JPH02229527A - Method for simultaneously removing sulfur oxide and nitrogen oxide - Google Patents

Method for simultaneously removing sulfur oxide and nitrogen oxide

Info

Publication number
JPH02229527A
JPH02229527A JP1051585A JP5158589A JPH02229527A JP H02229527 A JPH02229527 A JP H02229527A JP 1051585 A JP1051585 A JP 1051585A JP 5158589 A JP5158589 A JP 5158589A JP H02229527 A JPH02229527 A JP H02229527A
Authority
JP
Japan
Prior art keywords
nox
absorption
exhaust gas
removal
sox
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1051585A
Other languages
Japanese (ja)
Other versions
JPH0729025B2 (en
Inventor
Shigenori Onizuka
鬼塚 重則
Toshio Hama
利雄 濱
Akio Hirotsune
広常 晃生
Toshiji Kobayashi
利治 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Zosen Corp
Original Assignee
Hitachi Zosen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Zosen Corp filed Critical Hitachi Zosen Corp
Priority to JP1051585A priority Critical patent/JPH0729025B2/en
Publication of JPH02229527A publication Critical patent/JPH02229527A/en
Publication of JPH0729025B2 publication Critical patent/JPH0729025B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Landscapes

  • Treating Waste Gases (AREA)

Abstract

PURPOSE:To simultaneously remove SOx and NOx in exhaust gas by previously blowing gaseous chlorine into the exhaust gas and bringing this exhaust gas into contact with an aq. NaOH soln. contg. ammonium ions and bromine ions. CONSTITUTION:Gaseous chlorine is previously blown into exhaust gas to be wet-treated. This exhaust gas is brought into contact with an aq. NaOH soln. contg. ammonium ions and bromide ions as an absorbing soln. Since both the gaseous chlorine and bromide ions are present, reactive nitrosyl bromide is formed and reacts with ammonia, SOx and NOx can be simultaneously removed and a high rate of removal of NOx is attained.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、各種ボイラ、各種加熱炉さらにはごみ焼き
炉などから排出される燃焼排ガス中の硫黄酸化物(SO
x)および窒素酸化物(NOx)を同時に湿式法にて効
果的に除去し、もって大気環境の改善に資する方法に関
する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention is directed to the treatment of sulfur oxides (SO
The present invention relates to a method for effectively removing x) and nitrogen oxides (NOx) simultaneously by a wet method, thereby contributing to improving the atmospheric environment.

[従来技術および問題点] 従来、この種の排ガス中のSOxおよびNoXの同時除
去技術としては、湿式法のNH3吸収法、錯塩吸収法、
硫酸・硝酸法などが知られれている。また、乾式法とし
ては活性炭法、電子線照射法などが提案されている。と
ころが周知の通り、このSOxおよびNOxの同時除去
は、湿式法、乾式法ともに非常に困難であり、同技術の
確立、実用化は未だなされていない。
[Prior Art and Problems] Conventionally, as this type of simultaneous removal technology of SOx and NoX in exhaust gas, wet NH3 absorption method, complex salt absorption method,
Sulfuric acid and nitric acid methods are known. Further, as dry methods, an activated carbon method, an electron beam irradiation method, etc. have been proposed. However, as is well known, simultaneous removal of SOx and NOx is extremely difficult in both wet and dry methods, and this technology has not yet been established or put to practical use.

湿式法して知られているNH3吸収法は、SOXに対し
てはNH3水による吸収であるが、NOxに関しては予
めオゾンも添加し、NOをNO2に酸化した後、これを
NH3水にて吸収させる方法である。この方法の問題点
は、オゾン酸化した後でもNOxの吸収効率が余り高く
なく、NOx除去率が低いことである。錯塩吸収法はE
DTAを使用し、また硫酸・硝酸法はニトロシル硫酸を
中間体として生成されるものであるが、これらの方法の
場合もまたNOxの除去率が低い。
In the NH3 absorption method, which is known as a wet method, SOX is absorbed by NH3 water, but for NOx, ozone is also added in advance, NO is oxidized to NO2, and then this is absorbed with NH3 water. This is the way to do it. The problem with this method is that even after ozone oxidation, the NOx absorption efficiency is not very high and the NOx removal rate is low. Complex salt absorption method is E
Although DTA is used and the sulfuric acid/nitric acid method is produced using nitrosyl sulfuric acid as an intermediate, these methods also have a low NOx removal rate.

