JPS5857213B2 - Flue gas desulfurization method - Google Patents

Flue gas desulfurization method

Info

Publication number
JPS5857213B2
JPS5857213B2 JP50084797A JP8479775A JPS5857213B2 JP S5857213 B2 JPS5857213 B2 JP S5857213B2 JP 50084797 A JP50084797 A JP 50084797A JP 8479775 A JP8479775 A JP 8479775A JP S5857213 B2 JPS5857213 B2 JP S5857213B2
Authority
JP
Japan
Prior art keywords
ammonium sulfate
aqueous solution
gas
ammonia
absorption
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP50084797A
Other languages
Japanese (ja)
Other versions
JPS527870A (en
Inventor
文彦 山口
晴夫 小栗
忠義 田丸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP50084797A priority Critical patent/JPS5857213B2/en
Publication of JPS527870A publication Critical patent/JPS527870A/en
Publication of JPS5857213B2 publication Critical patent/JPS5857213B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Treating Waste Gases (AREA)

Description

【発明の詳細な説明】 本発明は設備の小型化を可能ならしめかつ高純度の硫安
を副生ずるボイラ等の排ガスのアンモニア−硫安法によ
る排煙脱硫方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for desulfurizing flue gas from a boiler or the like by an ammonia-ammonium sulfate method, which enables downsizing of equipment and produces high-purity ammonium sulfate as a by-product.

ボイラ等の排ガスよりイオウ酸化物を除去する排煙脱硫
技術には各種プロセスが実用化されている。
Various processes have been put into practical use as flue gas desulfurization technology to remove sulfur oxides from exhaust gas from boilers and the like.

それらのプロセス中、湿式の石灰−石膏法は消石灰また
は炭酸カルシウムにより排煙中のイオウ酸化物を吸収し
石膏とするプロセスで、現在わが国の排煙脱硫の主流を
占めている。
Among these processes, the wet lime-gypsum method is a process in which sulfur oxides in flue gas are absorbed by slaked lime or calcium carbonate and converted into gypsum, and is currently the mainstream of flue gas desulfurization in Japan.

また、湿式のアンモニア−硫安法は同じく排煙中のイオ
ウ酸化物を硫安として回収するプロセスで、石灰−石膏
法はどではないが、この副生硫安の生産高は年間約2万
トンと増加しており、排煙脱硫として有力な一方法であ
る。
In addition, the wet ammonia-ammonium sulfate method is a process that also recovers sulfur oxides in flue gas as ammonium sulfate, and although the lime-gypsum method is not the same, the production of this by-product ammonium sulfate has increased to approximately 20,000 tons per year. This is a powerful method for flue gas desulfurization.

次に、従来のアンモニア−硫安法によるボイラの排ガス
の排煙脱硫方法の1例のフローシートを第1図に示す。
Next, FIG. 1 shows a flow sheet of an example of a method for desulfurizing exhaust gas from a boiler using the conventional ammonia-ammonium sulfate method.

第1図ではボイラ112よりの排ガスを誘引ファン10
1で排煙脱硫設備に送る。
In FIG. 1, a fan 10 attracts exhaust gas from a boiler 112.
At step 1, the gas is sent to the flue gas desulfurization equipment.

排煙脱硫設備では、該ボイラの排ガスの震度が150℃
以上のため、ガス冷却器102で増湿冷却し、吸収塔1
03に送る。
In the flue gas desulfurization equipment, the seismic intensity of the flue gas from the boiler is 150 degrees Celsius.
For this reason, the gas cooler 102 humidifies and cools the absorption tower 1.
Send to 03.

吸収塔103で該排ガス中のイオウ酸化物を吸収液で吸
収したのち、ミストコットレル104で該排ガス中の亜
硫酸アンモニウム等のヒユームを除去し、煙突105を
通して外気中に放出する。
After the sulfur oxides in the exhaust gas are absorbed by an absorption liquid in the absorption tower 103, fumes such as ammonium sulfite in the exhaust gas are removed in the mist cotterel 104, and then released into the outside air through the chimney 105.

イオウ酸化物の吸収液として、アンモニア水補給パイプ
113よりアンモニア水(NH40H)が吸収塔103
に補給される。
Ammonia water (NH40H) is supplied to the absorption tower 103 from the ammonia water supply pipe 113 as an absorption liquid for sulfur oxides.
will be replenished.

