JPS58109842A - Apparatus for measuring evaporation weight and evaporation heat value simultaneously - Google Patents

Apparatus for measuring evaporation weight and evaporation heat value simultaneously

Info

Publication number
JPS58109842A
JPS58109842A JP21222281A JP21222281A JPS58109842A JP S58109842 A JPS58109842 A JP S58109842A JP 21222281 A JP21222281 A JP 21222281A JP 21222281 A JP21222281 A JP 21222281A JP S58109842 A JPS58109842 A JP S58109842A
Authority
JP
Japan
Prior art keywords
sample
temperature
weight
evaporation
container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP21222281A
Other languages
Japanese (ja)
Other versions
JPH0135298B2 (en
Inventor
Kazuo Makino
牧野 和夫
Michio Maruta
丸田 道男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Shimazu Seisakusho KK
Original Assignee
Shimadzu Corp
Shimazu Seisakusho KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp, Shimazu Seisakusho KK filed Critical Shimadzu Corp
Priority to JP21222281A priority Critical patent/JPS58109842A/en
Publication of JPS58109842A publication Critical patent/JPS58109842A/en
Publication of JPH0135298B2 publication Critical patent/JPH0135298B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N5/00Analysing materials by weighing, e.g. weighing small particles separated from a gas or liquid
    • G01N5/04Analysing materials by weighing, e.g. weighing small particles separated from a gas or liquid by removing a component, e.g. by evaporation, and weighing the remainder
    • G01N5/045Analysing materials by weighing, e.g. weighing small particles separated from a gas or liquid by removing a component, e.g. by evaporation, and weighing the remainder for determining moisture content

Abstract

PURPOSE:To shorten the necessary time of measurement, by hanging a sample vessel stored in a heating furnace to a weight detection mechanism provided to the outside of the heating furnace through connection parts and measuring the heat value of evaporation and weight of evaporation at the same time. CONSTITUTION:A sample vessel 6 stored in a heating furnace 5 is hung or mounted to a weight detection mechanism 8 provided to the ouside of the furnace 5 through an introducing pipe 7 to be a connection member. Reaction gas or carrier gas is introduced into the vessel 6 through the pipe 7 and also, a heater 20 and the first temperature sensor 21 detecting the temperature of the sample are provided in the vessel 6 and moreover, the second temperature sensor 22 detecting the atomsphere temperature is provided in the neighborhood of the outside of the vessel 6. In case when the detection temperature of the sensor 21 is lower than that of the sensor 22, electricity is conducted to the heater 20 to keep the difference of both detection temperatures zero and compensation electric power of this current conductor time and the variation quantity of the weight of the sample by the mechanism 8 are measured at the same time.

Description

【発明の詳細な説明】 この発明は一定温度に加熱した試料に生ずる重量変化と
同時にその温度における試料の単位重量当りの蒸発熱量
を測定できる熱重量・蒸発熱量同時測定装置に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a simultaneous thermogravimetric and evaporative heat amount measuring device that can simultaneously measure the weight change that occurs in a sample heated to a constant temperature and the amount of heat of evaporation per unit weight of the sample at that temperature.

一定温度に加熱した試料のその温度における単位重量当
りの蒸発熱量を測定することは、化学プラントの設計条
件などの決定に必要なデータをえる手段として行われる
ことが多いが、この測定に当っては従来たとえば水差走
査熱量針(Differ−rentiml fican
ning Calorimeter )と天びんを併用
して行う測定が行われている。
Measuring the heat of evaporation per unit weight of a sample heated to a certain temperature is often done as a means of obtaining data necessary for determining the design conditions of chemical plants, etc. Conventionally, for example, a differential scanning calorimeter (Differ-rent scanning calorimetry needle)
Measurements are being carried out using a combination of a ning Calorimeter) and a balance.

