower end opening 5, is heated by the second heating source 9 and maintained at a predetermined temperature, passes through the diffusion membrane part 7, After being released from the upper end opening 4 to the outside of the device, the released gas passes through the flow control wall 19.
A temperature change occurs and the flow rate is controlled.

しかして、この発明によれば、流入試料流体の流量を流
調壁19で制御するため流量の変化による拡散膜部7へ
の影響が少なくなり再現性良く水素濃度を測定すること
が可能となる。
Therefore, according to the present invention, since the flow rate of the inflowing sample fluid is controlled by the flow control wall 19, the influence of changes in the flow rate on the diffusion membrane section 7 is reduced, making it possible to measure the hydrogen concentration with good reproducibility. .

たとえば筒状容器3を直径5m長さ50z拡散膜部7の
制御温度を500℃とし第2加熱源の容量200W、第
1加熱源の容量100Wとした場合、第1図に示したよ
うな従来の装置では、下端開口部5から流入する被測定
ガスの温度と拡散膜部7の制御温度との差は50t?t
で達して前記被測定ガスの温度は450℃1でか温度制
御可能限度であった。
For example, if the cylindrical container 3 has a diameter of 5 m and a length of 50 z, the control temperature of the diffusion membrane section 7 is 500° C., the capacity of the second heat source is 200 W, and the capacity of the first heat source is 100 W, the conventional method as shown in FIG. In this device, the difference between the temperature of the gas to be measured flowing in from the lower end opening 5 and the control temperature of the diffusion membrane section 7 is 50t? t
The temperature of the gas to be measured reached 450°C, which was the temperature controllable limit.

これに対してこの発明に係る装置では流調壁19を冷却
することにより前記被測定ガス温度が490℃つ1り温
度差10℃捷で拡散膜部7の温度制御が可能となった。
On the other hand, in the device according to the present invention, by cooling the flow control wall 19, the temperature of the gas to be measured can be controlled by increasing the temperature of the gas to be measured by 490° C., with a temperature difference of 10° C.

なお、前記被測定ガス温度が200℃以下となった場合
第1図に示したような従来の装置では前記したヒータの
容量では拡散膜部7の温度を500’C4で昇温するこ
とが出来なかった。
Note that when the temperature of the gas to be measured becomes 200°C or lower, the temperature of the diffusion film section 7 cannot be raised by 500°C with the capacity of the heater described above in the conventional apparatus shown in FIG. There wasn't.

以上述べたようにこの発明によれば被測定ガスを下端開
口部5かも流入し、上端開口部4から放出される際に流
調壁19に接触することによって流量を制御しかつ流れ
を変化させることができる。
As described above, according to the present invention, the gas to be measured also flows into the lower end opening 5, and when it is discharged from the upper end opening 4, it comes into contact with the flow regulating wall 19, thereby controlling the flow rate and changing the flow. be able to.

したがって、前記流入する被測定ガス温度を広範囲に採
ることができ、かつ拡散膜部7の温度制御を容易にでき
、しかも、ヒータ容量を小さくでき、信頼性が向上する
Therefore, the temperature of the inflowing gas to be measured can be varied over a wide range, the temperature of the diffusion membrane section 7 can be easily controlled, the heater capacity can be reduced, and reliability is improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の水素検出装置の一例を一部縦断面図で示
す装置配置図、第2図はこの発明に係る水素検出装置の
一部を示す縦断面図である。 1・・・試験室壁体、2・・・フランジ、3・・・筒状
体、4・・・上端開口部、5・・・下端開口部、6・・
・管状体、7・・・拡散膜部、8・・・第1加熱源、9
・・・第2加熱源、10.11・・・温度検知素子、1
2.13・・・温度制御装置、14・・・センサ、15
・・・パイプ、16・・・水素検出器用コントローラ、
17・・・水素検出部、18・・・流路、 19・・・流調壁、 20・・・フィン、 21・・・フ アン。
FIG. 1 is a device layout diagram showing an example of a conventional hydrogen detection device in a partial vertical cross-sectional view, and FIG. 2 is a vertical cross-sectional view showing a portion of the hydrogen detection device according to the present invention. DESCRIPTION OF SYMBOLS 1... Test chamber wall body, 2... Flange, 3... Cylindrical body, 4... Upper end opening, 5... Lower end opening, 6...
- Tubular body, 7... Diffusion membrane part, 8... First heating source, 9
...Second heating source, 10.11...Temperature sensing element, 1
2.13...Temperature control device, 14...Sensor, 15
...pipe, 16...hydrogen detector controller,
17...Hydrogen detection unit, 18...Flow path, 19...Flow control wall, 20...Fin, 21...Fan.