乾式法については、上に挙げた方法はいずれも未だ開発
段階のものであり、実用化はなされていない。
Regarding dry methods, all of the methods listed above are still in the development stage and have not been put into practical use.

[問題点の解決手段] この発明による排ガス中のSOxおよびNOxの同時除
去方法の一つは、湿式処理に関するもので、処理すべき
排ガス中に予め塩素ガス(C/2)を添加しておき、そ
の後アンモニウムイオン(NH4”)および臭素イオン
(Br)を含む苛性ソーダ水溶液よりなる吸収液と上記
排ガスを接触させることを特徴とする。
[Means for solving the problem] One of the methods for simultaneously removing SOx and NOx from exhaust gas according to the present invention relates to wet treatment, in which chlorine gas (C/2) is added in advance to the exhaust gas to be treated. The method is characterized in that the exhaust gas is then brought into contact with an absorption liquid consisting of an aqueous solution of caustic soda containing ammonium ions (NH4'') and bromide ions (Br).

この発明の方法によれば、SOxの除去とNOxの除去
がほぼ完全に達成されるばかりでなく、特に、SOx中
のSO2はS03に酸化吸収され、硫酸塩を形成する。
According to the method of the present invention, not only is SOx removal and NOx removal almost completely achieved, but in particular, SO2 in SOx is oxidized and absorbed by S03 to form sulfates.

そのため、通常のアルカリ水溶液による吸収の場合のよ
うに、SOx吸収後の液中の亜硫酸塩の硫酸塩への酸化
処理は必要でない。
Therefore, it is not necessary to oxidize the sulfite in the solution after SOx absorption to sulfate as in the case of absorption using a normal alkaline aqueous solution.

NOxの除去に関しては、後に述べるようにその機構は
必ずしも明確でないが、最終的には窒素と水まで還元さ
れている可能性が強く、低温度域での還元という特異な
反応状況を呈する。
Regarding the removal of NOx, the mechanism is not necessarily clear, as will be described later, but there is a strong possibility that nitrogen and water are ultimately reduced, and the reaction presents a unique reaction situation of reduction in a low temperature range.

また、本発明によるもう一つの方法は、処理すべき排ガ
ス中に予め臭素ガス(Br2)を添加しておき、その後
NH4+を含む苛性ソーダ水溶液よりなる吸収液と上記
排ガスを接触させることを特徴とする。
Another method according to the present invention is characterized in that bromine gas (Br2) is added in advance to the exhaust gas to be treated, and then the exhaust gas is brought into contact with an absorption liquid made of a caustic soda aqueous solution containing NH4+. .

この第2の方法と前述の第1の方法との相違は、排ガス
中への注入添加ガスがCI2からBr2に変ったことと
、吸収液がBr−を含むNH4+含有苛性ソーダ水溶液
からBr−を含まないものになったことである。これら
2つの方法における構成要素は比較的類似するもので、
その反応機構も類似したものになる。
The difference between this second method and the first method described above is that the additive gas injected into the exhaust gas has changed from CI2 to Br2, and the absorption liquid has changed from an NH4+-containing caustic soda aqueous solution containing Br- to a Br--containing aqueous solution containing Br-. It has become something that does not exist. The components in these two methods are relatively similar;
The reaction mechanism will also be similar.

第1の方法におけるSOxの吸収、すなわちS02およ
びS03の吸収は次のようになる。
The absorption of SOx, that is, the absorption of S02 and S03 in the first method is as follows.

