JPS588889B2 - High Gas Datsuryu Datsushi Youhouhou - Google Patents

High Gas Datsuryu Datsushi Youhouhou

Info

Publication number
JPS588889B2
JPS588889B2 JP50074345A JP7434575A JPS588889B2 JP S588889 B2 JPS588889 B2 JP S588889B2 JP 50074345 A JP50074345 A JP 50074345A JP 7434575 A JP7434575 A JP 7434575A JP S588889 B2 JPS588889 B2 JP S588889B2
Authority
JP
Japan
Prior art keywords
exhaust gas
gas
sulfite
concentration
thiourea
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP50074345A
Other languages
Japanese (ja)
Other versions
JPS51151257A (en
Inventor
小林眞喜夫
先生貞三
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Fuji Kasei Kogyo Co Ltd
Original Assignee
Fuji Kasei Kogyo Co Ltd
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Kasei Kogyo Co Ltd, Sumitomo Metal Industries Ltd filed Critical Fuji Kasei Kogyo Co Ltd
Priority to JP50074345A priority Critical patent/JPS588889B2/en
Publication of JPS51151257A publication Critical patent/JPS51151257A/en
Publication of JPS588889B2 publication Critical patent/JPS588889B2/en
Expired legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Description

【発明の詳細な説明】 本発明は硫黄酸化物(SOx)及び窒素酸化物(NOx
)を含む一般燃焼排ガス、例えばボイラー加熱炉、焼結
炉、焙焼炉、転炉、溶解炉、焼却炉などから排出される
燃焼排ガス中からSOx及びNOxを同時に除去する湿
式排煙脱硫脱硝方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides a method for treating sulfur oxides (SOx) and nitrogen oxides (NOx).
) Wet flue gas desulfurization and denitrification method for simultaneously removing SOx and NOx from general flue gas emitted from boiler heating furnaces, sintering furnaces, roasting furnaces, converters, melting furnaces, incinerators, etc. Regarding.

本発明者等は、SOx及びN O xによる大気汚染公
害を排除するためSOx及びN O xの除去プロセス
及び装置について鋭意研究開発を進め、さきに、アルカ
リ金属又はアンモニウムの、重炭酸塩(又は水酸化物)
と亜硫酸塩を含む洗浄液で燃焼排ガス中のSOx及びN
Oxを同時除去するプロセスについて特許出願した(特
開昭50−27763号参照)。
The present inventors have conducted intensive research and development on SOx and NOx removal processes and devices to eliminate air pollution caused by SOx and NOx. hydroxide)
SOx and N in combustion exhaust gas are removed using a cleaning solution containing sulfites and sulfites.
A patent application was filed for a process for simultaneously removing Ox (see Japanese Patent Laid-Open No. 27763/1983).

しかしながら、この方法は比較的酸素濃度が高い排ガス
を処理する場合に、脱硝用亜硫酸塩洗浄剤自身がNOx
との反応以外にガス中の酸素によって多量に消費されて
しまい、経済性に乏しいという欠点をもっている。
However, in this method, when treating exhaust gas with relatively high oxygen concentration, the denitrification sulfite cleaning agent itself does not produce NOx.
In addition to the reaction with the gas, a large amount is consumed by the oxygen in the gas, making it uneconomical.

従って、本発明の目的は、前記亜硫酸塩を脱硝剤として
用いる脱硫脱硝方法において、排ガス中の酸素による洗
浄剤の消費を最少限に抑え、排ガス中のSOx及びNO
xを高除去率で脱硫脱硝する湿式脱硫脱硝プロセスを提
供することにある。
Therefore, an object of the present invention is to minimize the consumption of the cleaning agent by oxygen in the exhaust gas in a desulfurization and denitrification method using the sulfite as a denitrification agent, and to reduce SOx and NOx in the exhaust gas.
An object of the present invention is to provide a wet desulfurization and denitration process that desulfurizes and denitrates x at a high removal rate.

本発明に係る排ガス脱硫脱硝方法の第一の態様は、まず
排ガス中に例えば、二酸化塩素(C10。
In the first embodiment of the exhaust gas desulfurization and denitration method according to the present invention, for example, chlorine dioxide (C10) is contained in the exhaust gas.

