JPH0520978Y2 - - Google Patents
Info
- Publication number
- JPH0520978Y2 JPH0520978Y2 JP1985110566U JP11056685U JPH0520978Y2 JP H0520978 Y2 JPH0520978 Y2 JP H0520978Y2 JP 1985110566 U JP1985110566 U JP 1985110566U JP 11056685 U JP11056685 U JP 11056685U JP H0520978 Y2 JPH0520978 Y2 JP H0520978Y2
- Authority
- JP
- Japan
- Prior art keywords
- heat
- self
- sensor pipe
- pair
- heating resistors
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000010438 heat treatment Methods 0.000 claims description 42
- 239000003779 heat-resistant material Substances 0.000 claims description 30
- 229910052751 metal Inorganic materials 0.000 claims description 15
- 239000002184 metal Substances 0.000 claims description 15
- 239000012530 fluid Substances 0.000 claims description 13
- 238000005192 partition Methods 0.000 claims description 8
- 238000001514 detection method Methods 0.000 description 14
- 238000012423 maintenance Methods 0.000 description 9
- 230000035945 sensitivity Effects 0.000 description 6
- 229920000742 Cotton Polymers 0.000 description 4
- 238000007689 inspection Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 230000004043 responsiveness Effects 0.000 description 3
- 229920002678 cellulose Polymers 0.000 description 2
- 239000001913 cellulose Substances 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 229920003002 synthetic resin Polymers 0.000 description 2
- 239000000057 synthetic resin Substances 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
Landscapes
- Measuring Volume Flow (AREA)
Description
【考案の詳細な説明】
産業上の利用分野
本考案は熱式質量流量計に係り、特に被測流体
の質量流量の感度良く計測しうる熱式質量流量計
に関する。[Detailed Description of the Invention] Industrial Application Field The present invention relates to a thermal mass flowmeter, and particularly to a thermal mass flowmeter that can measure the mass flow rate of a fluid to be measured with high sensitivity.
従来の技術
一般に、熱式質量計はバイパス流路より分岐し
たセンサ流路を形成するセンサパイプの外周に自
己加熱抵抗体よりなる一対の温度検出センサを設
け、被測流体を加熱し、この一対の温度検出セン
サにより被測流体の流入に伴うセンサパイプの2
点間の温度差を計測して被測流体の質量流量を求
めるものである。したがつて、一対の温度検出セ
ンサの熱が周囲の空気に奪われてしまうと、感度
が低下し正確に質量流量を計測できない。このた
め、従来の熱式質量流量計では、周囲の空気によ
り一対の温度検出センサが冷却されることを防止
するため、例えばアルミニウム等の金属ケースで
センサパイプ及び温度検出センサの周囲を覆つて
いた。また、一対の温度検出センサの加熱により
金属ケース内の空気が対流すると一対の温度検出
センサ間に温度差が生じ流量が零の場合でも流量
が検出されてしまう。したがつて、加熱された空
気の対流を防止するため、金属ケース内にセンサ
パイプを挿通させたセンサパイプの外周を囲む室
を設けていた。BACKGROUND TECHNOLOGY In general, a thermal mass meter is equipped with a pair of temperature detection sensors made of self-heating resistors on the outer periphery of a sensor pipe that forms a sensor flow path branching from a bypass flow path, and heats the fluid to be measured. 2 of the sensor pipe due to the inflow of the fluid to be measured by the temperature detection sensor.
The mass flow rate of the measured fluid is determined by measuring the temperature difference between points. Therefore, if the heat of the pair of temperature detection sensors is taken away by the surrounding air, the sensitivity will decrease and the mass flow rate cannot be accurately measured. For this reason, in conventional thermal mass flowmeters, in order to prevent the pair of temperature detection sensors from being cooled by the surrounding air, the sensor pipe and temperature detection sensor are covered with a metal case such as aluminum. Ta. Further, when the air in the metal case is convective due to heating of the pair of temperature detection sensors, a temperature difference occurs between the pair of temperature detection sensors, and the flow rate is detected even when the flow rate is zero. Therefore, in order to prevent convection of heated air, a chamber surrounding the outer periphery of the sensor pipe through which the sensor pipe is inserted has been provided in the metal case.