C/2 +2NaOH− N a C / O+N a C / +H2 0・−
・−−(1>SO2  +NaC/O+2NaOH −
N a 2  S O 4  + N a C / +
 H 2  0 − − (2)?O3  +2NaO
H − Na2  SO4  +H2  0・・・・・・・・・
・・・・・・・・・(3)(1)式はCI2の苛性ソー
ダへの吸収であり、(2)式はS02のNaC/0によ
る酸化吸収であり、(3)式はS03の苛性ソーダへの
吸収である。さらに、この発明によれば、吸収液中にB
『−およびNH4+が含まれることから、上記反応の他
に次のような反応が生起し、SO■の酸化吸収を早め、
より高効率のSOxの除去が達成される。
C/2 +2NaOH- Na C / O+Na C / +H2 0・-
・−−(1>SO2 +NaC/O+2NaOH −
N a 2 S O 4 + N a C / +
H 2 0 − − (2)? O3 +2NaO
H − Na2 SO4 +H2 0・・・・・・・・・
・・・・・・・・・(3) Equation (1) is the absorption of CI2 into caustic soda, Equation (2) is the oxidation absorption of S02 by NaC/0, and Equation (3) is the absorption of CI2 into caustic soda. It is absorption into. Furthermore, according to this invention, B in the absorption liquid
``Because - and NH4+ are included, in addition to the above reactions, the following reactions occur, accelerating the oxidation and absorption of SO■,
More efficient SOx removal is achieved.

C/2 +2Br−→ B r2  + 2 C / −  =(4)明確では
ないが、NOxの吸収においては重要な要素となってい
る。
C/2 +2Br-→Br2+2C/-=(4) Although not clear, it is an important factor in NOx absorption.

次にNOxの吸収について見る゜と、(l)式で生成す
るNaC/0および苛性ソーダ吸収液だけによる酸化吸
収はほとんど起らず、NOxの除去は達成されない。す
なわち、吸収液中にBr−  NH4+が存在しない場
合にはNOxの除去は達成されない。
Next, looking at NOx absorption, almost no oxidative absorption occurs only by the NaC/0 and caustic soda absorbent produced by the formula (l), and NOx removal is not achieved. That is, NOx removal is not achieved when Br-NH4+ is not present in the absorption liquid.

この反応においては、Br−とNH4”の両者の存在が
必要であり、いずれか一方が欠けるとNOxはほとんど
除去されない。
This reaction requires the presence of both Br- and NH4'', and if either one is missing, NOx will hardly be removed.

C/2 +28r− → Br2+2C/−・・・・・・・・・(4)NO+1/
2Br2 → NOBr      (6)SO2  
+B  r2  +4NaOH−e−Na2  SO4
  +2NaBr+2H2  0・・・・・・(5) SOx吸収法におけるNH4+の作用効果はNOBr+
NH3  +H2  0→ NH4 NO2 +HB r・・・・・・(7)これら
の反応式に示すように、(4)式で生成されたBr2は
反応性に富む臭化二トロシル(NOB r)を生成し、
このNOBrがNH,と反応してNH4NO2を生成す
る。ここで、NH4+を含む苛性ソーダ水溶液を使用し
た場合、NH4+を含まない場合に比べ、格段にNOx
除去率が高い。同じ塩基性物質であってもNH40Hと
NaOHとではその作用効果において明確な差異がある
。この原因は明確でないが、NH40Hの場合には気一
液境界層においてNH3分圧を有することがNOB r
との反応性を高め、吸収速度を上げる要因となっている
と思われる。この意味において、上記(7)式では反応
物質をNH4+でなくNH3で示した。
C/2 +28r- → Br2+2C/-・・・・・・・・・(4) NO+1/
2Br2 → NOBr (6) SO2
+Br2 +4NaOH-e-Na2 SO4
+2NaBr+2H2 0・・・・・・(5) The effect of NH4+ in SOx absorption method is NOBr+
NH3 +H2 0→ NH4 NO2 +HB r... (7) As shown in these reaction equations, Br2 produced in equation (4) produces highly reactive nitrosyl bromide (NOB r) death,
This NOBr reacts with NH to generate NH4NO2. Here, when a caustic soda aqueous solution containing NH4+ is used, NOx is significantly reduced compared to when it does not contain NH4+.
High removal rate. Even though they are the same basic substances, NH40H and NaOH have distinct differences in their effects. The reason for this is not clear, but in the case of NH40H, NOB r has a partial pressure of NH3 in the gas-liquid boundary layer.
This is thought to be a factor that increases the reactivity with and the rate of absorption. In this sense, in the above formula (7), the reactant is expressed as NH3 instead of NH4+.