この測定は前記熱量計において周知のように試料をいれ
た容器と、基準試料をいれた容器とを同じ条件のもとて
同時に一定速度で加熱し、両者の温度差管検出し、この
温度差をゼロに保つように二つの容器に別々に設けられ
たヒータに供給する電力をそれぞれ自動調節させ、二つ
の容器に加え九電力の差、すなわち補償電力ΔWを時間
tに対して記録する。し九がって試料が一定温度に加熱
されたときに蒸発が始まったとすると、試料から蒸発潜
熱が奪われることとなり、この蒸発が継続している間、
それに対応してえがかれるΔW対を曲線(DECグラム
)にベースフィンに対しピークが現われる。ところで試
料と周囲の間には熱交換は存在するが、それは前記二つ
の容器においては同じ大きさであると考えられるので、
前記D80グラムのベースフィンとの間の面積を計測換
算することによって補償熱量、すなわち蒸発熱量が求め
られる。一方この測定の前後における試料の電食変化(
この場合は減量分)を別途化学天びんによって計測する
。この両者の測定値から試料の一定加熱温度における単
位重量当りの蒸発熱量(−1)を求める方法である。
As is well known in the calorimeter, a container containing a sample and a container containing a reference sample are simultaneously heated at a constant rate under the same conditions, and the temperature difference between the two is detected by a tube. The electric power supplied to the heaters separately provided in the two containers is automatically adjusted so as to maintain the power at zero, and the difference between the nine electric powers added to the two containers, that is, the compensation power ΔW, is recorded with respect to time t. If evaporation begins when the sample is heated to a constant temperature, the latent heat of vaporization will be removed from the sample, and while this evaporation continues,
A peak appears for the base fin on the ΔW vs. curve (DECgram) drawn correspondingly. By the way, there is heat exchange between the sample and the surroundings, but it is considered to be the same size in the two containers, so
The amount of compensation heat, that is, the amount of heat of evaporation is determined by measuring and converting the area between the D80 gram base fin and the base fin. On the other hand, the change in electrolytic corrosion of the sample before and after this measurement (
In this case, the weight loss) is measured separately using a chemical balance. This is a method of determining the amount of heat of evaporation (-1) per unit weight at a constant heating temperature of the sample from these two measured values.

前記し九測定方法は操作が繁雑で、設定加熱温度を違え
て測定管繰返えす必要がある場合には測定に長時間を要
するなどの欠点を有している。
The measurement method described above has drawbacks such as complicated operation and a long time required for measurement when it is necessary to repeat the measurement with different set heating temperatures.

この発明は前記した現状に鑑みてなされたものであって
、一定温度に加熱した試料のその温度における単位重量
当りの蒸発熱の測定における従来の欠点を解消し、測定
を容易かつ短時間で行いうる熱重量分析装置を提供する
ことを目的とするもので、加熱炉中に収容した試料容器
を加熱炉外に設けた重量検出機構に連結部材會介して懸
吊もしくは載架し、前記試料容器に反応ガスまたはキャ
リヤガスをガス導入管を介して導入するようにするとと
もに、この容器内にヒータと試料温度を検出する第1の
温度センサとを設け、さらにこの容器の外側近傍に雰囲
気温度を検出する第2の温度センサを設けてなり、第1
の温度センサによる検出温度が第2の温度センサに1よ
る検出温度より低くなる場合には、前記雨検出温度差を
ゼロに保つように前記ヒータに通電し、この通電時の補
償電力と前記重量検出機構から見られろ試料重量の変化
量とを同一時間にそれぞれ測定しうるようにした熱重量
・蒸発熱量同時測定装置にかかるものである。
This invention was made in view of the above-mentioned current situation, and eliminates the conventional drawbacks in measuring the heat of evaporation per unit weight of a sample heated to a certain temperature at that temperature, and allows measurement to be performed easily and in a short time. The purpose of this device is to provide a thermogravimetric analyzer that allows a sample container housed in a heating furnace to be suspended or mounted on a weight detection mechanism provided outside the heating furnace via a connecting member. A reactant gas or a carrier gas is introduced into the container through a gas introduction pipe, and a heater and a first temperature sensor for detecting the sample temperature are provided in the container, and the ambient temperature is controlled near the outside of the container. A second temperature sensor is provided to detect the first temperature.
When the temperature detected by the second temperature sensor becomes lower than the temperature detected by the second temperature sensor, the heater is energized so as to keep the rain detection temperature difference to zero, and the compensation power and the weight when energized are This device is a simultaneous thermogravimetric and evaporative heat amount measuring device that can measure both the amount of change in sample weight and the amount of change seen by the detection mechanism at the same time.