考案が解決しようとする問題点
しかしながら、上記構成になる従来の熱式質量
流量計では、センサパイプに金属ケース内の室の
内壁が近接しており、また、金属ケースの熱伝導
率が比較的高いため、温度検出センサの熱が金属
ケースに伝達され金属ケースより外気に放熱され
てしまう。したがつて、温度検出センサの温度が
金属ケースに奪われて加熱ロスが生じるため、温
度が低くなり流量を計測する際の感度が低下する
といつた欠点があつた。また、センサパイプが金
属ケースの室の内壁に当接すると温度検出センサ
の感度及び応答性がバラツクため、センサパイプ
を内壁に当接しないように保持する必要があると
いう欠点があつた。Problems to be solved by the invention However, in the conventional thermal mass flowmeter with the above configuration, the inner wall of the chamber in the metal case is close to the sensor pipe, and the thermal conductivity of the metal case is relatively low. Because of the high temperature, the heat from the temperature detection sensor is transferred to the metal case and radiated from the metal case to the outside air. Therefore, the temperature of the temperature detection sensor is absorbed by the metal case and a heating loss occurs, resulting in a lower temperature and lower sensitivity when measuring the flow rate. Furthermore, if the sensor pipe comes into contact with the inner wall of the chamber of the metal case, the sensitivity and response of the temperature detection sensor will vary, so there is a drawback that it is necessary to hold the sensor pipe so that it does not come into contact with the inner wall.
そこで、本考案は上記欠点を除去した熱式質量
流量計を提供することを目的とする。 Therefore, an object of the present invention is to provide a thermal mass flowmeter that eliminates the above-mentioned drawbacks.
問題点を解決するための手段
本考案は、センサパイプの外周に巻回された一
対の自己加熱抵抗体により該センサパイプを流れ
る被測流体の流量を計測する熱式質量流量計にお
いて、
熱伝導率が高く、且つ高温にく耐えうる耐熱性
を有し、前記一対の自己加熱抵抗体の周囲を覆う
ように中空状に形成された耐熱材と、
前記一対の自己加熱抵抗体の間を遮るように前
記センサパイプの外周に設けられた隔壁と、
金属より熱伝導率の低い断熱性を有し、前記耐
熱材の周囲を包囲するように形成されたケース
と、
を備えてなる。Means for Solving the Problems The present invention provides a thermal mass flowmeter that measures the flow rate of a fluid to be measured flowing through a sensor pipe using a pair of self-heating resistors wound around the outer periphery of the sensor pipe. A heat-resistant material having a high heat resistance and heat resistance that can withstand high temperatures, and is formed in a hollow shape so as to cover the periphery of the pair of self-heating resistors, and a space between the pair of self-heating resistors is blocked. A partition wall provided around the outer periphery of the sensor pipe, and a case having heat insulating properties with lower thermal conductivity than metal and formed to surround the heat resistant material.