NH4NO2は下記(8)式に示す如く非常に分解しや
すい物質である。
NH4NO2 is a substance that is very easily decomposed as shown in the following formula (8).

NH4No2→N2 + 2 H2 0・・・・・・(
8)後に述べる実施例の結果でも、吸収液の排水側での
NO2−およびNO3−の量は、定性的には非常に少な
かった。
NH4No2→N2 + 2 H2 0・・・・・・(
8) Also in the results of the examples described later, the amounts of NO2- and NO3- on the drainage side of the absorption liquid were qualitatively very small.

第2の方法は、Br2の発生をBr−とC/2によって
行なうのではな(、Br2を排ガスに直接添加するもの
で、S O xおよびNOxの吸収をC/2を介さずに
実施する方法である。
In the second method, Br2 is not generated by Br- and C/2, but Br2 is added directly to the exhaust gas, and SO x and NOx are absorbed without going through C/2. It's a method.

SOxの除去は(5)式、またNOxの除去は(8)(
7)(8)式によると考えられる。
Removal of SOx is performed using equation (5), and removal of NOx is performed using equation (8) (
7) This is considered to be based on equation (8).

ここにおいて、第1および第2の方法を実施する場合の
重要な反応条件としては、排ガス中へ予め注入添加する
C/2もしくはBr2の量、吸収液中のBr−flおよ
びNH4”皿、さらには苛性ソーダによって調整される
pHの値である。これらの条件を以下に示す。
Here, important reaction conditions when carrying out the first and second methods include the amount of C/2 or Br2 injected into the exhaust gas in advance, the Br-fl and NH4 dish in the absorption liquid, and is the pH value adjusted by caustic soda. These conditions are shown below.

1)C/2量; C / 2 / (S 02 +1/
2 No)モル比1以上 2)Brz量; B r2 / (S 02 +1/2
 No)モル比1以上 3)NH4+量;NH4”/Noモル比1以上4)吸収
液入口pH;3〜9(苛性ソーダによる調m> この発明の実施プロセスでは、C/2およびBr2は消
費されるのでなく系内で形態を変え吸収液中に捕捉され
る。そこで、このC/2およびBr2は隔膜電解によっ
て再生使用できる。
1) C/2 amount; C/2/(S 02 +1/
2 No) Molar ratio 1 or more 2) Brz amount; B r2 / (S 02 +1/2
No) Molar ratio 1 or more 3) NH4+ amount; NH4''/No molar ratio 1 or more 4) Absorbent inlet pH; 3 to 9 (adjusted with caustic soda)> In the process of implementing this invention, C/2 and Br2 are not consumed. C/2 and Br2 change their form within the system and are captured in the absorption liquid.Therefore, this C/2 and Br2 can be recycled and used by diaphragm electrolysis.

NH4”はNOxの還元剤として使用されるため、その
消費分の補給が必要である。NH4源としてはNH, 
、NH40Hが勿論使用できるが、工業的には硫安、塩
安などの塩が経済的かつ反応面においても問題なく使用
できる。
NH4" is used as a reducing agent for NOx, so it is necessary to replenish the amount consumed.NH4 sources include NH,
, NH40H can of course be used, but industrially, salts such as ammonium sulfate and ammonium chloride can be used economically and without any problem in terms of reaction.

この発明における吸収塔の形式としては、通常知られて
いろうシヒリングなどの充填塔、スプレー塔、棚段塔な
ど各柾の吸収塔が使用される。これらの吸収塔の操作条
件、すなわち液ガス比、ガス空塔速度などとの関係にお
いて、これらの塔のうちどの形式のものを使用するか決
定される。
As the type of absorption tower in the present invention, various kinds of absorption towers, such as a packed tower such as a Schichling, a spray tower, and a tray tower, which are commonly known, are used. The type of absorption tower to be used is determined in relation to the operating conditions of these absorption towers, ie, liquid-gas ratio, gas superficial velocity, etc.

