JPS62121620A - Process of exhaust gas desulfurization and denitration - Google Patents

Process of exhaust gas desulfurization and denitration

Info

Publication number
JPS62121620A
JPS62121620A JP60259787A JP25978785A JPS62121620A JP S62121620 A JPS62121620 A JP S62121620A JP 60259787 A JP60259787 A JP 60259787A JP 25978785 A JP25978785 A JP 25978785A JP S62121620 A JPS62121620 A JP S62121620A
Authority
JP
Japan
Prior art keywords
absorption
liquid
absorption tower
absorption column
tower
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60259787A
Other languages
Japanese (ja)
Inventor
Hirotsugu Tsugawa
津川 博次
Fumihiko Yamaguchi
文彦 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP60259787A priority Critical patent/JPS62121620A/en
Publication of JPS62121620A publication Critical patent/JPS62121620A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Abstract

PURPOSE:To effectively desulfurize and denitrate by absorbing SOx and NOx with the absorbent of Mg water solution in the first and second absorption columns, oxidizing part of the liquid from the first absorption column in the oxidization column with neutralizing agent added, and filtering the crystallized sulfate. CONSTITUTION:The off-gas containing SOx and NOx is fed from the flue 10 into the first absorption column 1, and O3 is fed from the line 13 to oxidize NO into NO2. The absorption of the first absorption column has pH4.5-5.5 and absorbs NOx and SOx. Then, the off-gas out of the first absorption column comes into the second absorption column and absorbs the remaining NOx and SOx. The solution extracted out of the first absorption column 1 is sent to the oxidization column 4, and oxidized with the neutralizing agent MgO and air. MgSO4 thus produced is filtered by the crystallization separator 5, and the crystals are taken out of the line 19, while the filtrate is sent through the line 17, MgO being added therein by the absorbent controlling tank 6, and sent into the second absorption column to be used again as absorbing solution.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、排煙脱硫脱硝方法に関するもので、詳しくは
、ボイラやその他の設備から排出される排煙中の硫黄酸
化物および窒素酸化物を同時に除去する方法に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a flue gas desulfurization and denitrification method. It relates to a method of removal.

従来の技術 従来のマグネシウム(Mg)で排煙脱硫をする方法は、
吸収液を酸化して硫酸マグネシウム(Mgso、)水溶
液の形にして全量を廃棄している。また二酸化硫黄(S
O2)と同時に一酸化窒素(NO)も除去する方法とし
ては、排煙中にオゾン(03)を注入し、そのNOを二
酸化窒素(No2)に酸化して吸収塔で除去している。
Conventional technology The conventional method for flue gas desulfurization using magnesium (Mg) is as follows:
The absorption liquid is oxidized to form an aqueous solution of magnesium sulfate (Mgso), and the entire amount is discarded. Also, sulfur dioxide (S
As a method of removing nitrogen monoxide (NO) at the same time as O2), ozone (03) is injected into the flue gas, and the NO is oxidized to nitrogen dioxide (No2), which is then removed by an absorption tower.

発明が解決しようとする問題点 前述のように、SO2の除去と同時にNOも除去する従
来の方法では、排煙中に03を注入し、NoをNO2に
酸化して吸収塔で除去しているが、その方法では、窒素
酸化物の除去効率が低く、効率を上げるためには、大量
の03  を入れる必要があり、経済的でないという問
題点がある。
Problems to be Solved by the Invention As mentioned above, the conventional method of removing NO at the same time as removing SO2 involves injecting 03 into the flue gas, oxidizing the NO to NO2, and removing it in an absorption tower. However, this method has a problem in that the removal efficiency of nitrogen oxides is low, and in order to increase the efficiency, it is necessary to introduce a large amount of 03, which is not economical.