吸収塔103内ではアンモニア水とイオウ酸化物とが反
応し、次の(1)、(2)、(3)式で示すように、亜
硫酸これら生成物を含有する吸収塔103の循環液は吸
収塔ポンプ107のあとで1部分岐して吸収塔抜出液パ
イプ114、冷却塔ポンプ106を経てガス冷却器10
2に送られる。
In the absorption tower 103, aqueous ammonia and sulfur oxide react, and as shown in the following equations (1), (2), and (3), the circulating liquid of the absorption tower 103 containing sulfite and these products absorbs After the tower pump 107, a portion is branched to the absorption tower effluent pipe 114, the cooling tower pump 106, and then the gas cooler 10.
Sent to 2.

ガス冷却器102では、冷却塔ポンプ106によって鉄
液を循環し、上記ボイラの排ガスを増湿冷却せしめると
同時に該液自体の濃縮を行なう。
In the gas cooler 102, the iron liquid is circulated by the cooling tower pump 106, and the exhaust gas of the boiler is humidified and cooled, and at the same time, the liquid itself is concentrated.

かくて、濃縮された鉄液は1部ガス冷却器抜出液パイプ
115※※を通して酸化塔108に送られるが、その途
中でアンモニア水補給パイプ116よりアンモニア水を
添加され、次の(4)式の反応で酸性亜硫酸アンモニウ
ムを亜硫酸アンモニウムとし、酸化塔108では酸化用
ブロワ109より送入された空気中の酸素で該亜硫酸ア
ンモニウムを酸化して次の(5)式の反応で硫安とする
In this way, a part of the concentrated iron liquid is sent to the oxidation tower 108 through the gas cooler extraction liquid pipe 115※, but on the way, ammonia water is added from the ammonia water supply pipe 116, and the next (4) Acidic ammonium sulfite is converted into ammonium sulfite in the reaction of the formula (5), and in the oxidation tower 108, the ammonium sulfite is oxidized with oxygen in the air sent from the oxidation blower 109, and ammonium sulfite is converted into ammonium sulfite in the reaction of the following formula (5).

酸化塔108を出た液は濾過機110を通って、スス等
の不純物を除去し、結晶装置111に送り、硫安を結晶
化して回収する。
The liquid exiting the oxidation tower 108 passes through a filter 110 to remove impurities such as soot, and is sent to a crystallizer 111 where ammonium sulfate is crystallized and recovered.

アンモニア−硫安法による排煙脱硫設備の技術上の難点
は次の諸点である。
The technical difficulties of flue gas desulfurization equipment using the ammonia-ammonium sulfate method are as follows.

(1)ガス冷却器102と吸収塔103との気液接触部
分では温度が高いほど、また液濃度が高いほど、亜硫酸
ガスおよびアンモニアガスの分圧が高くなる。
(1) At the gas-liquid contact portion between the gas cooler 102 and the absorption tower 103, the higher the temperature and the higher the liquid concentration, the higher the partial pressures of sulfur dioxide gas and ammonia gas.

(2)吸収液のpHの高いど、亜硫酸ガスの分圧が低く
なり、吸収効率が高くなるが、アンモニアの分圧が高く
なり、アンモニアが浪費されることになる。
(2) As the pH of the absorption liquid increases, the partial pressure of sulfur dioxide gas decreases and absorption efficiency increases, but the partial pressure of ammonia increases and ammonia is wasted.

逆に、アンモニアの浪費を防止するために、吸収液のp
Hを低(すれば、亜硫酸ガスの分圧が高くなり、吸収効
率が低くなる。
Conversely, in order to prevent waste of ammonia, the p
If H is lowered, the partial pressure of sulfur dioxide gas will increase and the absorption efficiency will decrease.

(3)アンモニアの分圧が高くなる程、ガス中の亜硫酸
ガスとアンモニアが気相反応を起こし亜硫酸アンモニウ
ムのヒユーム(白煙状態を示す)が多くなり、従ってミ
ストコットレル104が大型化する。
(3) As the partial pressure of ammonia becomes higher, the sulfur dioxide gas in the gas and ammonia undergo a gas phase reaction, and the amount of ammonium sulfite fume (indicating a white smoke state) increases, so that the mist cotterel 104 becomes larger.