以下、この発明にかかる5I!施例装置について図面會
参照しながら詳細に説明する。第1図はこの実施例装置
の主l!部′を模式的に示した側部面図である。
The following are the 5Is related to this invention! An example device will be described in detail with reference to the drawings. FIG. 1 shows the main unit of this embodiment device. FIG. 3 is a side view schematically showing the section.

鉛1■に配設した筒状の耐圧容器(1)は上部の試料室
(2)、下部の重量測定室(3)および重量測定室(3
)に接続する分岐室(4)によって形成されており、試
料室(2)の外周には加熱炉(たとえば電気炉)(5)
が設けられている。試料室(2)の内部には試料を充て
んし九試料容器(6)がその底部に連結された連結部材
(ガス導入管)(7)t−介して重量測定室(3)の重
量検出機構、虎とえばロードセル(8)K載架されるこ
とによって試料室(2)のほぼ中央部に位置するように
設けられている。ガス導入管(7)拡試料容器(6)に
充てんされ念試料の重量の変化を正確にロードセル(8
) K伝達できる剛性を有する連結部材の役tなすとと
もに、試料に接触させる反応ガスもしくはキャリヤガス
の導入路となるもので、九とえばステンレススチールの
細管が用いられており、試料室(2)の下方に設けられ
丸環状の案内板(9)にそれとの摩擦を少くし、ガス導
入管(7)Kよる重量の伝達に影響を与えないようには
めあわされている。ガス導入管(7)には分岐部α1が
設けられ、この分岐部Qlに分岐室(4)の内部には埋
水平に配置されたたとえばポリプロピレン材の細管から
なる可撓性の接続管Iの一端が連結されている。そして
その他咽は所望のガス源(図示せず)と接続され流量調
整弁aりを介して分岐室(4)に導入されたパイプに連
結されている。この接続管aυにはそれがガス導入管(
7)を介する重量の伝達に対して干渉t−極力少くし、
リードセル(8)の検出感度に影響を与えない程度に可
撓性がもたせである。試料室(2)には流量調整弁al
t備え九排気口Iおよび圧力計a■が、分岐室(4)に
は開閉弁翰を備えた排気口aηがそれぞれ設けられてい
る。試料容器(6)には、その底部に連結されたガス導
入管(7)が試料の充てんレベルより上方に延長され、
それに盲蓋を施した外套管(18が同軸に取付けられ、
試料容器(6)の底部近傍において開口うKされている
。また試料容器(6)内には、小形ヒ−タ■および試料
温度を検出する第1の温度センサQυが設けられており
、試料容器(6)の外側近傍には雰囲気温度を検出する
第2の温度センサ(2)が設けられている。そしてこれ
らの温度センサ@1.(2)にはたとえばクロメシーア
ルメル熱電対が用いられ、第2図の電気炉およびヒータ
の温度制御回路図にみられるように直流増幅器(2)に
差動的に接続されている。なお第2図の温度制御回路に
おいて(財)は電力保償回路、(至)は記録針、(至)
は温度制御器、(21/)は電気炉(5)の温度制御の
ための熱電対からなる温度センサである。
The cylindrical pressure-resistant container (1) installed in the lead 1 is divided into an upper sample chamber (2), a lower weight measurement chamber (3), and a weight measurement chamber (3).
), and a heating furnace (for example, an electric furnace) (5) is formed on the outer periphery of the sample chamber (2).
is provided. The interior of the sample chamber (2) is filled with a sample, and a sample container (6) is connected to the bottom of the connecting member (gas introduction pipe) (7) via the weight detection mechanism of the weight measurement chamber (3). For example, a load cell (8) is mounted on a rack so as to be located approximately in the center of the sample chamber (2). The gas inlet tube (7) is filled into the expanding sample container (6), and the load cell (8) is used to accurately measure changes in the weight of the sample.
) It serves as a connecting member with rigidity capable of transmitting K, and also serves as an introduction path for the reaction gas or carrier gas to be brought into contact with the sample.For example, a thin tube made of stainless steel is used, and the sample chamber (2) The gas inlet pipe (7) is fitted to a circular guide plate (9) provided below the guide plate (9) to reduce friction therebetween and not to affect the transmission of weight by the gas introduction pipe (7)K. The gas introduction pipe (7) is provided with a branch part α1, and a flexible connecting pipe I made of a thin tube made of polypropylene material, for example, is connected to the branch part Ql, which is buried horizontally inside the branch chamber (4). One end is connected. The other throat is connected to a desired gas source (not shown) and connected to a pipe introduced into the branch chamber (4) via a flow rate regulating valve. This connecting pipe aυ has a gas inlet pipe (
7) Minimize interference with weight transmission via
It has flexibility to the extent that it does not affect the detection sensitivity of the lead cell (8). There is a flow rate adjustment valve al in the sample chamber (2).
The branch chamber (4) is provided with an exhaust port I and a pressure gauge a, and an exhaust port aη with an on-off valve is provided in the branch chamber. A gas introduction pipe (7) connected to the bottom of the sample container (6) extends above the filling level of the sample;
A mantle tube with a blind lid (18 is attached coaxially to it,
An opening is provided near the bottom of the sample container (6). In addition, a small heater ■ and a first temperature sensor Qυ for detecting the sample temperature are provided inside the sample container (6), and a second temperature sensor for detecting the ambient temperature is provided near the outside of the sample container (6). A temperature sensor (2) is provided. And these temperature sensors @1. (2), for example, uses a chromesy alumel thermocouple, which is differentially connected to the DC amplifier (2) as shown in the temperature control circuit diagram of the electric furnace and heater in FIG. In the temperature control circuit shown in Figure 2, (Found) is the power guarantee circuit, (To) is the recording needle, and (To) is the power guarantee circuit.
is a temperature controller, and (21/) is a temperature sensor consisting of a thermocouple for controlling the temperature of the electric furnace (5).