また脱硝効率を上げる他の方法としては、吸収液に添加
剤を入れることで、03の使用量を大幅に下げることが
できるが、吸収液の全量を廃棄する方法では、添加剤の
使い捨てとなり、不経済であるばかりでなく、廃棄物に
添加剤が含まれているため、廃水公害となるという問題
点がある。本発明はこのような問題点を解決しようとす
るものである。すなわち、本発明は、排煙中の硫黄酸化
物および窒素酸化物を同時に除去するに際し、添加剤の
使用が可能であって、脱硫効率ならびに脱硝効率を上げ
ることができ、かつ、03の使用量を低減することがで
きて、経済的にすぐれ、しかも、公害問題も生じない排
煙脱硫脱硝方法を提供することを目的とするものである
Another way to increase the denitrification efficiency is to add additives to the absorption liquid, which can significantly reduce the amount of 03 used.However, if the entire amount of absorption liquid is discarded, the additive becomes disposable, This is not only uneconomical, but also has the problem of causing wastewater pollution because the waste contains additives. The present invention attempts to solve these problems. That is, the present invention enables the use of additives when simultaneously removing sulfur oxides and nitrogen oxides from flue gas, increases desulfurization efficiency and denitrification efficiency, and reduces the amount of 03 used. It is an object of the present invention to provide a flue gas desulfurization and denitrification method that can reduce the amount of gas, is economically superior, and does not cause pollution problems.

問題を解決するだめの手段 オゾン酸化湿式同時脱硫脱硝方法を行なわせるために、
第1吸収塔と第2吸収塔を設け、マグネシウム水溶液に
より、大部分のNo2と若干のSO2を第1吸収塔で吸
収し、残りのNO□と大部分の802を第2吸収塔で吸
収し、また第1吸収塔からの液を酸化して硫酸塩を析出
結晶化させ、こののち、結晶と液とを分離し、p液を廃
棄することなく、吸収液用に再使用するようにした。す
なわち1本発明の構成は、排煙中の硫黄酸化物および窒
素酸化物を除去するオゾン酸化湿式同時脱硫脱硝プロセ
スにおいて、アルカリ吸収剤と酸化マグネシウムと水酸
化マグネシウムの少なくとも一つを用い、第1吸収塔と
第2吸収塔で硫黄酸化物および窒素酸化物を吸収するこ
とにより、前記第1吸収塔の液の水素イオン指数を45
ないし5.5に下げ、この一部を酸化塔で中和剤を加え
ながら空気で酸化し、液中の硫酸塩を析出結晶化させ、
これを分離機に導いて結晶を分離し、P液を吸収液用(
て再使用することを特徴としている。
The only way to solve the problem is to carry out the ozone oxidation wet simultaneous desulfurization and denitrification method.
A first absorption tower and a second absorption tower are installed, and the first absorption tower absorbs most of the NO2 and some SO2 using a magnesium aqueous solution, and the remaining NO□ and most of the 802 are absorbed in the second absorption tower. In addition, the liquid from the first absorption tower was oxidized to precipitate and crystallize sulfate, and then the crystals and liquid were separated, and the p liquid was reused as an absorption liquid without being discarded. . That is, 1 the configuration of the present invention is to use an alkaline absorbent and at least one of magnesium oxide and magnesium hydroxide in an ozone oxidation wet simultaneous desulfurization and denitrification process for removing sulfur oxides and nitrogen oxides in flue gas, By absorbing sulfur oxides and nitrogen oxides in the absorption tower and the second absorption tower, the hydrogen ion index of the liquid in the first absorption tower is reduced to 45.
to 5.5, and a part of this is oxidized with air in an oxidation tower while adding a neutralizing agent to precipitate and crystallize the sulfate in the liquid.
This is led to a separator to separate the crystals, and the P liquid is used for the absorption liquid (
The feature is that it can be reused.

作    用 排ガス中のNOを03でNO2にして第1吸収塔でMg
系水溶液により、NO2と若干のS02を除去し、第2
吸収塔ではリークするNo2と大部分のSO2を除去す
る。また第1吸収塔からのブリード液を酸化し、液中の
硫酸塩を析出結晶化させ、こののち、分離機で結晶と液
とを分離させ、P液を吸収液用に再使用する。
Function NO in the exhaust gas is converted to NO2 in 03 and converted to Mg in the first absorption tower.
The system aqueous solution removes NO2 and some S02, and
The absorption tower removes leaked No2 and most of SO2. In addition, the bleed liquid from the first absorption tower is oxidized to precipitate and crystallize the sulfate in the liquid, and then the crystals and the liquid are separated in a separator, and the P liquid is reused as an absorption liquid.

