JPS5853566B2 - Wet flue gas treatment method - Google Patents

Wet flue gas treatment method

Info

Publication number
JPS5853566B2
JPS5853566B2 JP51037853A JP3785376A JPS5853566B2 JP S5853566 B2 JPS5853566 B2 JP S5853566B2 JP 51037853 A JP51037853 A JP 51037853A JP 3785376 A JP3785376 A JP 3785376A JP S5853566 B2 JPS5853566 B2 JP S5853566B2
Authority
JP
Japan
Prior art keywords
lime
iodide
liquid
ammonia
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP51037853A
Other languages
Japanese (ja)
Other versions
JPS52120964A (en
Inventor
進 沖野
直晴 篠田
道雄 大島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP51037853A priority Critical patent/JPS5853566B2/en
Publication of JPS52120964A publication Critical patent/JPS52120964A/en
Publication of JPS5853566B2 publication Critical patent/JPS5853566B2/en
Expired legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Landscapes

  • Catalysts (AREA)
  • Treating Waste Gases (AREA)

Description

【発明の詳細な説明】 本発明は湿式排煙処理方法に関するものである。[Detailed description of the invention] The present invention relates to a wet flue gas treatment method.

本発明者等はアルカリ金属、アルカリ土類金属またはア
ンモニアの沃化物を含む水溶液が窒素酸化物、特に二酸
化窒素を極めてよく吸収する事実に着目し、その知見に
基いて硫黄酸化物および窒素酸化物を含有する排煙を、
必要に応じて酸化した後、アルカリ金属、アルカリ土類
金属またはアンモニアの沃化物を含む石灰スラリーによ
り洗浄する排煙の脱硫脱硝法を先に提案した。
The present inventors focused on the fact that aqueous solutions containing iodides of alkali metals, alkaline earth metals, or ammonia absorb nitrogen oxides, particularly nitrogen dioxide, extremely well, and based on that knowledge, they absorbed sulfur oxides and nitrogen oxides. Exhaust smoke containing
We have previously proposed a desulfurization and denitrification method for flue gas, which, after optional oxidation, is washed with a lime slurry containing iodides of alkali metals, alkaline earth metals, or ammonia.

(特願昭49−44156)。(Patent application No. 49-44156).

しかし、この場合十分な窒素酸化物の除去率を得るため
には沃化物の濃度を高くする必要があるが、その場合、
系外に排水するときに沃化物の回収費用が高くなるとい
う欠点がある。
However, in this case, it is necessary to increase the iodide concentration in order to obtain a sufficient nitrogen oxide removal rate;
A drawback is that the cost of recovering iodide increases when draining it out of the system.

そこで本発明者等は、上記のような欠点なしに高い窒素
酸化物除去率が得られる排煙処理法について研究し、上
記沃化物の窒素酸化物吸収を促進するような種々の添加
剤を検討した結果、銅イオンがきわめて微量でも大きな
効果をもたらすことを見出し、本発明に到達したもので
ある。
Therefore, the present inventors researched a flue gas treatment method that can obtain a high nitrogen oxide removal rate without the drawbacks mentioned above, and investigated various additives that would promote the absorption of nitrogen oxides by iodide. As a result, it was discovered that even a very small amount of copper ions can bring about a great effect, and the present invention has been achieved.

すなわち、本発明は排ガスをアルカリ金属の沃化物、ア
ルカリ土類金属の沃化物もしくはアンモニアの沃化物を
含む石灰スラリ、またはアルカリ金属の沃化物、アルカ
リ土類金属の沃化物もしくはアンモニアの沃化物を含む
石灰石スラリで洗浄し、排ガス中の硫黄酸化物および窒
素酸化物を同時に除去する方法において、洗浄液中に銅
化合物を共存させることを特徴とする湿式排煙処理方法
に関するものである。
That is, the present invention converts the exhaust gas into a lime slurry containing an alkali metal iodide, an alkaline earth metal iodide, or an ammonia iodide, or an alkali metal iodide, an alkaline earth metal iodide, or an ammonia iodide. The present invention relates to a wet flue gas treatment method characterized in that a copper compound is allowed to coexist in the cleaning liquid in a method of simultaneously removing sulfur oxides and nitrogen oxides from exhaust gas by cleaning with a limestone slurry containing the same.