試料容器(6)に収容されえ試料によって高温に加熱し
て実験を行う場合には、試料室(2)から輻射熱が第1
の温度センサr21に影響することがあり、ま温をなす
ためにたとえば金、白金などからなる上下噛開放の薄肉
のパイプが熱障壁(2)として設けられている。
When performing an experiment by heating the sample to a high temperature by using the sample contained in the sample container (6), radiant heat from the sample chamber (2)
In order to keep the temperature sensor r21 warm, a thin-walled pipe made of, for example, gold or platinum and having an open top and bottom is provided as a thermal barrier (2).

つぎにこの装置における測定についてキャリヤガスに窒
素を用い、一定温度に加熱した試料の単位重量当りの蒸
発熱量を測定する場合を剰にとって説明する。
Next, a case will be described in which the measurement using this apparatus is carried out using nitrogen as a carrier gas and measuring the amount of heat of evaporation per unit weight of a sample heated to a constant temperature.

まず流量調整弁a3ヲ閉じ、開閉弁翰および流量調整弁
a′at−開いて、接続管aυ、ガス導入管(7)ヲ介
して試料容器(6)に窒素をキャリヤガスとして送り込
む。このガスは、小孔翰、外套管側をとおってその開口
部から試料内へ流れ込み、試料容器(6)の開口部から
流出し、耐圧容器(1)内を充たし、排気口αηから排
出される。この間に試料容器(6)および耐圧容器(1
)内の空気はキャリヤガスによって置換されるとともに
これら容器の洗浄が行われる。つぎに開閉弁aeを閉じ
、流量調整弁(13,(lit?調節し、圧力計ti9
により試料室(2)内の圧力が設定値に保持されている
ことを確認する。試料内を流通したキャリヤガスは排気
口a4から排出されるが、この状態で電気炉(5)に通
電して試料を加熱する。
First, the flow rate adjustment valve a3 is closed, the opening/closing valve and the flow rate adjustment valve a'at- are opened, and nitrogen is sent as a carrier gas into the sample container (6) via the connecting pipe aυ and the gas introduction pipe (7). This gas flows into the sample from the opening through the small hole and the mantle tube side, flows out from the opening of the sample container (6), fills the inside of the pressure container (1), and is exhausted from the exhaust port αη. Ru. During this time, sample container (6) and pressure container (1
) is replaced by carrier gas and these containers are cleaned. Next, close the on-off valve ae, adjust the flow rate adjustment valve (13, (lit?), and adjust the pressure gauge ti9.
Confirm that the pressure in the sample chamber (2) is maintained at the set value. The carrier gas that has passed through the sample is discharged from the exhaust port a4, and in this state, the electric furnace (5) is energized to heat the sample.