実施例 第1図は本発明を実施する排煙脱硫脱硝設備の一例を示
している。第1図において、1は第1吸収塔、2は第2
吸収塔、3はオゾン発生機、4は酸化塔、5は結晶分離
機、6は吸収剤調整タンク、7は第1ポンプ、8は第2
ポンプ、9は第3ポンプ、10は第1煙道、11は第2
煙道、12は第3煙道、13はオゾン注入ライン、14
は空気吹込みライン、15は添加剤供給ライン、16は
酸化マグネシウム供給ライン、17は分離液戻しライン
、18は排液ライン、19は結晶取出しラインである。
Embodiment FIG. 1 shows an example of flue gas desulfurization and denitrification equipment for implementing the present invention. In Figure 1, 1 is the first absorption tower and 2 is the second absorption tower.
Absorption tower, 3 ozone generator, 4 oxidation tower, 5 crystal separator, 6 absorbent adjustment tank, 7 first pump, 8 second
pump, 9 is the third pump, 10 is the first flue, 11 is the second
Flue, 12 is the third flue, 13 is the ozone injection line, 14
15 is an air blowing line, 15 is an additive supply line, 16 is a magnesium oxide supply line, 17 is a separated liquid return line, 18 is a drainage line, and 19 is a crystal extraction line.

すなわち、硫黄酸化物および窒素酸化物を含んだ排煙は
第1煙道10を通って第1吸収塔1に入いる。この排煙
は必要に応じた量の03がオゾン発生機3からオゾン注
入ライン13を通って混合され。
That is, the flue gas containing sulfur oxides and nitrogen oxides enters the first absorption tower 1 through the first flue 10. This flue gas is mixed with a necessary amount of 03 from the ozone generator 3 through the ozone injection line 13.

N O+ 0s−No2+02 の反応で、NoがNO2に酸化されている。第1吸収塔
1の吸収液は水素イオン指数(pH)が4.5〜5.5
の低いものであり、排煙中のN02およびSO□を吸収
する。第1吸収塔1を出た排煙は第2煙道11を通って
第2吸収塔2に入いり。
In the reaction N O+ 0s-No2+02, No is oxidized to NO2. The absorption liquid in the first absorption tower 1 has a hydrogen ion index (pH) of 4.5 to 5.5.
It absorbs N02 and SO□ in flue gas. The flue gas leaving the first absorption tower 1 enters the second absorption tower 2 through the second flue 11.

吸収液(pHが5.5〜6.5程度)で残りのNO2お
よびS02を吸収する。
The remaining NO2 and S02 are absorbed with an absorption liquid (pH approximately 5.5 to 6.5).

第2吸収塔2の脱硫反応は次式で示される。The desulfurization reaction in the second absorption tower 2 is expressed by the following formula.

Mg(OH)2 +SO2→Mg fE 03 +H2
0・ ・ ・(1)MgSOs +SO2+H2O−M
g (I(SO3)2  ・ ・ ・(2)ここで、上
記(1)式の反応は多いが、上記(2)式の反応は少な
い。
Mg(OH)2 +SO2→Mg fE 03 +H2
0. . . (1) MgSOs +SO2+H2O-M
g (I(SO3)2 . . . . (2) Here, there are many reactions of the above formula (1), but there are few reactions of the above formula (2).

また第1吸収塔1の脱硫反応は次式で示される。Further, the desulfurization reaction in the first absorption tower 1 is expressed by the following formula.