本発明において使用される銅化合物の銅のイオン数はC
u(I)、 Cu (II)いずれでもよく、Cu I
5CuC,g2 y CuSO4等自由に選択するこ
とができる。
The number of copper ions in the copper compound used in the present invention is C
Either u (I) or Cu (II) may be used, and Cu I
5CuC, g2 y CuSO4, etc. can be freely selected.

添加した銅化合物の銅イオンはCuGI)であっても、
溶液中の法度イオン(「)と反応して次の反応式により
CuI として存在すると考えられる。
Even if the copper ion of the added copper compound is CuGI),
It is thought that CuI reacts with the marginal ions (') in the solution and exists as CuI according to the following reaction formula.

Cu (m + 2 I +Cu I + ’/2 I
2生成した■2 は吸収液を循環使用することにより
排ガス中のS02によって容易に■−に戻るので問題は
ない。
Cu (m + 2 I + Cu I + '/2 I
There is no problem because the generated 2 is easily returned to 2- by S02 in the exhaust gas by circulating the absorption liquid.

また銅イオンの量はきわめて微量でよ<0.005モル
/を以下で十分である。
Further, the amount of copper ions is extremely small, and <0.005 mol/or less is sufficient.

第1図を用いて本発明を更に詳しく説明する。The present invention will be explained in more detail using FIG.

被処理ガスをライン1より冷却除塵装置2に導入し、こ
こでほぼ飽和温度にまで冷却増湿すると共にガス中に含
まれるダストの大部分を除去する。
The gas to be treated is introduced into a cooling and dust removing device 2 through a line 1, where it is cooled and humidified to approximately the saturation temperature and most of the dust contained in the gas is removed.

増湿によって大気中に蒸発する水分は供給水としてライ
ン7より補給する。
Moisture that evaporates into the atmosphere due to humidification is replenished through line 7 as supply water.

被処理ガス中のNOxが主としてNoの場合は、NOx
の除去効率をあげるため、必要に応じガスをNo酸化装
置3に導き、ライン4から導入されるNo酸化剤により
NoをNO2に酸化する。
If NOx in the gas to be treated is mainly No, NOx
In order to increase the removal efficiency, gas is led to the No oxidizing device 3 as necessary, and the No oxidizing agent introduced from the line 4 oxidizes No to NO2.

No酸化剤としてはオゾン、硝酸、二酸化塩素などがよ
く使用される。
Ozone, nitric acid, chlorine dioxide, etc. are often used as the No oxidizing agent.

次にガスをガス洗浄装置5に導き、吸収剤調製槽15か
らライン16を経て供給されるアルカリ金属の沃化物、
アルカリ土類金属の沃化物もしくはアンモニアの沃化物
を含む石灰スラリ、またはアルカリ金属の沃化物、アル
カリ土類金属の沃化物もしくはアンモニアの沃化物を含
む石灰石スラリに微量の銅イオンを加えた洗浄液で洗浄
し、NOX。
Next, the gas is led to the gas cleaning device 5, and the alkali metal iodide is supplied from the absorbent preparation tank 15 through the line 16.
A cleaning solution containing lime slurry containing alkaline earth metal iodide or ammonia iodide, or limestone slurry containing alkali metal iodide, alkaline earth metal iodide, or ammonia iodide with a trace amount of copper ions added. Clean and NOx.

SOxを同時に除去する。Remove SOx at the same time.

アルカリ金属の沃化物、アルカリ土類金属の沃化物とし
てCaI2を使用した場合を例に採ると反応は次のとお
りである。
Taking as an example the case where CaI2 is used as an alkali metal iodide or an alkaline earth metal iodide, the reaction is as follows.

即ちSO2は石灰または石灰石の作用で亜硫酸石灰およ
び重亜硫酸石灰となり、一部は排ガス中の02 により
石膏となる。
That is, SO2 becomes sulfite lime and bisulfite lime by the action of lime or limestone, and a part of it becomes gypsum by the action of 02 in the exhaust gas.

一方NO2はCa1tにより亜硝酸石灰となり、遊離1
■2が生成する。
On the other hand, NO2 becomes nitrite lime due to Ca1t, and free 1
■2 is generated.

特に銅イオンの添加によりこの反応が著しく促進される
In particular, the addition of copper ions significantly accelerates this reaction.