この加熱に際しては、温度制御器(至)に一定の加熱速
度および到達加熱温度〔温度センサ(22’)による雰
囲気温度)′@:設定し、温度制御器(至)によってプ
ログラム制御を行わせながら、雰囲気温度が設淀温度を
保つように電気炉(5)を動作させる。この電気炉(5
)の加熱動作によって試料室(2)の雰囲気温度が次第
に昇温させられ、それに伴って試料容器(6)内の試料
が加熱され、その温度が上昇する。この場合試料室(2
)の雰囲気温度Tムは熱電対(2)によっても検出され
、試料容器(6)内の試料の温度T8は熱電対Qυによ
って検出される。
During this heating, the temperature controller (to) is set at a constant heating rate and the ultimate heating temperature (ambient temperature measured by the temperature sensor (22'))'@: while the temperature controller (to) performs program control. , the electric furnace (5) is operated so that the ambient temperature remains at the set stagnation temperature. This electric furnace (5
), the atmospheric temperature in the sample chamber (2) is gradually raised, and the sample in the sample container (6) is accordingly heated, increasing its temperature. In this case, the sample chamber (2
) is also detected by a thermocouple (2), and the temperature T8 of the sample in the sample container (6) is detected by a thermocouple Qυ.

試料にはキャリヤガスが連続して流通するようにされて
いるから、小形ヒータ翰が作動していない状態では雰囲
気温度Tムと試料温度T8の間には1、両者の昇温過程
では時間ずれにもとづく温度差が生ずるが、雰囲気温度
Tムが前記し光膜定温度に保持される安定状類で雌温度
Tムと温度Tsは一致するようになる。  この安定状
態に到達する過程では、熱電対(2m、@の検出温度差
にもとづく出力が増幅器@を介して電力保償回路@に入
力され、小形ヒータ(2)に通電がなされることKよっ
て試料に熱量が付与され、前記温度差を少くし、ゼロに
なるように作動することから、前記し丸管定状態にかな
り短時間にて到達する。
Since the carrier gas is made to flow continuously through the sample, when the small heater is not in operation, there is a difference of 1 between the ambient temperature Tm and the sample temperature T8, and there is a time lag between the two during the heating process. However, in a stable state where the ambient temperature Tm is maintained at a constant optical film temperature, the female temperature Tm and the temperature Ts become equal. In the process of reaching this stable state, the output based on the detected temperature difference of the thermocouple (2m, @) is input to the power guarantee circuit @ via the amplifier @, and the small heater (2) is energized. Since heat is applied to the sample and the temperature difference is reduced to zero, the round tube constant state described above is reached in a fairly short time.

さて、この設定温度において試料の蒸発成分が蒸発し始
めたとすると、その蒸発ガスはキャリヤガスによって容
器(6)外へ運び去られる。蒸発が引続いて行われる間
試料から蒸発成分がこのようにして除去されることから
、試料重量はそれだけ変化し、その変化量はガス導入管
(7)′t−介してロードセル(8)に伝達され、それ
から出力される信号によって記録計(ハ)に時間tとと
もに記録される。(第2図にはこの回路は省略されてい
る。)一方、蒸発が行われている間は、試料から蒸発の
潜熱が取り去られることから、試料温度T8は雰囲気温
度Tムより当然低くなり、両者に温度差が生ずる。
Now, if the evaporated components of the sample begin to evaporate at this set temperature, the evaporated gas will be carried out of the container (6) by the carrier gas. During the subsequent evaporation, the evaporated components are removed from the sample in this way, so that the sample weight changes accordingly, and the amount of change is transferred to the load cell (8) via the gas inlet pipe (7)'t-. The signal transmitted and outputted from it is recorded on the recorder (c) along with time t. (This circuit is omitted in Figure 2.) On the other hand, while evaporation is occurring, the latent heat of evaporation is removed from the sample, so the sample temperature T8 naturally becomes lower than the ambient temperature Tm. A temperature difference occurs between the two.