作 用
本考案は、ケース内のセンサパイプの外周に巻
回された一対の自己加熱抵抗体の周囲を熱伝導率
が高く、且つ高温に耐えうる耐熱性を有する中空
状に形成された耐熱材により覆うとともに、一対
の自己加熱抵抗体の間に隔壁を設けるようにした
ため、ケース内で生ずる空気の対流により自己加
熱抵抗体が冷却されることを防止するとともに自
己加熱抵抗体の熱がケースを介して外部に逃げる
ことを防止する。Function The present invention uses a hollow heat-resistant material with high thermal conductivity and heat resistance that can withstand high temperatures to surround a pair of self-heating resistors wound around the outer circumference of the sensor pipe inside the case. At the same time, a partition wall is provided between the pair of self-heating resistors, which prevents the self-heating resistors from being cooled by air convection that occurs within the case, and prevents the heat of the self-heating resistors from reaching the case. Prevent escape to the outside via the
しかも、耐熱材が中空状に形成されるように、
センサパイプの外周を覆うように取付けることが
できるので、例えば自己加熱抵抗体の保守、点検
を行う場合でも、容易に耐熱材をセンサパイプか
ら外して自己加熱抵抗体の保守、点検等のメンテ
ナンス作業を行える。さらに、熱伝導率の高い耐
熱材が自己加熱抵抗体を覆うように設けられてい
るので、微小流量の変化に対する出力信号の時間
遅れが少なく対応性が向上する。 Moreover, so that the heat-resistant material is formed in a hollow shape,
Since it can be installed so as to cover the outer circumference of the sensor pipe, for example, when performing maintenance or inspection of the self-heating resistor, the heat-resistant material can be easily removed from the sensor pipe for maintenance work such as maintenance or inspection of the self-heating resistor. can be done. Furthermore, since the heat-resistant material with high thermal conductivity is provided to cover the self-heating resistor, there is less time delay in the output signal with respect to minute changes in flow rate, and responsiveness is improved.
実施例
第1図に本考案になる熱式質量流量計の第1実
施例を示す。第2図は第1図に示す熱式質量流量
計を適用した流量制御装置である。Embodiment FIG. 1 shows a first embodiment of the thermal mass flowmeter according to the present invention. FIG. 2 shows a flow rate control device to which the thermal mass flowmeter shown in FIG. 1 is applied.
第2図中、流量制御装置1は流量計測部(熱式
質量流量計)2、ステツピングモータ3、回転一
直線交換機構4、弁軸部5、ベローズ6、弁体
7、弁座8より大略構成されている。 In Fig. 2, the flow rate control device 1 generally consists of a flow rate measurement unit (thermal mass flowmeter) 2, a stepping motor 3, a rotating linear exchange mechanism 4, a valve stem 5, a bellows 6, a valve body 7, and a valve seat 8. It is configured.
また、バイパス流路9中には絞り10が設けら
れており、絞り10により被測流体が所定の分流
比でバイパス流路9と、バイパス流路9より分岐
したセンサパイプ11で形成されるセンサ流路と
に分流される。センサパイプ11は逆U字形状に
折曲されており、例えば熱伝導率が良く、しかも
被測流体による腐食を考慮してステンレス製のパ
イプで構成されている。また、センサパイプ11
には夫々加熱と温度検出とを兼ねる温度検出セン
サとしての一対の自己加熱抵抗体12,13が巻
回されている。 Further, a throttle 10 is provided in the bypass flow path 9, and the fluid to be measured is passed through the bypass flow path 9 at a predetermined division ratio by the throttle 10, and the sensor is formed by a sensor pipe 11 branched from the bypass flow path 9. The flow is divided into two channels. The sensor pipe 11 is bent into an inverted U-shape, and is made of, for example, a stainless steel pipe that has good thermal conductivity and takes into account corrosion caused by the fluid to be measured. In addition, the sensor pipe 11
A pair of self-heating resistors 12 and 13 are wound around each of the resistors 12 and 13 as temperature detection sensors that serve both for heating and temperature detection, respectively.
第1図に示す如く、流量計測部2の一対の自己
加熱抵抗体12,13はブリツジ回路14を介し
て通電され加熱されている。被測流体はセンサパ
イプ11内に流入して一対の自己加熱抵抗体1
2,13間を通過するとき加熱される。これによ
り一対の自己加熱抵抗体12,13は被測流体の
流量に応じた温度差を検出する。また、一対の自
己加熱抵抗体12,13の温度変化に応じてその
抵抗値が変化し、さらにブリツジ回路14の電流
値の変化として被測流体の流量が計測される。 As shown in FIG. 1, the pair of self-heating resistors 12 and 13 of the flow rate measuring section 2 are heated by being energized via a bridge circuit 14. The fluid to be measured flows into the sensor pipe 11 and the pair of self-heating resistors 1
It is heated when it passes between 2 and 13. As a result, the pair of self-heating resistors 12 and 13 detect a temperature difference depending on the flow rate of the fluid to be measured. Further, the resistance value of the pair of self-heating resistors 12 and 13 changes in response to a change in temperature, and the flow rate of the fluid to be measured is measured as a change in the current value of the bridge circuit 14.