)又はオゾン(03)を導入して排ガス中に含まれる一
酸化窒素(NO)を二酸化窒素(NO2)に酸化させ、
次いで該排ガスをアルカリ金属又はアンモニウムの水酸
化物又は炭酸塩と、アルカリ又はアンモニウム金属の亜
硫酸塩と、チオ尿素とを含むpH5以上の水溶液であっ
て前記亜硫酸塩を0. 1 mol/l以上の濃度で含
む洗浄液と洗浄塔を用いて気液接触させて脱硫脱硝する
ことから構成される。
) or ozone (03) is introduced to oxidize nitrogen monoxide (NO) contained in the exhaust gas to nitrogen dioxide (NO2),
Next, the exhaust gas is treated with an aqueous solution having a pH of 5 or higher and containing an alkali metal or ammonium hydroxide or carbonate, an alkali or ammonium metal sulfite, and thiourea, the sulfite being 0. It consists of desulfurization and denitrification by bringing a cleaning solution containing a concentration of 1 mol/l or more into gas-liquid contact using a cleaning tower.

本発明に係る排ガス脱硫脱硝方法の第二の態様?、まず
排ガス中に例えば、C102又は03を導入して該排ガ
ス中に含まれる一酸化窒素(NO)を二酸化窒素(No
)に酸化させ、次いで該排ガスをアルカリ金属又はアン
モニウムの水酸化物又は炭酸塩と、アルカリ金属又はア
ンモニウムの亜硫酸塩と、チオ尿素と、銅イオン及び鉄
イオンのうちの少なくとも1種とを含む、pH5以上の
水溶液であって、前記亜硫酸塩を0. 1mol /l
以上の濃度で含む洗浄液と洗浄塔を用いて気液接触させ
て脱硫脱硝することから構成される。
A second aspect of the exhaust gas desulfurization and denitration method according to the present invention? First, for example, C102 or 03 is introduced into the exhaust gas to convert nitrogen monoxide (NO) contained in the exhaust gas to nitrogen dioxide (No.
), and then oxidizing the exhaust gas to an alkali metal or ammonium hydroxide or carbonate, an alkali metal or ammonium sulfite, thiourea, and at least one of copper ions and iron ions. An aqueous solution with a pH of 5 or higher, containing the sulfite at 0. 1mol/l
It consists of desulfurization and denitrification by bringing the cleaning solution containing the above concentration into gas-liquid contact using a cleaning tower.

本プロセスにおける脱硫反応は下記式(1)又は(2)
で示される通りである。
The desulfurization reaction in this process is expressed by the following formula (1) or (2).
As shown in

(式中Mはナトリウム、カリウム等のアルカリ金属又は
アンモニウムを示す。
(In the formula, M represents an alkali metal such as sodium or potassium or ammonium.

以下同じ。)2MOH+SO2−M2SO3+H20
・・・・・・・・・(1)M2CO3+S02−M2S
03+CO2 ・・・・・・・・・(2)すなわち、洗
浄液にアルカリ金属又はアンモニアの水酸化物又は炭酸
塩を添加して亜硫酸ガス(S02)をアルカリ金属又は
アンモニウムの亜硫酸塩として洗浄液中に吸収する。
same as below. )2MOH+SO2-M2SO3+H20
・・・・・・・・・(1) M2CO3+S02-M2S
03+CO2 ・・・・・・・・・(2) That is, sulfur dioxide gas (S02) is absorbed into the cleaning liquid as an alkali metal or ammonium sulfite by adding an alkali metal or ammonia hydroxide or carbonate to the cleaning liquid. do.