M gS 03 + S02 + H20−Mg (H
803)2  ・ ・ ・(3)一方、NO2は第1吸
収塔1と第2吸収塔2で吸収され、亜硫酸イオンにより
還元される。この際、添加剤はNO2の吸収を促進する
はたらきをするが、液pHが5.8〜6.0程度を越え
ると、液状から固形となって、その吸収促進力を失なう
ので、第1吸収塔1と第2吸収塔2の液pHを5.8以
下とする必要がある。
M gS 03 + S02 + H20-Mg (H
803) 2 ・ ・ ・ (3) On the other hand, NO2 is absorbed in the first absorption tower 1 and the second absorption tower 2 and reduced by sulfite ions. At this time, the additive functions to promote the absorption of NO2, but when the liquid pH exceeds about 5.8 to 6.0, it changes from liquid to solid and loses its ability to promote absorption. The pH of the liquid in the first absorption tower 1 and the second absorption tower 2 needs to be 5.8 or less.

そして、第1吸収塔1から抜き出した液は酸化塔4へ送
り、これに中和剤MgOを入れながら空気を吹き込んで
酸化する。つまり、次式のようになる。
Then, the liquid extracted from the first absorption tower 1 is sent to the oxidation tower 4, and is oxidized by blowing air into it while adding a neutralizing agent MgO. In other words, it becomes as follows.

M g S 03 + 20□→Mg1EO4・・・・
(4)Mg(H3O3)2 +02−Mg(H8O,)
2 ・・・(5)Mg(H8O4)2 +MgO→2M
g504 +H20・・(6)このように、酸化塔4で
生成したMgSO4により、その濃度が溶解度以上とな
って析出し、液中に結晶として存在する。これを結晶分
離機5で炉別し、結晶は結晶取出しライン19で取出し
、P液はその大部分を液戻しライン17から吸収剤調整
タンク乙に送ってMgOを補給し、吸収液として第2吸
収塔2に送り、使用する。
Mg S 03 + 20□→Mg1EO4・・・・
(4) Mg(H3O3)2 +02-Mg(H8O,)
2...(5) Mg(H8O4)2 +MgO→2M
g504 +H20... (6) In this way, MgSO4 produced in the oxidation tower 4 causes its concentration to exceed its solubility, precipitates, and exists as crystals in the liquid. The crystals are separated by the crystal separator 5, the crystals are taken out by the crystal take-out line 19, and most of the P liquid is sent from the liquid return line 17 to the absorbent adjustment tank B, where MgO is replenished, and the second liquid is used as the absorbent liquid. It is sent to absorption tower 2 and used.

なお酸化塔4内の液pHは5.8以下に保持しているの
で、添加剤は析出することなく、P液と一緒に吸収剤調
整タンク乙に戻される。また第2吸収塔2でSO2およ
びNO□を上記(1)式と(2)式で吸収してpHの下
がった吸収液の一部は第1吸収塔1に送られ、さらにS
02およびNO2を上記(3)式で吸収してpHを下げ
る。
Note that since the pH of the liquid in the oxidation tower 4 is maintained at 5.8 or less, the additive is returned to the absorbent adjustment tank B together with the P liquid without being precipitated. In addition, a part of the absorption liquid whose pH has been lowered by absorbing SO2 and NO
02 and NO2 are absorbed using the above formula (3) to lower the pH.

第2図は横軸Xに5をとり、縦軸yに脱硝率O をとったもので、同図の曲線Aは添加剤がある場合を示
し、曲線Bは添加剤がない場合を示している。すなわち
、添加剤がある場合は、添加剤がない場合に比較して、
脱硝率が高いことがわかる。なお吸収液に添加剤を加え
て脱硝率を上げる方法は公知に属することでもある。
In Figure 2, 5 is plotted on the horizontal axis X and the denitrification rate O is plotted on the vertical axis y.Curve A in the figure shows the case with additives, and curve B shows the case without additives. There is. That is, when there is an additive, compared to when there is no additive,
It can be seen that the denitrification rate is high. Note that the method of increasing the denitrification rate by adding additives to the absorption liquid is also a known method.