遊離工、は亜硫酸石灰および石灰により再びCaI2と
なる。
Free calcium is converted back to CaI2 by lime sulfite and lime.

次に重亜硫酸石灰と亜硝酸石灰は速やかに反応してヒド
ロキシルアミン・ジスルホン酸石灰、更にはイミドジス
ルホン酸石灰となる。
Next, bisulfite lime and nitrite lime quickly react to form hydroxylamine disulfonate lime and furthermore imidodisulfonate lime.

また同時に生成する重硫酸塩は石灰により石膏となる。At the same time, the bisulfate produced becomes gypsum with lime.

液側にとり込まれたNOxは、その大部分が上記のヒド
ロキシルアミン・ジスルホン酸石灰およ′びイミド・ジ
スルホン酸石灰となって吸収剤の液中に蓄積するが、一
部は亜硝酸石灰と反応してN2 に分解される。
Most of the NOx taken into the liquid side becomes the above-mentioned hydroxylamine disulfonate lime and imide disulfonate lime and accumulates in the absorbent liquid, but some of it becomes nitrite lime. It reacts and decomposes into N2.

ガス洗浄装置5から排出するガスは清浄ガスとしてライ
ン6を経て煙突より放出される。
The gas discharged from the gas cleaning device 5 passes through a line 6 as clean gas and is discharged from the chimney.

−万ガス洗浄装置5より抜き出された吸収剤はライン8
より亜硫酸石灰酸化装置9に導かれる。
- The absorbent extracted from the gas cleaning device 5 is line 8
It is then guided to the sulfite lime oxidation device 9.

ここでは過剰の石灰分をライン10からの硫酸で中和し
、液のpH値を6以下、好ましくは4.5以下3以に保
持し、ライン11からの空気を微細な気泡となるよう工
夫した空気供給口から供給して石膏に酸化する。
Here, excess lime content is neutralized with sulfuric acid from line 10, the pH value of the liquid is maintained at 6 or below, preferably 4.5 or below 3, and air from line 11 is devised to form fine bubbles. The gypsum is oxidized into gypsum by supplying it through the air supply port.

反応式は次のとおりである。次に液は石膏分離装置12
に入り、ここで分離した石膏はライン13より採取し、
分離液はライン14より吸収剤調製槽15に循環される
The reaction formula is as follows. Next, the liquid is gypsum separator 12
The gypsum separated here is collected from line 13,
The separated liquid is circulated through line 14 to absorbent preparation tank 15 .

吸収剤調製槽15に分離液の外、ライン17より石灰ま
たは石灰石が供給され、石灰スラリか調製される。
In addition to the separation liquid, lime or limestone is supplied to the absorbent preparation tank 15 from a line 17 to prepare a lime slurry.

分離液中に蓄積した上述の窒素化合物は次の工程で分解
される。
The above-mentioned nitrogen compounds accumulated in the separated liquid are decomposed in the next step.

即ち、分離液の一部をライン14から分岐するライン1
8を経て加水分解槽19に導き、ライン20からの少量
の硫酸により加水分解してヒドロキシルアミンモノスル
ホン酸石灰およびアミドスルホン酸石灰と重硫酸石灰と
なし、このときpH値は2以下に低下する。
That is, line 1 branches part of the separated liquid from line 14.
8 to a hydrolysis tank 19, and is hydrolyzed with a small amount of sulfuric acid from line 20 to form hydroxylamine monosulfonate lime, amidosulfonate lime, and bisulfate lime, at which time the pH value decreases to 2 or less. .

その反応は次式に表わされるとおりであり、比較的速*
*やかに進行する。
The reaction is expressed by the following formula, and is relatively fast *
*Proceeds quickly.

特にpH値が2倍以下の場合反応は速やかであり、1時
間程度で反応は終了する。
Particularly when the pH value is twice or less, the reaction is rapid and completes in about 1 hour.

加水分解槽19から抜き出された液は分解装置21に導
き、ここでは戻に分解を促進するため液・の温度を70
℃以上に加熱する。
The liquid extracted from the hydrolysis tank 19 is led to the decomposition device 21, where the temperature of the liquid is raised to 70°C to promote decomposition.
Heat above ℃.

分解反応は次のとおりである。The decomposition reaction is as follows.