もつとも実際には燃焼排ガス中に多量に含まれる炭酸ガ
ス(CO2)が循環洗浄液中に溶解しているので補給さ
れたアルカリ金属又はアンモニウムの水酸化物又は炭酸
塩は洗浄液中で溶存CO2と反応して直ちに重炭酸塩M
HCO3となり重炭酸塩の形で排ガス中のSO2と次式
(3)で反応する。
However, in reality, a large amount of carbon dioxide (CO2) contained in the combustion exhaust gas is dissolved in the circulating cleaning solution, so the replenished alkali metal or ammonium hydroxide or carbonate reacts with the dissolved CO2 in the cleaning solution. Immediately add bicarbonate M
It becomes HCO3 and reacts with SO2 in the exhaust gas in the form of bicarbonate according to the following formula (3).

2MHC03+SO2→M2SO3+2CO2+1I2
0・・(3)次に本プロセスにおける脱硝反応は複雑で
あるがその主反応は下記式(4)で示される通りである
2MHC03+SO2→M2SO3+2CO2+1I2
0...(3) Next, the denitrification reaction in this process is complicated, but its main reaction is as shown by the following formula (4).

N02+2M2S03→2M2SO4+−+N2 ・
・・・・・(4)すなわち.予じめ燃焼排ガス中に例え
ば脱硫脱硝装置入口配管中で二酸化塩素ガス(C102
)又はオゾン(03)を添加して一酸化窒素(NO)を
二酸化窒素(NO2)に酸化させ、次にこのNO2及び
最初から排ガス中に含まれていたNO2をアルカリ金属
又はアンモニウムの亜硫酸塩を含む水溶液に、さらにチ
オ尿素、又はこれと銅イオン及び/若しくは鉄イオンと
を含む洗浄液で洗浄除去するものである。
N02+2M2S03→2M2SO4+-+N2 ・
...(4) That is. For example, chlorine dioxide gas (C102
) or ozone (03) is added to oxidize nitrogen monoxide (NO) to nitrogen dioxide (NO2), and then this NO2 and the NO2 originally contained in the exhaust gas are treated with alkali metal or ammonium sulfite. The aqueous solution containing thiourea and a cleaning solution containing thiourea and copper ions and/or iron ions are used to remove the thiourea.

しかもここでNO2の還元剤であるアルカリ金属又はア
ンモニウムの亜硫酸塩は前記脱硫反応(1)〜(3)で
生成せるものを、そのまま利用できるので、NOxに比
し可成り多量のSOxを含む排ガスを脱硫脱硝する場合
には、新たに亜硫酸塩を添加する必要がないという特長
をもつ。
Furthermore, since the alkali metal or ammonium sulfite which is the reducing agent for NO2 can be used as it is as it is produced in the desulfurization reactions (1) to (3), the exhaust gas contains a considerably larger amount of SOx than NOx. It has the advantage that there is no need to add sulfite when desulfurizing and denitrating.

本発明プロセスの洗浄液中に用いられる銅イオン及び鉄
イオンは、例えば硫酸銅、塩化銅、硫酸鉄、塩化鉄等の
形で、又は銅キレート化合物、鉄キレート化合物、又は
銅錯化合物、鉄錯化合物の形で使用出来る。
The copper ions and iron ions used in the cleaning solution of the process of the present invention are, for example, in the form of copper sulfate, copper chloride, iron sulfate, iron chloride, etc., or in the form of copper chelate compounds, iron chelate compounds, or copper complex compounds, iron complex compounds. It can be used in the form of

本発明では洗浄液のpHを5以上とする必要があるため
、洗浄液中に銅イオン又は鉄イオンを不溶性化合物でな
く、イオン状態で存在せしめるために、銅キレート化合
物、鉄キレート化合物、又は銅錯化合物、鉄錯化合物の
形で添加するのが望ましい。
In the present invention, the pH of the cleaning solution needs to be 5 or more, so in order to make copper ions or iron ions exist in the cleaning solution in an ionic state rather than as an insoluble compound, a copper chelate compound, an iron chelate compound, or a copper complex compound is used. , is preferably added in the form of an iron complex compound.