なお、ブリツジ回路14は一対の自己加熱抵抗
体12,13の抵抗値と一対の抵抗15,16と
より構成されており、被測流体の流量が零のとき
平衡に保たれている。したがつて、被測流体の流
量により自己加熱抵抗体12,13の抵抗値が変
化するとブリツジ回路14の平衡がくずれて検出
信号が出力される。 The bridge circuit 14 is composed of the resistance values of a pair of self-heating resistors 12 and 13 and a pair of resistors 15 and 16, and is maintained in equilibrium when the flow rate of the fluid to be measured is zero. Therefore, when the resistance values of the self-heating resistors 12 and 13 change due to the flow rate of the fluid to be measured, the bridge circuit 14 becomes unbalanced and a detection signal is output.
流量制御装置1はこのブリツジ回路14からの
検出信号に基づいてステツピングモータ3を駆動
制御して弁体7を変位させて弁開度を調整する。 The flow rate control device 1 drives and controls the stepping motor 3 based on the detection signal from the bridge circuit 14 to displace the valve body 7 and adjust the valve opening degree.
17,18は熱伝導率の高い耐熱材で、夫々自
己加熱抵抗体12,13及びセンサパイプ3の外
周を包むように巻き付けられている。なお、耐熱
材17,18の材質としては熱伝導率が良くしか
も耐熱温度280℃を有するセルローズ製の綿質ガ
ーゼが使用されている。また、四角布状の耐熱材
17,18はセンサパイプ11の外側を覆うよう
に被せられ、センサパイプ11が挿通される中空
部を有する中空状となるようにセンサパイプ11
の下方を縫着されてセンサパイプ11の外周を包
んでいる。このため、自己加熱抵抗体12,13
が加熱されたとき、その温度上昇に伴つて周囲の
空気も加熱されるが、センサパイプ11の外周を
耐熱材17,18で包んでいるので加熱された空
気の対流による影響を抑制しうる。また、耐熱材
17,18の熱伝導率が高いため、一対の自己加
熱抵抗体12,13は微小流量の変化に対する出
力信号の時間遅れが小さく良好な応答性を有す
る。 Reference numerals 17 and 18 are heat-resistant materials with high thermal conductivity, which are wound around the outer peripheries of the self-heating resistors 12 and 13 and the sensor pipe 3, respectively. Note that the heat-resistant materials 17 and 18 are made of cellulose cotton gauze, which has good thermal conductivity and has a heat resistance temperature of 280°C. Moreover, the square cloth-like heat-resistant materials 17 and 18 are placed so as to cover the outside of the sensor pipe 11, and the sensor pipe 11 is shaped so that it has a hollow shape with a hollow portion through which the sensor pipe 11 is inserted.
The lower part of the sensor pipe 11 is sewn to wrap around the outer periphery of the sensor pipe 11. For this reason, the self-heating resistors 12, 13
When the sensor pipe 11 is heated, the surrounding air is also heated as the temperature rises, but since the outer periphery of the sensor pipe 11 is wrapped with heat-resistant materials 17 and 18, the influence of convection of the heated air can be suppressed. Furthermore, since the heat-resistant materials 17 and 18 have high thermal conductivity, the pair of self-heating resistors 12 and 13 have good responsiveness with little time delay in output signals to minute changes in flow rate.