次に液は石膏置換反応装置22に送入し、ここには同時
にライン23から石灰スラリを供給する。
The liquid is then sent to the gypsum displacement reactor 22, which is simultaneously supplied with lime slurry from line 23.

前記の加水分解にて生成した重硫酸アンモニウム1コな
いし硫酸アンモニウムは石灰と反応して石膏とアンモニ
アとなる。
Ammonium bisulfate or ammonium sulfate produced in the above hydrolysis reacts with lime to form gypsum and ammonia.

その反応は次のとおりである。ここで供給する石灰の量
を上記反応の当量以上に添加し液のpH値をアルカリ性
に保持すると同時に、液の温度を70℃以上、100℃
以下程度に保てば液中のアンモニアの大部分はガス中に
放散する。
The reaction is as follows. The amount of lime to be supplied here is equal to or more than the equivalent amount for the above reaction to maintain the pH value of the liquid at alkaline, and at the same time, the temperature of the liquid is increased to 70°C or higher and 100°C.
If the temperature is maintained below, most of the ammonia in the liquid will be dissipated into the gas.

−万、生成石膏として粒子の大きな良質の石膏が得られ
ろ。
- 10,000, good quality gypsum with large particles can be obtained as produced gypsum.

生成石膏および過剰石灰を含んだ液はライン24から吸
収剤調整槽15に送入し、吸収剤として使用する。
The liquid containing generated gypsum and excess lime is sent from line 24 to absorbent adjustment tank 15 and used as an absorbent.

一方、ガス中に放散したアンモニアはライン25よりN
H3処理装置26に送り、酸で洗って中和するか200
〜300℃の高温下、触媒の存在下に分解する。
On the other hand, the ammonia diffused into the gas is transferred from line 25 to N
Send it to the H3 processing equipment 26 and wash it with acid to neutralize it.
Decomposes at high temperatures of ~300°C in the presence of a catalyst.

あるいは濃厚なアンモニアガスであるので、回収して液
体アンモニアとして有効に利用することもできる。
Alternatively, since it is a concentrated ammonia gas, it can be recovered and effectively used as liquid ammonia.

実施例 吸収酸としてCuI 2.5X10 ”モル/lを
含むCa■2水溶Q2J−を使用し、高さ約1mの濡壁
塔にてNO2,SO2含有ガス(NO2120泗、SO
21400ppm、残りN2)の吸収を行なった。
EXAMPLE Using Ca2 water-soluble Q2J- containing CuI 2.5 x 10" mol/l as the absorption acid, NO2, SO2 containing gas (NO2120, SO
Absorption of 21,400 ppm and the remaining N2) was carried out.

pHはCa(OH)2にて5に保った。ガス流量9Nl
1分、液温55℃、循環液量60 m”7時間で行なっ
た。
The pH was maintained at 5 with Ca(OH)2. Gas flow rate 9Nl
The test was carried out for 1 minute, at a liquid temperature of 55°C, and a circulating liquid volume of 60 m'' for 7 hours.

上記条件でCaI、の濃度を0.024〜0.17モル
/lまで変化させてNO2吸収率を調べたところ第2図
のaの結果が祠られた。
When the concentration of CaI was varied from 0.024 to 0.17 mol/l under the above conditions and the NO2 absorption rate was investigated, the results shown in a of FIG. 2 were obtained.

横軸はCaI2濃度(モル/A)、縦軸はNO2除去率
(4)を表わす。
The horizontal axis represents the CaI2 concentration (mol/A), and the vertical axis represents the NO2 removal rate (4).

比較としてCuI を含まない以外は、実施例と同一条
件で吸収を行なったところ、bの吸収率となった。
For comparison, absorption was carried out under the same conditions as in the example except that CuI was not included, and the absorption rate was b.

明らかにCuI の添加によりCaI2単独の場合に比
べて吸収性能が増加し、その程度はCaI2濃度が高い
程太きい。
It is clear that the addition of CuI increases the absorption performance compared to the case of CaI2 alone, and the degree of this increase increases as the CaI2 concentration increases.

またSO2吸収率はいずれの場合も90%以上であった
Moreover, the SO2 absorption rate was 90% or more in all cases.