[発明の効果] この発明の方法によれば、従来の湿式法では困難であっ
たSOxおよびNOxの同時除去が、特に高NOx除去
率を維持して経済的に達成される。
[Effects of the Invention] According to the method of the present invention, simultaneous removal of SOx and NOx, which has been difficult with conventional wet methods, can be achieved economically while maintaining a particularly high NOx removal rate.

[実 施 例] 実施例1 第1図に示す試験装置を用いてSOxおよびNOxの除
去試験を実施した。ここで、SOxおよびNOxとして
は、排ガス中のSOxおよびNOx中のうち大部分を占
めるs02およびNOを使用し、SO3およびNO2の
混入は行なわなかった。
[Example] Example 1 A SOx and NOx removal test was conducted using the test apparatus shown in FIG. Here, as SOx and NOx, s02 and NO, which account for most of SOx and NOx in the exhaust gas, were used, and SO3 and NO2 were not mixed.

反応塔(1)は径30■φX高さ510mmのバイレッ
クスガラス管よりなり、径2llalの球形ガラスビー
ズを高さ331■まで充填したものである。吸収塔(2
)は反応塔(1)と全く同じ形式およびサイズのもので
ある。反応塔(1)および吸収塔(2)ともに温水ジャ
ケット(3) (4)を有し、所定温度(70℃)に維
持されている。反応塔(1)は反応ガス中にC/2ある
いはBr2を予め添加するための装置であり、反応塔(
1)の反応液で直接S02およびNoを吸収するもので
はない。他方、吸収塔(2)はS02およびNOを吸収
する装置である。S02の除去率およびNoの除去率は
、この吸収塔(2)の前後における各々の濃度を測定す
ることによって求めた。
The reaction column (1) was made of a Vilex glass tube with a diameter of 30 mm and a height of 510 mm, and was filled with spherical glass beads having a diameter of 2 lal to a height of 331 mm. Absorption tower (2
) is of exactly the same type and size as the reaction column (1). Both the reaction tower (1) and the absorption tower (2) have hot water jackets (3) and (4), and are maintained at a predetermined temperature (70°C). The reaction tower (1) is a device for adding C/2 or Br2 into the reaction gas in advance.
The reaction solution of 1) does not directly absorb S02 and No. On the other hand, the absorption tower (2) is a device that absorbs S02 and NO. The removal rate of S02 and the removal rate of No were determined by measuring the respective concentrations before and after the absorption tower (2).

第1表に本試験装置における共通の標準的な反応条件を
示す。同表において、ケースAは試験用排ガス中にCe
2を添加する場合(第1の方法)の条件であり、ケース
BはBr2を添加する場合(第2の方法)の条件である
。吸収塔の操作条件で見ると、ケースAとケースBでは
ともにB『一濃度は50mg//であるが、ケースBで
はBr−の添加は行なわなかった。BrーおよびNH4
’源としてはそれぞれKBrおよび(NH4 )2 S
O4を使用した。
Table 1 shows common standard reaction conditions in this test device. In the same table, case A is Ce in the test exhaust gas.
Case B is the condition when Br2 is added (first method), and case B is the condition when Br2 is added (second method). Looking at the operating conditions of the absorption tower, in both Case A and Case B, the B concentration was 50 mg//, but in Case B, Br- was not added. Br- and NH4
'The sources are KBr and (NH4)2S, respectively.
O4 was used.

ケースAにおける結果を第2表に示す。同表から明らか
なように、高いS02除去率および高いNo除去率が得
られる。ただし、S02濃度5 0 0 ppmの場合
には、S02によりC/2分が消費されてC/2不足と
なり、Noの除去率が低下している。ケースBの結果を
第3表に示す。この場合、S02濃度5 0 0 pp
mでも高いNo除去率が得られる。
The results for Case A are shown in Table 2. As is clear from the table, a high S02 removal rate and a high No removal rate can be obtained. However, when the S02 concentration is 500 ppm, C/2 is consumed by S02, resulting in a C/2 shortage, and the No removal rate is reduced. The results for Case B are shown in Table 3. In this case, the S02 concentration is 500 pp
A high No removal rate can be obtained even with m.