キレート剤としては、エチレンジアミン四酢酸(EDT
A)((CH2)2・N2・( CH2COOH)4
)、クエン酸( Ca Hs 07 )、?石酸( C
4H6 06 ) 、グルコン酸(CaHt07)等一
般のキレート剤が使用でき、それぞれ、銅及び鉄キレー
ト化合物として添加する。
As a chelating agent, ethylenediaminetetraacetic acid (EDT
A) ((CH2)2・N2・(CH2COOH)4
), citric acid (Ca Hs 07 ), ? Tartaric acid (C
General chelating agents such as 4H6 06 ) and gluconic acid (CaHt07) can be used, and are added as copper and iron chelate compounds, respectively.

また、銅及び鉄の錯化合物としては銅・アンモニア錯体
(Cu(NH3)+’:l2+、鉄・シアン錯体CFe
(CN)a 〕’− 等を使用する。
In addition, as complex compounds of copper and iron, copper/ammonia complex (Cu(NH3)+': l2+, iron/cyan complex CFe
(CN)a ]'- etc. are used.

本発明に係る脱硫脱硝方法において、洗浄液のpHは5
以上、好ましくは6、5〜8.5、亜硫酸塩濃度は0.
1 mol /l以上とされる。
In the desulfurization and denitrification method according to the present invention, the pH of the cleaning solution is 5.
Above, preferably 6.5 to 8.5, and the sulfite concentration is 0.
It is assumed to be 1 mol/l or more.

また洗浄液に添加されるチオ尿素濃度は0. 0 3
mol /l以上、好ましくは0.05〜0. 4 m
ol /l ,銅イオン又は鉄イオン濃度は0.0 0
3mol/l以上好ましくは0.01〜0.04mo
l/lとするのが望ましい。
The concentration of thiourea added to the cleaning solution is 0. 0 3
mol/l or more, preferably 0.05-0. 4 m
ol/l, copper ion or iron ion concentration is 0.0 0
3 mol/l or more, preferably 0.01 to 0.04 mol
It is desirable to set it to l/l.

これは洗浄液のpHがpll5.0未満では洗浄液中の
亜硫?イオンと亜硫酸水素イオンとの平衡において亜硫
酸水素イオンの存在が顕著になり脱流率、脱硝率共に低
下するからであり、また洗浄液のpHが85を越えると
、排ガス中に不可避的に含まれるCOガスを中和するた
めに多量のアルカリを消費し好ましくないからである。
This means that if the pH of the cleaning solution is less than pll5.0, is there sulfur in the cleaning solution? This is because the presence of hydrogen sulfite ions becomes noticeable in the equilibrium between ions and hydrogen sulfite ions, reducing both the deflow rate and the denitrification rate.Also, if the pH of the cleaning solution exceeds 85, CO, which is inevitably contained in the exhaust gas, decreases. This is because a large amount of alkali is consumed to neutralize the gas, which is undesirable.

また亜硫酸塩濃度が0. 1 mol/ l未満では脱
硝率が低下するから好ましくなく、チオ尿素濃度が0.
0 3 mob /l未満の場合には、脱硝率が低下
し又0. 4 mol/ l以上では脱硝反応の触媒的
効果が飽和に達し経済的でない。
Also, the sulfite concentration is 0. If it is less than 1 mol/l, the denitrification rate will decrease, which is not preferable, and if the thiourea concentration is 0.
If it is less than 0.03 mob/l, the denitrification rate will decrease and the value will decrease to 0.03 mob/l. If it exceeds 4 mol/l, the catalytic effect of the denitrification reaction reaches saturation, which is not economical.

更に銅イオン又は鉄イオン濃度についても0. 0 0
3 mol /l未満では脱硝率が低下し0.04m
ol/lを越えても脱硝効果が変わらず経済的でないか
ら好ましくない。
Furthermore, the concentration of copper ions or iron ions is also 0. 0 0
Below 3 mol/l, the denitrification rate decreases to 0.04 m
Even if it exceeds ol/l, the denitrification effect remains unchanged and it is not economical, which is not preferable.

以下、実施例によって本発明方法を更に具体的に説明す
る。
Hereinafter, the method of the present invention will be explained in more detail with reference to Examples.