発明の効果 本発明は、排煙中の硫黄酸化物および窒素酸化物を除去
するオゾン酸化湿式同時脱硫脱硝プロセスにおいて、マ
グネシウム水液の吸収剤のもとで、第1吸収塔と第2吸
収塔で硫黄酸化物および窒素酸化物を吸収し、前記第1
吸収塔の液の一部を酸化塔で中和剤を加えながら空気で
酸化して液中の硫酸塩を結晶化させ、これを分離機で結
晶を分離し、ろ液を吸収液用に再使用する方法であるか
ら、前記第1吸収塔では大部分のNo、と若干のSO□
が除去され、前記第2吸収塔では残りのN02と大部分
のSO2が除去され、全体として目標とする脱硫脱硝を
容易に行なうことができる。また前記分離機からのろ液
の全量を廃棄することなく、全量または全量に近い量の
ろ液を吸収液用に再使用するから、添加剤の使用を可能
とし、脱硝率を向上させることができ、Os  の使用
量を減らすことができて経済的になる。また前記第1吸
収塔の液のpHを4.5〜5.5に下げたのちの液の一
部を酸化塔に導いて酸化させるので、該酸化塔では液の
pHを5.8以下に保持することができ、液中の添加剤
および触媒成分の析出がなく、すべて再使用され、経済
的に有利である。
Effects of the Invention The present invention provides an ozone oxidation wet simultaneous desulfurization and denitrification process for removing sulfur oxides and nitrogen oxides from flue gas. absorbs sulfur oxides and nitrogen oxides, and
A portion of the liquid from the absorption tower is oxidized with air while adding a neutralizing agent in an oxidation tower to crystallize the sulfate in the liquid, the crystals are separated in a separator, and the filtrate is recycled as an absorption liquid. Since this is the method used, in the first absorption tower, most of the No. and some SO□
is removed, and the remaining N02 and most of the SO2 are removed in the second absorption tower, making it possible to easily achieve the targeted desulfurization and denitration as a whole. In addition, without discarding the entire amount of filtrate from the separator, the entire amount or close to the total amount of the filtrate is reused as an absorbent, making it possible to use additives and improving the denitrification rate. This makes it possible to reduce the amount of Os used, making it economical. Also, after lowering the pH of the liquid in the first absorption tower to 4.5 to 5.5, a part of the liquid is led to the oxidation tower and oxidized, so the oxidation tower lowers the pH of the liquid to 5.8 or less. There is no precipitation of additives and catalyst components in the liquid, all of which can be reused, which is economically advantageous.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明を実施する設備の一例を示した説明図、
第2図は添加剤の有無と脱硝率の関係を示した説明図で
ある。 1・・・第1吸収塔、2・・・第2吸収塔、5・・・オ
ゾン発生機、4・・・酸化塔、5゜・・結晶分離機、6
・・・吸収剤調整タンク。
FIG. 1 is an explanatory diagram showing an example of equipment for implementing the present invention;
FIG. 2 is an explanatory diagram showing the relationship between the presence or absence of additives and the denitrification rate. 1... First absorption tower, 2... Second absorption tower, 5... Ozone generator, 4... Oxidation tower, 5°... Crystal separator, 6
...Absorbent adjustment tank.

Claims (1)

【特許請求の範囲】[Claims] 1、排煙中の硫黄酸化物および窒素酸化物を除去するオ
ゾン酸化湿式同時脱硫脱硝プロセスにおいて、アルカリ
吸収剤に酸化マグネシウムと水酸化マグネシウムの少な
くとも一つを用い、第1吸収塔と第2吸収塔で硫黄酸化
物および窒素酸化物を吸収することにより、前記第1吸
収塔の液の水素イオン指数を4.5ないし5.5に下げ
、この一部を酸化塔で中和剤を加えながら空気で酸化し
、液中の硫酸塩を析出結晶化させ、これを分離機に導い
て結晶を分離し、ろ液を吸収液用に再使用することを特
徴とする、排煙脱硫脱硝方法。
1. In the ozone oxidation wet simultaneous desulfurization and denitrification process that removes sulfur oxides and nitrogen oxides from flue gas, at least one of magnesium oxide and magnesium hydroxide is used as an alkaline absorbent, and the first absorption tower and the second absorption tower By absorbing sulfur oxides and nitrogen oxides in the tower, the hydrogen ion index of the liquid in the first absorption tower is lowered to 4.5 to 5.5, and a part of this is absorbed in the oxidation tower while adding a neutralizing agent. A flue gas desulfurization and denitrification method characterized by oxidizing with air to precipitate and crystallize sulfate in the liquid, introducing it to a separator to separate the crystals, and reusing the filtrate as an absorption liquid.
JP60259787A 1985-11-21 1985-11-21 Process of exhaust gas desulfurization and denitration Pending JPS62121620A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60259787A JPS62121620A (en) 1985-11-21 1985-11-21 Process of exhaust gas desulfurization and denitration