しかも、耐熱材17,18はセルローズ製の綿
質ガーゼにより中空状に形成されているため、セ
ンサパイプの外周に簡単に取付けることができ、
例えば自己加熱抵抗体12,13の保守、点検を
行う場合でも、容易に耐熱材17,18をセンサ
パイプ11から外して自己加熱抵抗体12,13
の保守、点検等のメンテナンス作業を行うことが
できる。又、メンテナンス作業終了後は、自己加
熱抵抗体12,13を覆うように耐熱材17,1
8をセンサパイプ1に取付けただけなのでメンテ
ナンス作業が能率良く行える。 Moreover, since the heat-resistant materials 17 and 18 are hollow and made of cellulose cotton gauze, they can be easily attached to the outer periphery of the sensor pipe.
For example, when performing maintenance or inspection of the self-heating resistors 12, 13, the heat-resistant materials 17, 18 can be easily removed from the sensor pipe 11 and the self-heating resistors 12, 13 can be easily removed.
Can perform maintenance work such as maintenance and inspection. Moreover, after the maintenance work is completed, heat-resistant materials 17 and 1 are placed to cover the self-heating resistors 12 and 13.
8 is simply attached to the sensor pipe 1, maintenance work can be carried out efficiently.
19は隔壁で、センサパイプ11を挿通する貫
通孔19aを穿設されており、一対の耐熱材1
7,18及び自己加熱抵抗体12,13の中間位
置に取付けられている。なお、隔壁19は例えば
綿質ガーゼ、発泡部材、あるいは合成樹脂等によ
り形成されており、一対の耐熱材17,18間の
熱伝達を阻止する断熱効果を有する。即ち、自己
加熱抵抗体12,13の加熱と共にセンサパイプ
11と耐熱材17,18との間空気が加熱される
が、耐熱材17,18間を画成する隔壁19によ
り空気の対流が遮断され、一対の自己加熱抵抗体
12,13が加熱された空気の影響を受けるおそ
れが無い。 Reference numeral 19 denotes a partition wall, which has a through hole 19a through which the sensor pipe 11 is inserted, and a pair of heat-resistant materials 1
7 and 18 and the self-heating resistors 12 and 13. The partition wall 19 is made of, for example, cotton gauze, a foamed material, or a synthetic resin, and has a heat insulating effect that prevents heat transfer between the pair of heat-resistant materials 17 and 18. That is, while the self-heating resistors 12 and 13 are heated, the air between the sensor pipe 11 and the heat-resistant materials 17 and 18 is heated, but the partition wall 19 that defines the space between the heat-resistant materials 17 and 18 blocks air convection. There is no possibility that the pair of self-heating resistors 12 and 13 will be affected by heated air.
20は上記構成になる流量計測部2を収納する
ケースである。ケース20は金属より熱伝導率の
低い例えば合成樹脂等の材質により形成されてい
る。このため、ケース20は自己加熱抵抗体1
2,13に加熱された熱を外部に奪われることを
防止する断熱効果を有する。即ち、ケース20に
よりその加熱された熱が外部に放熱されることが
抑制されるため、一対の自己加熱抵抗体20の加
熱温度を上げることができる。したがつて、セン
サパイプ11を金属ケースで覆う従来のものに比
べて感度が向上している。 Reference numeral 20 denotes a case that houses the flow rate measuring section 2 having the above configuration. The case 20 is made of a material such as synthetic resin, which has lower thermal conductivity than metal. For this reason, the case 20 has a self-heating resistor 1
It has a heat insulating effect that prevents the heated heat from being removed to the outside. That is, since the case 20 prevents the heated heat from being radiated to the outside, the heating temperature of the pair of self-heating resistors 20 can be increased. Therefore, sensitivity is improved compared to the conventional structure in which the sensor pipe 11 is covered with a metal case.