実施例 1 0. 2 mol / lの亜硫酸塩水溶液のみの吸収
液とこれにチオ尿素を添加した吸収液を用いて、200
卿のNO2を含む空気を前記吸収液中に吹込んで亜硫酸
塩の酸化試験を行った。
Example 1 0. Using an absorption solution containing only a 2 mol/l sulfite aqueous solution and an absorption solution containing thiourea, 200
A sulfite oxidation test was conducted by blowing air containing NO2 into the absorption liquid.

実験は、前記各吸収液5 0 0 mlを吸収ビン中に
入れ、これにNO2を含む空気を10l/minで、3
0分吹き込んで行った。
In the experiment, 500 ml of each of the above absorption liquids was placed in an absorption bottle, and air containing NO2 was added to the bottle at 10 l/min for 3
I blew it for 0 minutes.

試験後の残存亜硫酸塩濃度を12滴定により測定して吸
収液中の亜硫酸塩の酸化率を求め、チオ尿素の酸化抑制
効果を確認した。
The residual sulfite concentration after the test was measured by 12 titration to determine the oxidation rate of sulfite in the absorption liquid, and the oxidation inhibiting effect of thiourea was confirmed.

結果を第1表に示す。The results are shown in Table 1.

?施例 2 0. 1 8mol/lの亜硫酸ナトリウム及び0.2
mol/lの炭酸ナトリウムを含む吸収液と、これにチ
オ尿素、銅EDTA化合物、又はチオ尿素及び銅EDT
A化合物を加えた各種吸収液を用いて、C102ガスに
て酸化した、NO2ガス500卿及びS02ガス1 0
0 0 ppmを含む空気を前記吸収液中に吹き込ん
でNO2ガス及びSO2ガスの吸収試験を行った。
? Example 2 0. 1 8 mol/l sodium sulfite and 0.2
An absorption liquid containing mol/l of sodium carbonate and thiourea, a copper EDTA compound, or thiourea and copper EDT.
Using various absorption liquids containing compound A, oxidized with C102 gas, 500% NO2 gas and 10% S02 gas
An absorption test for NO2 gas and SO2 gas was conducted by blowing air containing 0.00 ppm into the absorption liquid.

試験は前記各吸収液500mlを吸収ビン中に入れ、こ
れに前記濃度のNOガス及びSO?スを含む空気を10
l/minで吹き込んで行った。
In the test, 500 ml of each of the above absorption liquids was placed in an absorption bottle, and NO gas and SO? of the above concentration were added to the bottle. 10% of air containing
The air was blown at l/min.

吸収ビン入口及び出口のNO2ガス濃度及びSO2ガス
濃度をそれぞれ化学発光式窒素酸化物測定装置及び溶液
導電率型硫黄酸化物測定装置で測定し、NOガス及びS
02ガスの吸収効率を求めた。
The NO2 gas concentration and SO2 gas concentration at the inlet and outlet of the absorption bottle were measured using a chemiluminescent nitrogen oxide measuring device and a solution conductivity type sulfur oxide measuring device, respectively.
The absorption efficiency of 02 gas was determined.

又吸収液中の亜硫酸イオン濃度を測定し、該亜硫酸イオ
ン濃度の減少速度を求めた。
In addition, the sulfite ion concentration in the absorption liquid was measured, and the rate of decrease in the sulfite ion concentration was determined.

この結果よりチオ尿素及び銅EDTA化合物による吸収
効率増大効果と亜硫酸イオンの酸化防止効果を確認した
These results confirmed the absorption efficiency increasing effect of thiourea and copper EDTA compounds and the antioxidant effect of sulfite ions.

結果を第2表に示す。?施例 3 NO 2 5 0 ppm、NO100ppIn及びS
O2450卿を含む1 0, 0 0 0 Nm3/H
の工場排ガス中の硫黄酸化物及び窒素酸化物を本発明の
方法で除去した。
The results are shown in Table 2. ? Example 3 NO 2 50 ppm, NO 100 ppIn and S
10,000 Nm3/H including O2450
Sulfur oxides and nitrogen oxides in factory exhaust gas were removed by the method of the present invention.