したがって前記し九動作が再び行われ1両者の温度差を
ゼロにするように小形ヒータ(至)に通電がなされ、蒸
発が継続している間、それに対応して小形ヒータ(2)
に供給された電力ΔWが時々刻々記録計(ハ)に記録さ
れ、前記したD8Cグラムに相当するΔw′Mt曲線が
えられる。したがってとのΔW対を曲線とベースフィン
とで囲まれた面積を計測換算することによって小形と−
タ■による補償熱量、すなわちこの試料の設定温度にお
ける蒸発熱量が求められる。試料の重量変化は前記した
とおり時間tとともに記碌されているから、この時間軸
と蒸発熱量を求め九Δw jI を曲線の時間軸を共通
にしておけば、蒸発にもとづく試料の減量分と、その蒸
発に要し友熱量すなわち蒸発熱量とを正確に測定し、こ
の目測定値から試料の設定加熱温度における単位重量当
りの蒸発熱量(−嘴)を求めることができる。
Therefore, the above-mentioned operation is performed again, and the small heater (2) is energized so as to make the temperature difference between the two zero, and while the evaporation continues, the small heater (2) is turned on.
The electric power ΔW supplied to is recorded on the recorder (c) every moment, and a Δw'Mt curve corresponding to the D8C gram described above is obtained. Therefore, by measuring and converting the area surrounded by the curve and the base fin to the ΔW pair of
The amount of compensation heat due to the temperature, that is, the amount of heat of evaporation at the set temperature of this sample is determined. As mentioned above, the weight change of the sample is recorded along with the time t, so if we calculate this time axis and the heat of evaporation and calculate 9Δw jI by keeping the time axis of the curves common, we can calculate the weight loss of the sample due to evaporation, The amount of friend heat required for its evaporation, that is, the amount of heat of evaporation, can be accurately measured, and from this measured value, the amount of heat of evaporation (-beak) per unit weight of the sample at the set heating temperature can be determined.

試料容器(6)は耐圧容器(1)の一部をなす試料室(
2)に収められているので、流量調整弁α3.(11の
開度を調節することによってキャリヤガス源のもつ圧力
の範囲内において試料を加圧することができる。
The sample container (6) is a sample chamber (
2), the flow rate adjustment valve α3. (By adjusting the opening degree of 11, the sample can be pressurized within the pressure range of the carrier gas source.

したがって前記した試料の単位重量当りの蒸発熱の測定
を圧力および温度の両者をバフメータとして行うことも
できる。
Therefore, the heat of vaporization per unit weight of the sample described above can be measured using both pressure and temperature as a buff meter.

また小形と−タ(2)およびその制御回路を作動させな
いようにしておけば、この装置は熱重量分析装置として
使用することができる。
In addition, if the small analyzer (2) and its control circuit are kept inactive, this device can be used as a thermogravimetric analyzer.