なお、上記実施例では一対の耐熱材17,18
でセンサパイプ11を包んで説明したが、例えば
2枚あるいは複数枚の耐熱材17,18でセンサ
パイプ11の外周を包むようにしても良い。ま
た、耐熱材17,18を大きめの綿質ガーゼで形
成し、耐熱材17,18がセンサパイプ11の外
周を2重、3重に螺旋状に巻回するようにしても
良い。 In addition, in the above embodiment, a pair of heat-resistant materials 17 and 18
In the above description, the sensor pipe 11 is wrapped. However, for example, the outer periphery of the sensor pipe 11 may be wrapped with two or more heat-resistant materials 17 and 18. Alternatively, the heat-resistant materials 17 and 18 may be formed of large cotton gauze, and the heat-resistant materials 17 and 18 may be spirally wound around the sensor pipe 11 in two or three layers.
考案の効果
上述の如く、本考案になる熱式質量流量計によ
れば、熱伝導率が高く、且つ高温に耐えうる耐熱
性を有する中空状の耐熱材により一対の自己加熱
抵抗体の周囲を覆い、一対の自己加熱抵抗体の間
に隔壁を設けたため、センサパイプの外周に耐熱
材を簡単に取付けることができるとともに、自己
加熱抵抗体の保守、点検を行う場合でも、容易に
耐熱材をセンサパイプから外してメンテナンス作
業を行うことができる。Effects of the Invention As described above, according to the thermal mass flowmeter of the present invention, the surroundings of the pair of self-heating resistors are surrounded by a hollow heat-resistant material having high thermal conductivity and heat resistance that can withstand high temperatures. Because a partition wall is provided between the pair of self-heating resistors, heat-resistant material can be easily attached to the outer circumference of the sensor pipe. It can be removed from the sensor pipe for maintenance work.
さらに耐熱材の周囲を金属より熱伝導率の低い
ケースにより包囲したため、例えばセンサパイプ
を金属ケース内に挿通する従来のもののように自
己加熱抵抗体の温度がケースを介して外気に放熱
されてしまうことを無くし、このため、自己加熱
抵抗体の加熱温度を保つて計測感度を向上させる
ことができる。さらに、センサパイプを包む耐熱
材の熱伝導率が良いので、微小流量の変化に対す
る出力信号の時間遅れが少なく応答性を向上させ
ることができ、微小な流量を高精度に計測しうる
と共に信頼性の向上を図ることができる等の特長
を有する。 Furthermore, because the heat-resistant material is surrounded by a case with lower thermal conductivity than metal, the temperature of the self-heating resistor is radiated to the outside air through the case, for example in the case of conventional sensors where the sensor pipe is inserted into the metal case. Therefore, the heating temperature of the self-heating resistor can be maintained and the measurement sensitivity can be improved. Furthermore, since the heat-resistant material surrounding the sensor pipe has good thermal conductivity, there is less time delay in the output signal to minute changes in flow rate, improving responsiveness, making it possible to measure minute flow rates with high precision and reliability. It has features such as being able to improve performance.
第1図は本考案になる熱室質量流量計の一実施
例の要部を説明するための要部拡大図、第2図は
第1図に示す熱式質量流量計を適用された流量制
御装置の縦断面図である。
2……流量計測部、11……センサパイプ、1
2,13……自己加熱抵抗体、14……ブリツジ
回路、17,18……耐熱材、19……隔壁、2
0……ケース。
Fig. 1 is an enlarged view of the main parts of an embodiment of the thermal chamber mass flowmeter according to the present invention, and Fig. 2 is a flow rate control to which the thermal mass flowmeter shown in Fig. 1 is applied. FIG. 3 is a longitudinal cross-sectional view of the device. 2...Flow rate measuring section, 11...Sensor pipe, 1
2, 13... Self-heating resistor, 14... Bridge circuit, 17, 18... Heat resistant material, 19... Partition wall, 2
0...Case.