また、第1図の従来のアンモニアニ硫安法の排煙脱硫プ
ロセスの場合は次のごとき問題点を有する。
Further, the conventional flue gas desulfurization process using the ammonia-ammonium sulfate method shown in FIG. 1 has the following problems.

すなわち、硫酸プラントの排ガスを対象とする場合には
、吸収塔内の平衡温度が25℃〜30℃でボイラの排ガ
スの場合の55°C〜60℃に比して低いので、アンモ
ニア−硫安法を適用した場合、35%のアンモニア水を
使用しても亜硫酸ガスやアンモニアの分圧が低いので脱
硫効率がよく、アンモニアの浪費も少なくかつ亜硫酸ア
ンモニウムのヒユーム量も少ない。
In other words, when dealing with sulfuric acid plant exhaust gas, the ammonia-ammonium sulfate method When applied, even if 35% ammonia water is used, the partial pressure of sulfur dioxide gas and ammonia is low, so the desulfurization efficiency is high, there is little waste of ammonia, and the amount of ammonium sulfite fume is also small.

しかしながら、第1図のごとく、ボイラの排ガスを対象
とした場合は、吸収塔103で約10%のアンモニア水
を使用してアンモニアガスや亜硫酸ガスの分圧を低くし
、ガス冷却器102で濃縮して約35%の水溶液として
使用することによって、結晶装置111を小型化してい
る。
However, as shown in Fig. 1, when the target is boiler exhaust gas, the partial pressure of ammonia gas and sulfur dioxide gas is lowered by using approximately 10% ammonia water in the absorption tower 103, and concentrated in the gas cooler 102. By using this as an approximately 35% aqueous solution, the crystallizer 111 is miniaturized.

しかし、その反面、ガス冷却器102内では高濃度の亜
硫酸アンモニウム、酸性亜硫酸アンモニウム水溶液のた
めアンモニアガスの分圧が高くなり、亜硫酸アンモニウ
ムのヒユームが多量に発生し、ミストコットレル104
が大型となる。
However, on the other hand, the partial pressure of ammonia gas increases in the gas cooler 102 due to the high concentration of ammonium sulfite and acidic ammonium sulfite aqueous solution, and a large amount of ammonium sulfite fume is generated.
becomes large.

逆に、ガス冷却器120の吸収液を10%の水溶液とす
れば、亜硫酸アンモニウムのヒユーム量は少なくなるが
、結晶装置111が大型化する。
Conversely, if the absorption liquid in the gas cooler 120 is a 10% aqueous solution, the amount of ammonium sulfite fume will be reduced, but the size of the crystallization device 111 will be increased.

いずれにしても、設備全体として大型化するという欠点
がある。
In any case, there is a drawback that the entire facility becomes larger.

本発明は上記の従来法の問題点を解決し、設備の小型化
を可能ならしめ、かつ高純度の硫安を副生ずるボイラ等
の排ガスのアンモニア−硫安法による排煙脱硫方法を提
供すべく開発されたもので、その要旨とするところは、
ボイラ等からのイオウ酸化物を含む高温の排ガスのアン
モニア−硫安法によるガス冷却工場と吸収工程と酸化工
程とを主工程とする排煙脱硫方法において、該吸収工程
における液として濃度10%以下のアンモニア水を使用
し、該吸収工程における循環吸収液の一部を抜き出して
、これにアンモニア水を補給したのち、酸化工程に送入
し、該酸化工程にて該循環吸収液を硫安水溶液とし、該
硫安水溶液を該ガス冷却工程に導入して該ガス冷却工程
において該硫安水溶液を濃縮し、該冷却工程よりの濃縮
された硫安水溶液を別の酸化工程に送入し、該別の酸化
工程にて高純度化された該硫安水溶液を結晶装置に送り
、高純度硫安を得ることを特徴とする排煙脱硫方法にあ
る。
The present invention was developed to solve the problems of the conventional methods described above, to enable downsizing of equipment, and to provide a method for desulfurizing flue gas from boilers, etc., which produces high-purity ammonium sulfate as a by-product, using the ammonia-ammonium sulfate method. The gist of it is as follows:
In a gas cooling plant using the ammonia-ammonium sulfate method for high-temperature exhaust gas containing sulfur oxides from boilers, etc., and in a flue gas desulfurization method that has an absorption process and an oxidation process as the main processes, the liquid in the absorption process has a concentration of 10% or less. Using ammonia water, a part of the circulating absorption liquid in the absorption process is extracted, and after replenishing it with ammonia water, it is sent to an oxidation process, and in the oxidation process, the circulating absorption liquid is converted into an ammonium sulfate aqueous solution, The ammonium sulfate aqueous solution is introduced into the gas cooling step, the ammonium sulfate aqueous solution is concentrated in the gas cooling step, the concentrated ammonium sulfate aqueous solution from the cooling step is sent to another oxidation step, and the ammonium sulfate aqueous solution is sent to the another oxidation step. This flue gas desulfurization method is characterized in that the ammonium sulfate aqueous solution highly purified is sent to a crystallizer to obtain high purity ammonium sulfate.