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60259787A JPS62121620A (en) 1985-11-21 1985-11-21 Process of exhaust gas desulfurization and denitration

Publications (1)

Publication Number Publication Date
JPS62121620A true JPS62121620A (en) 1987-06-02

Family

ID=17338976

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60259787A Pending JPS62121620A (en) 1985-11-21 1985-11-21 Process of exhaust gas desulfurization and denitration

Country Status (1)

Country Link
JP (1) JPS62121620A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100335154C (en) * 2005-09-09 2007-09-05 清华大学 Magnesium oxide flue gas desulfurization and outgrowth thick-slurry method oxidation reclaim process
CN101804293A (en) * 2010-04-06 2010-08-18 天津晓沃环保工程有限公司 Flue gas desulfurization method of heating boiler and device thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100335154C (en) * 2005-09-09 2007-09-05 清华大学 Magnesium oxide flue gas desulfurization and outgrowth thick-slurry method oxidation reclaim process
CN101804293A (en) * 2010-04-06 2010-08-18 天津晓沃环保工程有限公司 Flue gas desulfurization method of heating boiler and device thereof

Similar Documents

Publication Publication Date Title
US4011298A (en) Method for simultaneous removal of SOx and NOx
DE3382685D1 (en) METHOD AND DEVICE FOR TREATING CHLORINE CONTAINING WATER.
US4612175A (en) Flue gas desulfurization/denitrification using metal-chelate additives
CN105854560A (en) Flue gas desulfurization and denitration method
KR100364652B1 (en) Wet Flue Gas Desulphurisation Process Using Limestone
CA2487382A1 (en) Process for reducing the level of nox in waste gas streams using sodium chlorite
DK146935B (en) PROCEDURE FOR THE REMOVAL OF NITROGEN OXIDES AND EVEN SULFUR OXIDES FROM SCRUBBING GAS
CN103585869A (en) Flue gas purifying method with recyclable alkali absorption liquid
CN102847418A (en) Additive for limestone-gypsum wet flue gas desulfurization and denitration process
CN101632897A (en) Method for simultaneously removing sulfur oxides and nitric oxides in flue gas
CN106268293A (en) A kind of wet desulphurization denitration synergist for coal-burning boiler
TW326404B (en) An exhaust desulfurization method
US3961021A (en) Method for removing sulfur dioxide from combustion exhaust gas
KR20120069270A (en) Simultaneous treatment method of nox and sox in the exhaust gas of ship
JPH0523535A (en) Removal of acidic gas from combustion exhaust gas
CN107413180A (en) A kind of flue gas integration desulfurization denitration system and method
CN103721551B (en) Boiler flue gas desulfurization, denitration, demercuration integrated purifying equipment
JPS5829251B2 (en) Wet flue gas desulfurization gypsum recovery method
JP3248956B2 (en) Exhaust gas treatment method
JPS62121620A (en) Process of exhaust gas desulfurization and denitration
US4038367A (en) Process for the removal of SOx and NOx from waste gases using alkali metal or alkaline earth metal iodide
JPS5738932A (en) Desulfurization method for exhaust combustion gas
GB1503085A (en) Method for removing sulphur dioxide from an exhaust gas
JPS5836619B2 (en) Treatment method for sulfur oxides in exhaust gas
US4178348A (en) Process for removing sulfur oxides in exhaust gases