Claims (1)
熱抵抗体により該センサパイプを流れる被測流体
の流量を計測する熱式質量流量計において、 熱伝導率が高く、且つ高温に耐えうる耐熱性を
有し、前記一対の自己加熱抵抗体の周囲を覆うよ
うに中空状に形成された耐熱材と、 前記一対の自己加熱抵抗体の間を遮るように前
記センサパイプの外周に設けられた隔壁と、 金属より熱伝導率の低い断熱性を有し、前記耐
熱材の周囲を包囲するように形成されたケース
と、 を備えてなる熱式質量流量計。[Claim for Utility Model Registration] A thermal mass flowmeter that measures the flow rate of a fluid to be measured flowing through a sensor pipe using a pair of self-heating resistors wound around the outer periphery of the sensor pipe, which has high thermal conductivity; and a heat-resistant material having heat resistance capable of withstanding high temperatures and formed in a hollow shape so as to cover the pair of self-heating resistors, and the sensor pipe so as to block between the pair of self-heating resistors. A thermal mass flowmeter comprising: a partition wall provided on the outer periphery of the heat-resistant material; and a case having heat insulating properties with a lower thermal conductivity than metal and formed to surround the heat-resistant material.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1985110566U JPH0520978Y2 (en) | 1985-07-19 | 1985-07-19 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1985110566U JPH0520978Y2 (en) | 1985-07-19 | 1985-07-19 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6220322U JPS6220322U (en) | 1987-02-06 |
JPH0520978Y2 true JPH0520978Y2 (en) | 1993-05-31 |
Family
ID=30989682
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1985110566U Expired - Lifetime JPH0520978Y2 (en) | 1985-07-19 | 1985-07-19 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0520978Y2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01238724A (en) * | 1988-03-17 | 1989-09-22 | Mitsubishi Steel Mfg Co Ltd | Load transmitting mechanism having nonlinear load characteristics |
EP1179414A4 (en) * | 1999-04-19 | 2005-07-13 | Kikusui Seisakusyo Ltd | Rotary type powder compression molding machine |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS54122148A (en) * | 1978-03-15 | 1979-09-21 | Kankiyou Rikagaku Kenkiyuushiy | Mass flow meter |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5792124U (en) * | 1980-11-26 | 1982-06-07 |
-
1985
- 1985-07-19 JP JP1985110566U patent/JPH0520978Y2/ja not_active Expired - Lifetime
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS54122148A (en) * | 1978-03-15 | 1979-09-21 | Kankiyou Rikagaku Kenkiyuushiy | Mass flow meter |
Also Published As
Publication number | Publication date |
---|---|
JPS6220322U (en) | 1987-02-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH08201327A (en) | Heat conductivity meter | |
US4339949A (en) | Process and apparatus for the thermal measurement of mass flow | |
US2967429A (en) | Measuring apparatus | |
JPH0520978Y2 (en) | ||
US3433068A (en) | Thermal mass flow sensor | |
US2799165A (en) | Apparatus for measuring flow | |
JPS6050289B2 (en) | thermal flow meter | |
JPH02138826A (en) | Sensor for heat measuring type mass flowmeter | |
SU489027A1 (en) | Device for calibration of heat meters | |
JPH0140013Y2 (en) | ||
SU1670417A1 (en) | Flowmeter sensor | |
JPH074509Y2 (en) | Micro flow sensor | |
SU1345225A1 (en) | Flow rate and direction indicator | |
JP4081639B2 (en) | Thermal mass flow meter for liquids | |
SU428216A1 (en) | Calorimeter flowmeter | |
SU420876A1 (en) | ||
SU1453145A1 (en) | Method of checking the quality of joint of shell with carrier pipe in double-layer pipe | |
SU517849A1 (en) | Sensor speed and direction of flow of gas or liquid | |
JPH0324973B2 (en) | ||
JPH0138494Y2 (en) | ||
JPS593334A (en) | Detector for water leakage | |
SU1696874A1 (en) | Thermal flowmeter | |
SU1332165A1 (en) | Device for measuring the enthalpy of high-temperature gases | |
JPS5850296Y2 (en) | Heat flow meter sensor for high temperature furnace | |
JPH05107094A (en) | Flow detection method of thermal flowmeter |