Claims (1)

【特許請求の範囲】[Claims] 1 試験室の壁体内に配置された筒状体と、この筒状体
内に被測定ガスを下端から上端へ向けて流通させる流路
と、前記被測定ガスの出口を包囲する前記試験室の壁体
と後記前状態を貫通し固定する取付はフランジとの間に
介在された流調壁と、との流調壁の外周面に設けられた
温度調整フィンと、前記筒状体内に配置され前記被測定
ガス中に含有した水素を透過させる拡散膜部を有する下
端が封止された管状体と、この管状体の前記取付はフラ
ンジを貫挿した上端部に接続された水素検出部と、前記
被測定ガスの流通方向でかつ前記拡散膜部の前後に設け
られた第1釦よび第2の加熱源と、この第1および第2
の加熱源にそれぞれ接続された温度制御装置とを具備し
たことを特徴とする水素検出装置。
1. A cylindrical body disposed within the wall of the test chamber, a flow path through which the gas to be measured flows from the lower end to the upper end within the cylindrical body, and a wall of the test chamber surrounding the outlet of the gas to be measured. The mounting that penetrates and fixes the body and the above-mentioned previous state includes a flow control wall interposed between the flange, a temperature adjustment fin provided on the outer circumferential surface of the flow control wall, and a temperature control fin disposed within the cylindrical body. a tubular body whose lower end is sealed and has a diffusion membrane portion that allows hydrogen contained in the gas to be measured to permeate; a first button and a second heat source provided in the flow direction of the gas to be measured and before and after the diffusion membrane section;
A hydrogen detection device characterized by comprising: a temperature control device connected to each heating source.
JP54036930A 1979-03-30 1979-03-30 Hydrogen detection device Expired JPS5853856B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP54036930A JPS5853856B2 (en) 1979-03-30 1979-03-30 Hydrogen detection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP54036930A JPS5853856B2 (en) 1979-03-30 1979-03-30 Hydrogen detection device

Publications (2)

Publication Number Publication Date
JPS55129721A JPS55129721A (en) 1980-10-07
JPS5853856B2 true JPS5853856B2 (en) 1983-12-01

Family

ID=12483465

Family Applications (1)

Application Number Title Priority Date Filing Date
JP54036930A Expired JPS5853856B2 (en) 1979-03-30 1979-03-30 Hydrogen detection device

Country Status (1)

Country Link
JP (1) JPS5853856B2 (en)

Also Published As

Publication number Publication date
JPS55129721A (en) 1980-10-07

Similar Documents

Publication Publication Date Title
US3943751A (en) Method and apparatus for continuously measuring hydrogen concentration in argon gas
JPS5948339B2 (en) Method and apparatus for monitoring components of a gas stream
US3869370A (en) Method and apparatus for continuously sensing the condition of a gas stream
JPH06207913A (en) Calorimeter for measuring time/temperature of thermosetting synthetic resin
US2787903A (en) Measuring apparatus
US3977232A (en) Diffusion-type hydrogen meter
JP2005274415A (en) Thermal analysis apparatus and its water vapor generating apparatus
JPS5853856B2 (en) Hydrogen detection device
JP3069814B2 (en) Method and apparatus for measuring specific thermal conductivity parameters of gaseous substances
JPH0224460B2 (en)
US4869597A (en) Calorimeter
RU2261489C2 (en) Method and device for inspecting and grading fuel elements
JPS6039171B2 (en) Hydrogen detection device
Greenspan Low frost-point humidity generator
JPS6129656B2 (en)
JPS6156774B2 (en)
JPS593334A (en) Detector for water leakage
JPS58109842A (en) Apparatus for measuring evaporation weight and evaporation heat value simultaneously
JP2744954B2 (en) Thermal analyzer
USRE29209E (en) Method and apparatus for continuously sensing the condition of a gas stream
JPH0520978Y2 (en)
JPS60113129A (en) Detector for hydrogen in cover gas
US1435783A (en) Calorimeter of the continuous and recording type for determining the calorific power of fluid combustibles
JPS5886417A (en) Method and device for measuring flow rate
JPS581375B2 (en) Hydrogen detection device for fast reactor plants