CaI2の代りにアルカリ金属の沃化物又はアンモニア
の沃化物を使用しても、はぼ同様な結果が得られ、又C
uI の代りに他の銅塩を添加しても同様な結果が得
られた。
Substantially similar results can be obtained by using alkali metal iodides or ammonia iodides in place of CaI2, and C
Similar results were obtained when other copper salts were added in place of uI.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施態様を示すフローシートであり
、第2図は本発明のNO2吸収率の向上を示すグラフで
ある。
FIG. 1 is a flow sheet showing one embodiment of the present invention, and FIG. 2 is a graph showing the improvement in NO2 absorption rate of the present invention.

Claims (1)

【特許請求の範囲】[Claims] 1 排ガスをアルカリ金属の沃化物、アルカリ土類金属
の沃化物もしくはアンモニアの沃化物を含む石灰スラリ
ーまたはアルカリ金属の沃化物、アルカリ土類金属の沃
化物もしくはアンモニアの沃化物を含む石灰石のスラリ
ーで洗浄し、排ガス中の硫黄酸化物および窒素酸化物を
同時に除去する方法において、洗浄液中に銅化合物を共
存させることを特徴とする湿式排煙処理方法。
1. Exhaust gas is treated with lime slurry containing alkali metal iodide, alkaline earth metal iodide or ammonia iodide, or limestone slurry containing alkali metal iodide, alkaline earth metal iodide or ammonia iodide. A wet flue gas treatment method for simultaneously removing sulfur oxides and nitrogen oxides from exhaust gas, the method comprising coexisting a copper compound in the cleaning solution.
JP51037853A 1976-04-06 1976-04-06 Wet flue gas treatment method Expired JPS5853566B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP51037853A JPS5853566B2 (en) 1976-04-06 1976-04-06 Wet flue gas treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP51037853A JPS5853566B2 (en) 1976-04-06 1976-04-06 Wet flue gas treatment method

Publications (2)

Publication Number Publication Date
JPS52120964A JPS52120964A (en) 1977-10-11
JPS5853566B2 true JPS5853566B2 (en) 1983-11-30

Family

ID=12509088

Family Applications (1)

Application Number Title Priority Date Filing Date
JP51037853A Expired JPS5853566B2 (en) 1976-04-06 1976-04-06 Wet flue gas treatment method

Country Status (1)

Country Link
JP (1) JPS5853566B2 (en)

Also Published As

Publication number Publication date
JPS52120964A (en) 1977-10-11

Similar Documents

Publication Publication Date Title
JP4649206B2 (en) Method for reducing NOx in a waste gas stream using sodium chlorite
US4009244A (en) Process for removing oxides of nitrogen and sulfur from exhaust gases
DE3382685D1 (en) METHOD AND DEVICE FOR TREATING CHLORINE CONTAINING WATER.
CN110124451B (en) Wet-type step-by-step SO removal in flue gas2And NO process
JPS5829251B2 (en) Wet flue gas desulfurization gypsum recovery method
JPS5853566B2 (en) Wet flue gas treatment method
US4038367A (en) Process for the removal of SOx and NOx from waste gases using alkali metal or alkaline earth metal iodide
US4038368A (en) Process for removing oxides of nitrogen and sulfur from exhaust gases
JPH0722675B2 (en) Wet flue gas desulfurization equipment
US4277451A (en) Wet process for the desulfurization of exhaust gas
JPS5857213B2 (en) Flue gas desulfurization method
JPS5898126A (en) Desulfurization of stack gas
JPH04346816A (en) Treatment of exhaust gas
JPS5938832B2 (en) Treatment method for waste liquid generated during wet flue gas desulfurization and denitrification
CZ282130B6 (en) Process for recovering nitrogen oxide from waste gas generated when producing ammonium nitrite
JPS5855803B2 (en) Denitration method
JPS5912333B2 (en) Exhaust gas desulfurization and denitrification method
JPS6121690B2 (en)
JPS588889B2 (en) High Gas Datsuryu Datsushi Youhouhou
JPS581966B2 (en) High Gas No Shiyori Hohou
JPS6021764B2 (en) Treatment method for exhaust gas containing copper and sulfur dioxide gas
CN113117510A (en) Flue gas desulfurization and denitrification method based on sodium bisulfite
JPS62121620A (en) Process of exhaust gas desulfurization and denitration
JPS618115A (en) Desulfurization treatment of waste gas by liquid
JPH0767525B2 (en) Flue gas desulfurization dust removal method