まず前記排ガスに排ガス供給ダクト中で130ppmの
CIOガスを注入して排ガス中のNOをN02に酸化さ
せ、ついでこの排ガスを開孔率38%の漏れ棚(堰及び
溢流部のない多孔板棚)3段から成る一塔の漏れ棚吸収
塔の底部に送り、下記条件で循環吸収液と向流接触させ
た。
First, 130 ppm of CIO gas is injected into the exhaust gas in the exhaust gas supply duct to oxidize NO in the exhaust gas to N02, and then the exhaust gas is heated to a leakage shelf (a perforated plate shelf with no weir or overflow part) with a perforation rate of 38%. ) It was sent to the bottom of a single leaking shelf absorption tower consisting of three stages and brought into countercurrent contact with the circulating absorption liquid under the following conditions.

ガス空塔速度 5 m /sec液ガス比(L
/G) 4 循環吸収液pH 6.8 循環吸収液組成 ( NH4)2CO 30. 5 mol/l( NH
4 )2 S O s 0. 5mol
/lチオ尿素 0. 1mol/lE
DTA−C u2+0. 0 3 mol/ l(NH
4)2803補給量 Okg/H漏れ棚吸収出
口ガス中のNOx濃度はt5ppm以下、SO2濃度は
10 ppm以下であった。
Gas superficial velocity 5 m/sec Liquid gas ratio (L
/G) 4 Circulating absorption liquid pH 6.8 Circulating absorption liquid composition (NH4)2CO 30. 5 mol/l (NH
4)2 S O s 0. 5mol
/l Thiourea 0. 1mol/lE
DTA-C u2+0. 0 3 mol/l (NH
4) 2803 Replenishment Amount Okg/H The NOx concentration in the leaking shelf absorption outlet gas was t5ppm or less, and the SO2 concentration was 10ppm or less.

又チオ尿素及びEDTA−Cu2+を含まない循環吸収
液を使用した以外は、ガス空塔速度、液ガス比、循環吸
収液pHN循環液亜硫酸アンモニウム濃度( 0. 5
mol/l)を先の条件と同一にして脱硫・脱硝実験を
行なったところ処理ガスのSOx濃度が、10ppm以
下、NOx濃度が3 0 ppm以下であった。
In addition, except for using a circulating absorption liquid that does not contain thiourea and EDTA-Cu2+, the gas superficial velocity, liquid-gas ratio, circulating absorption liquid pHN circulating liquid ammonium sulfite concentration (0.5
When desulfurization and denitration experiments were conducted under the same conditions (mol/l) as before, the SOx concentration of the treated gas was 10 ppm or less, and the NOx concentration was 30 ppm or less.

この場合の(NH4)2 SO3の補給量は230kg
/Hと多量に消費した。
In this case, the amount of (NH4)2 SO3 supplied is 230 kg.
/H was consumed in large quantities.

Claims (1)

【特許請求の範囲】 1 燃焼排ガス中に含まれる硫黄酸化物及び窒素酸化物
を湿式除去する方法において、先ず該排ガス中に含まれ
る一酸化窒素を二酸化窒素に酸化させ、次いでアルカリ
金属又はアンモニウムの水酸化物又は炭酸塩と、アルカ
リ金属又はアンモニウムの亜硫酸塩と、チオ尿素とを含
むpH 5以上の水溶液であって前記亜硫酸塩を0.
1 mol / l以上の濃度で含む洗浄液と前記排ガ
スとを洗浄塔を用いて気液接触させて脱硫脱硝すること
を特徴とする排ガス脱硫脱硝方法。 2 特許請求の範囲第1項記載の排ガス脱硫脱硝方法で
あって、前記洗浄液が更に銅イオン及び鉄イオンのうち
の少なくとも1種を含んで成ることを特徴とする排ガス
脱硫脱硝方法。
[Claims] 1. In a method for wet removal of sulfur oxides and nitrogen oxides contained in combustion exhaust gas, nitrogen monoxide contained in the exhaust gas is first oxidized to nitrogen dioxide, and then alkali metal or ammonium is oxidized. An aqueous solution having a pH of 5 or more and containing a hydroxide or carbonate, an alkali metal or ammonium sulfite, and thiourea, the sulfite being 0.
A method for desulfurizing and denitrating an exhaust gas, characterized in that the cleaning solution containing a concentration of 1 mol/l or more and the exhaust gas are brought into gas-liquid contact using a cleaning tower to perform desulfurization and denitration. 2. The exhaust gas desulfurization and denitration method according to claim 1, wherein the cleaning liquid further contains at least one of copper ions and iron ions.
JP50074345A 1975-06-20 1975-06-20 High Gas Datsuryu Datsushi Youhouhou Expired JPS588889B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP50074345A JPS588889B2 (en) 1975-06-20 1975-06-20 High Gas Datsuryu Datsushi Youhouhou