以上の説明によって明らかなようにこの発明にかかる熱
重量・蒸発熱量同時測定装置においては、従来のたとえ
ば水差走査熱量針と天びんを併用して、試料の蒸発熱量
と、それに対応する蒸発重量を別々に測定して一定温度
における試料の単位重量当りの蒸発熱量管掌める方法に
比して、蒸発熱量と蒸発重量を同時に測定できるように
されていることから、測定操作が簡単で、測定に要する
時間を短縮することができる。このことは試料の設定加
熱温度を違えて測定を繰返えす必要のある場合にとくに
効果が大きい。また試料容器を耐圧容器に収め、試料を
加圧しながら加熱するようにこの装置を構成することが
できるので、このように構成したこの装置においては圧
力ならびに温度をバフメータとし九試料の単位重量当り
の蒸発熱量を春島に測定することができる。
As is clear from the above explanation, the thermogravimetric and evaporative heat amount simultaneous measuring device according to the present invention uses a conventional method such as a differential scanning calorimetry needle and a balance to measure the evaporative heat amount of the sample and the corresponding evaporative weight. Compared to the method of measuring the heat of evaporation per unit weight of the sample at a constant temperature by measuring them separately, it is possible to measure the heat of evaporation and the weight of evaporation at the same time, which simplifies the measurement operation and makes it easier to measure. The time required can be shortened. This is particularly effective when it is necessary to repeat measurements with different set heating temperatures for the sample. In addition, this apparatus can be configured so that the sample container is housed in a pressure-resistant container and the sample is heated while pressurizing it. Therefore, in this apparatus configured in this way, pressure and temperature are measured using a buff meter, and the temperature is measured per unit weight of the sample. The heat of evaporation can be measured at Harushima.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明にかかる寮施例装置の主l!部を模式
的に示した側断面図、第2図はこの装置の温度制御回路
図の1例である。 (1)・・・・・・・・耐圧容器、(2)・・・・・・
・・・試料室、(3)・・・・・四重量測定室、(5)
・・・・・・・・・加熱炉(電気炉) 、 (6)・・
−・曲試斜容器。 (7)・・・・・・・・・連結部材(ガス導入管) 、
 (8)・・・・・・・・・重量測定機構(ロードセル
) 、 (11問・・・・・ヒータ、(2ト・・・・ 
111の温度センサ(熱電対)、(2)・・・・・−・
・第2の温度センサ(熱電対)
FIG. 1 shows the main structure of the dormitory embodiment device according to the present invention. FIG. 2, which is a side sectional view schematically showing the parts, is an example of a temperature control circuit diagram of this device. (1)・・・・・・Pressure container, (2)・・・・・・
...Sample room, (3)...Four weight measurement room, (5)
・・・・・・Heating furnace (electric furnace), (6)・・
-・Curved trial container. (7)......Connection member (gas introduction pipe),
(8)...Weight measurement mechanism (load cell), (11 questions...Heater, (2 tons...)
111 temperature sensor (thermocouple), (2)...
・Second temperature sensor (thermocouple)

Claims (1)

【特許請求の範囲】 1、加熱炉中に収容した試料容器を加熱炉外に設けた重
量検出機構に連結部材を介して懸吊もしくは載架し、前
記試料容器に反応ガスまたはキャリヤガスをガス導入管
を介して導入するようにするとともに、この容器内にヒ
ータと試料温度を検出する第10温度センナとを設け、
さらKこの容器の外側近傍に雰囲気温度を検出する第2
の温度センサを設けてなり、第1の温度センナによる検
出温度が第3の温度センサによる検出温度より低くなる
場合には、前記雨検出温度差をゼロに保つようK1ff
記ヒータに通電し、この通電時の補償電力と前記重量検
出機構から見られる試料重量の変化量とを同一時間にそ
れぞれ測定しうるようにした熱重量・蒸発熱量同時測定
装置。 2、試料容器を収容する室を耐圧容器とし九特許請求の
範囲第1項記載の熱重量・蒸発熱量同時測定装置。
[Claims] 1. A sample container housed in a heating furnace is suspended or placed on a weight detection mechanism provided outside the heating furnace via a connecting member, and a reaction gas or a carrier gas is supplied to the sample container. The sample is introduced through an introduction tube, and a heater and a tenth temperature sensor for detecting the sample temperature are provided in the container.
Additionally, a second sensor is installed near the outside of this container to detect the ambient temperature.
temperature sensor is provided, and when the temperature detected by the first temperature sensor becomes lower than the temperature detected by the third temperature sensor, K1ff is set to keep the rain detection temperature difference to zero.
A simultaneous measurement device for thermogravimetry and evaporative heat quantity, which is capable of energizing the heater and measuring at the same time the compensation power when the heater is energized and the amount of change in sample weight seen from the weight detection mechanism. 2. The thermogravimetric/evaporative heat amount simultaneous measuring device according to claim 1, wherein the chamber for accommodating the sample container is a pressure-resistant container.
JP21222281A 1981-12-24 1981-12-24 Apparatus for measuring evaporation weight and evaporation heat value simultaneously Granted JPS58109842A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21222281A JPS58109842A (en) 1981-12-24 1981-12-24 Apparatus for measuring evaporation weight and evaporation heat value simultaneously

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21222281A JPS58109842A (en) 1981-12-24 1981-12-24 Apparatus for measuring evaporation weight and evaporation heat value simultaneously