比較例1 実施例1の装置を使用し、第1表の条件下、?験用排ガ
スは反応塔(1)をバイパスさせ、すなわち、C/2お
よびBr2を添加せず、直接吸収塔(2)へ導入した。
Comparative Example 1 Using the apparatus of Example 1, under the conditions shown in Table 1, ? The experimental exhaust gas bypassed the reaction tower (1), that is, was introduced directly into the absorption tower (2) without adding C/2 and Br2.

吸収塔(2)の吸収液は苛性ソーダによってp119に
調整し、NH4(10+sg//)およびBr−  (
50mg//)の有無の各ケースで試験を行なった。そ
の結果を第4表に示す。C/2およびBr2を添加しな
い系では、有効なS02およびNoの除去は達成されな
い。
The absorption liquid in the absorption tower (2) was adjusted to p119 with caustic soda, and NH4 (10+sg//) and Br- (
Tests were conducted in each case with and without 50 mg//). The results are shown in Table 4. Effective S02 and No removal is not achieved in systems without the addition of C/2 and Br2.

比較例2 実施例1の装置を使用し、第2表のNo.2のガス組成
から、吸収液中へのNH,+およびBr−の添加を行な
わず、SO■およびNOの除去試験を実施した。その結
果、S02除去率99.5%およびNO除去率4.3%
を得た。
Comparative Example 2 Using the apparatus of Example 1, No. 2 in Table 2 was used. Based on the gas composition of No. 2, a test for removing SO■ and NO was conducted without adding NH, + and Br- to the absorption liquid. As a result, the S02 removal rate was 99.5% and the NO removal rate was 4.3%.
I got it.

すなわち、吸収岐にNH4+およびB『−が含まれない
場合には、有効なNO除去が達成されないことがわかる
That is, it can be seen that when NH4+ and B'- are not included in the absorption branch, effective NO removal is not achieved.

比較例3 実施例1の装置を使用し、第3表のNo.2のガス組成
から、吸収液中へのNH4+の添加を行なわず、S02
およびNoの除去試験を実施した。その結果、S02除
去率99.5%およびNo除去率3.2%を得た。すな
わち、NH4+が吸収液に含まれない系では、有効なN
O除去が達成されないことがわかる。
Comparative Example 3 Using the apparatus of Example 1, No. 3 in Table 3 was used. From the gas composition of 2, without adding NH4+ to the absorption liquid, S02
and No. removal tests were conducted. As a result, an S02 removal rate of 99.5% and a No removal rate of 3.2% were obtained. In other words, in a system where NH4+ is not included in the absorption liquid, the effective N
It can be seen that O removal is not achieved.

第1表 (以下余白) 第2表 第3表 4.Table 1 (Margin below) Table 2 Table 3 4.

【図面の簡単な説明】[Brief explanation of the drawing]

図面はこの発明の実施例を示すフローシート である。 以 上 The drawing is a flow sheet showing an embodiment of this invention. It is. Below Up

Claims (2)

【特許請求の範囲】[Claims] (1)各種燃焼排ガス中に予め塩素ガスを添加しておき
、その後アンモニウムイオンおよび臭素イオンを含む苛
性ソーダ水溶液と上記排ガスを接触させることを特徴と
する、硫黄酸化物および窒素酸化物の同時除去方法。
(1) A method for simultaneous removal of sulfur oxides and nitrogen oxides, characterized by adding chlorine gas in advance to various combustion exhaust gases, and then bringing the exhaust gases into contact with a caustic soda aqueous solution containing ammonium ions and bromine ions. .
(2)各種燃焼排ガス中に予め臭素ガスを添加しておき
、その後アンモニウムイオンを含む苛性ソーダ水溶液と
上記排ガスを接触させることを特徴とする、硫黄酸化物
および窒素酸化物の同時除去方法。
(2) A method for simultaneously removing sulfur oxides and nitrogen oxides, which comprises adding bromine gas to various combustion exhaust gases in advance, and then bringing the exhaust gases into contact with a caustic soda aqueous solution containing ammonium ions.
JP1051585A 1989-03-02 1989-03-02 Method for simultaneous removal of sulfur oxides and nitrogen oxides Expired - Lifetime JPH0729025B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1051585A JPH0729025B2 (en) 1989-03-02 1989-03-02 Method for simultaneous removal of sulfur oxides and nitrogen oxides