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP50074345A JPS588889B2 (en) 1975-06-20 1975-06-20 High Gas Datsuryu Datsushi Youhouhou

Publications (2)

Publication Number Publication Date
JPS51151257A JPS51151257A (en) 1976-12-25
JPS588889B2 true JPS588889B2 (en) 1983-02-18

Family

ID=13544426

Family Applications (1)

Application Number Title Priority Date Filing Date
JP50074345A Expired JPS588889B2 (en) 1975-06-20 1975-06-20 High Gas Datsuryu Datsushi Youhouhou

Country Status (1)

Country Link
JP (1) JPS588889B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01276581A (en) * 1988-04-28 1989-11-07 Meidensha Corp Operation display device and failure display device for lightning arrester

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2563173Y2 (en) * 1992-08-21 1998-02-18 象印マホービン株式会社 Mounting device for thermistor set

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49126586A (en) * 1973-04-10 1974-12-04
JPS51130691A (en) * 1975-05-08 1976-11-13 Mitsubishi Electric Corp Washing liquid for removing nox

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49126586A (en) * 1973-04-10 1974-12-04
JPS51130691A (en) * 1975-05-08 1976-11-13 Mitsubishi Electric Corp Washing liquid for removing nox

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01276581A (en) * 1988-04-28 1989-11-07 Meidensha Corp Operation display device and failure display device for lightning arrester

Also Published As

Publication number Publication date
JPS51151257A (en) 1976-12-25

Similar Documents

Publication Publication Date Title
US4035470A (en) Process for removing sulfur oxides and/or nitrogen oxides from waste gas
US3957949A (en) Process for removing nitrogen oxides from gas
US4061743A (en) Exhaust gas scrubbing process
US5985223A (en) Removal of NOx and SOx emissions form pickling lines for metal treatment
JP4649206B2 (en) Method for reducing NOx in a waste gas stream using sodium chlorite
US4009244A (en) Process for removing oxides of nitrogen and sulfur from exhaust gases
ATE89492T1 (en) FLUE GAS DESULPHURIZATION PROCESS.
US4029739A (en) Process for removing nitrogen oxides from waste gas
US4541999A (en) Method for removing acidic components including nitrogen oxide from waste gases
CN103977682A (en) Simultaneous desulfurization and denitrification method for flue gas
CN109647165A (en) A kind of technique that NOx, SO2 in flue gas are removed simultaneously with circulating absorption solution
JPH01164422A (en) Removal of acidic component and nitrogen oxide from waste gas of industrial furnace apparatus
JPS588889B2 (en) High Gas Datsuryu Datsushi Youhouhou
JPH02277522A (en) Process for removing sox from gas mixture
JPS5912333B2 (en) Exhaust gas desulfurization and denitrification method
JPS5857213B2 (en) Flue gas desulfurization method
JPS5855803B2 (en) Denitration method
JPH02229527A (en) Method for simultaneously removing sulfur oxide and nitrogen oxide
JPS5892451A (en) Desulfurization of waste gas
JPH03207430A (en) Simultaneous desulfurization and denitration equipment
JPH02203921A (en) Wet removal of nitrogen oxide in various combustion exhaust gases
KR20020050991A (en) Method for wet scrubbing of nitrogen oxides from flue gas
JPS5946653B2 (en) Flue gas desulfurization method
KR20030053331A (en) Wet Scrubbing method of dust, sulfur oxides and nitrogen oxides from flue gas
JPH0127796B2 (en)