Publications (2)

Publication Number Publication Date
JPS58109842A true JPS58109842A (en) 1983-06-30
JPH0135298B2 JPH0135298B2 (en) 1989-07-25

Family

ID=16618963

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21222281A Granted JPS58109842A (en) 1981-12-24 1981-12-24 Apparatus for measuring evaporation weight and evaporation heat value simultaneously

Country Status (1)

Country Link
JP (1) JPS58109842A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60224039A (en) * 1984-04-20 1985-11-08 Shimadzu Corp Thermocouple leader line connecting device for thermal weight measurement
JPS61176834A (en) * 1985-02-01 1986-08-08 Mitsubishi Mining & Cement Co Ltd Method and instrument for quick measurement of grade of limestone
JPS61147955U (en) * 1985-03-05 1986-09-12
JPH02171624A (en) * 1988-12-23 1990-07-03 Ngk Insulators Ltd Continuous measurement of moisture
CN105758887A (en) * 2016-04-20 2016-07-13 青岛新维纺织开发有限公司 Device and method for globally detecting heat transfer performance of substance
WO2019109381A1 (en) * 2017-12-08 2019-06-13 中国科学院广州能源研究所 Rapid heating wide range thermogravimetric analyzer

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60224039A (en) * 1984-04-20 1985-11-08 Shimadzu Corp Thermocouple leader line connecting device for thermal weight measurement
JPS61176834A (en) * 1985-02-01 1986-08-08 Mitsubishi Mining & Cement Co Ltd Method and instrument for quick measurement of grade of limestone
JPH0475456B2 (en) * 1985-02-01 1992-11-30
JPS61147955U (en) * 1985-03-05 1986-09-12
JPH02171624A (en) * 1988-12-23 1990-07-03 Ngk Insulators Ltd Continuous measurement of moisture
CN105758887A (en) * 2016-04-20 2016-07-13 青岛新维纺织开发有限公司 Device and method for globally detecting heat transfer performance of substance
WO2019109381A1 (en) * 2017-12-08 2019-06-13 中国科学院广州能源研究所 Rapid heating wide range thermogravimetric analyzer

Also Published As

Publication number Publication date
JPH0135298B2 (en) 1989-07-25

Similar Documents

Publication Publication Date Title
US5907091A (en) Procedure and device for the measurement of water vapor transfer through textiles and other plate-like materials
US5669554A (en) Humidity control thermal analyzer
JP3877954B2 (en) Automatic humidity step control thermal analyzer
JP2001305086A (en) Thermal analysis device
JPS58109842A (en) Apparatus for measuring evaporation weight and evaporation heat value simultaneously
NO853296L (en) MEASUREMENT OF WATER STEAM TRANSMISSION.
US5322360A (en) Isothermal calorimeter
CN1898570B (en) Method of raising temperature of received object, and analyzing device
US7137734B2 (en) Device for measuring quantities of heat while simultaneously measuring the evaporation kinetics and/or condensation kinetics of the most minute amounts of liquid in order to determine thermodynamic parameters
CN104655671B (en) Adiabatic accelerating calorimeter and detection method
US6157009A (en) Advanced reactive system screening tool
Keith et al. A fluidless direct-drive moving bomb calorimeter
JPS6119935B2 (en)
US7865314B1 (en) Method for determining the salt content of liquid and device for carrying out said method
Solar et al. Hydrogen transport in stagnant molten iron
Szekely et al. The effects of heat and mass transport on the results of thermal decomposition studies: Part 1. The three reactions of calcium oxalate monohydrate
JPS62261945A (en) Thermal stability tester
JPS6132352Y2 (en)
JPS6154426A (en) Measuring method of vapor pressure
US3607088A (en) Apparatus for simultaneously measuring temperature of reaction and pressure in vapor and liquid phases of very small amount of sample under pressure
CN110243717A (en) It is a kind of for measuring the method and device of crystal water content in ore
JP2006038607A (en) Measuring method of specific heat at constant pressure of high pressure fluid and device therefor
Babcock The specific heat of ammonia
JPS5836737B2 (en) PH measurement method and device
SU1711006A2 (en) Differential microcalorimeter