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1051585A JPH0729025B2 (en) 1989-03-02 1989-03-02 Method for simultaneous removal of sulfur oxides and nitrogen oxides

Publications (2)

Publication Number Publication Date
JPH02229527A true JPH02229527A (en) 1990-09-12
JPH0729025B2 JPH0729025B2 (en) 1995-04-05

Family

ID=12891012

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1051585A Expired - Lifetime JPH0729025B2 (en) 1989-03-02 1989-03-02 Method for simultaneous removal of sulfur oxides and nitrogen oxides

Country Status (1)

Country Link
JP (1) JPH0729025B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100325126B1 (en) * 1999-05-06 2002-03-02 민경조 Method of denitrificating exhaust gas

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112169573B (en) * 2020-11-26 2021-03-12 苏州仕净环保科技股份有限公司 Flue gas desulfurization and denitrification process

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02203921A (en) * 1989-02-01 1990-08-13 Hitachi Zosen Corp Wet removal of nitrogen oxide in various combustion exhaust gases
JPH02203922A (en) * 1989-02-01 1990-08-13 Hitachi Zosen Corp Wet waste gas denitration method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02203921A (en) * 1989-02-01 1990-08-13 Hitachi Zosen Corp Wet removal of nitrogen oxide in various combustion exhaust gases
JPH02203922A (en) * 1989-02-01 1990-08-13 Hitachi Zosen Corp Wet waste gas denitration method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100325126B1 (en) * 1999-05-06 2002-03-02 민경조 Method of denitrificating exhaust gas

Also Published As

Publication number Publication date
JPH0729025B2 (en) 1995-04-05

Similar Documents

Publication Publication Date Title
US4035470A (en) Process for removing sulfur oxides and/or nitrogen oxides from waste gas
US3957949A (en) Process for removing nitrogen oxides from gas
CA1068879A (en) Method for removing nitrogen oxides from exhaust gases
US5985223A (en) Removal of NOx and SOx emissions form pickling lines for metal treatment
US20040005263A1 (en) Process for reducing NOx in waste gas streams using sodium chlorite
CN108176208B (en) A kind of efficient wet denitration agent cooperating preposition oxidation technology
US6872371B2 (en) Method and apparatus for NOx and SO2 removal
US4574076A (en) Removal of hydrogen sulfide from geothermal steam
JPS6233533A (en) Removal of so2 and no from flue gas
US3932585A (en) Method of removing nitrogen oxides from plant exhaust
JPS62117615A (en) Removal of sulfur dioxide
US4024219A (en) Process for removing nitrogen oxide from a waste gas
JPH01164422A (en) Removal of acidic component and nitrogen oxide from waste gas of industrial furnace apparatus
JPH02229527A (en) Method for simultaneously removing sulfur oxide and nitrogen oxide
PL69777B1 (en)
CN107715670A (en) A kind of method of flue gas desulfurization collaboration denitration by-product HAS
JP3786786B2 (en) Flue gas desulfurization method
JPH02203921A (en) Wet removal of nitrogen oxide in various combustion exhaust gases
KR20200082091A (en) Absorption composition for removing NOx and SOx simultaneously
JPS588889B2 (en) High Gas Datsuryu Datsushi Youhouhou
JPS5892451A (en) Desulfurization of waste gas
JPS5912333B2 (en) Exhaust gas desulfurization and denitrification method
JPH02203922A (en) Wet waste gas denitration method
JPS599208B2 (en) Wet desulfurization method
CN113351002A (en) Flue gas step-by-step desulfurization and denitrification method