次に、本発明を図面によって説明する。Next, the present invention will be explained with reference to the drawings.

第2図は本発明の一実施例のフローシートである。FIG. 2 is a flow sheet of one embodiment of the present invention.

ボイラ12の排ガスが誘引ファン1、ガス吸収器2、吸
収塔3、ミストコットレル4を経て煙突5から外気中に
排出される経路は第1図の従来法の場合と同様である。
The route through which the exhaust gas from the boiler 12 passes through the induction fan 1, the gas absorber 2, the absorption tower 3, and the mist cotterel 4 and is discharged from the chimney 5 to the outside air is the same as in the conventional method shown in FIG.

本発明方法は吸収塔3に送入する吸収液として10%以
下の低濃度のアンモニア水を使用することと吸収塔3の
循環液の一部を抜き出し、これにアンモニア水を添加し
たのち酸化塔8aに送入し、酸化塔8aからの液をガス
冷却器2に送入して高温のボイラ等の排ガスを冷却する
こととを特徴とする排煙脱硫方法である。
The method of the present invention uses aqueous ammonia with a low concentration of 10% or less as the absorption liquid sent to the absorption tower 3, and extracts a part of the circulating liquid of the absorption tower 3, adds ammonia water thereto, and then adds the ammonia water to the oxidation tower. 8a, and the liquid from the oxidation tower 8a is sent to the gas cooler 2 to cool the high-temperature exhaust gas from a boiler or the like.

すなわち、吸収塔3ではアンモニア水補給パイプ13か
ら10%以下の低濃度のアンモニア水を吸収液として送
入し、排ガス中のイオウ酸化物と反応して生成した亜硫
酸アンモニウム、硫安、酸性亜硫酸アンモニウムを含む
水溶液を吸収塔ポンプ7で循環するのであるが、この循
環液は亜硫酸ガスやアンモニアの分圧を下げるため10
%以下の低濃度である。
That is, in the absorption tower 3, ammonia water with a low concentration of 10% or less is fed as an absorption liquid from the ammonia water supply pipe 13, and ammonium sulfite, ammonium sulfate, and acid ammonium sulfite produced by reaction with sulfur oxides in the exhaust gas are removed. The aqueous solution containing the water is circulated by the absorption tower pump 7, and this circulating liquid is heated at 10% to lower the partial pressure of sulfur dioxide gas and ammonia.
% or less.

この循環液の二部を吸収塔抜出液パイプ14aで抜き出
し、これにアンモニア水補給パイプ16aよりアンモニ
ア水を添加して反応式(4)により該循環液中☆の酸性
亜硫酸アンモニウムを亜硫酸アンモニウムにしたのち、
酸化塔8aに送入する。
Two parts of this circulating liquid are extracted through the absorption tower extraction liquid pipe 14a, and ammonia water is added thereto through the ammonia water replenishment pipe 16a, and acidic ammonium sulfite in the circulating liquid is converted to ammonium sulfite according to reaction formula (4). After that,
It is sent to the oxidation tower 8a.

酸化塔8aでは酸化用ブロワ−9aよりの空気によって
該亜硫酸アンモニウムを酸化して硫安とする。
In the oxidizing tower 8a, the ammonium sulfite is oxidized to ammonium sulfate by air from the oxidizing blower 9a.

次いで、酸化塔8aからの硫安水溶液を酸化塔抜出液パ
イプ14bでガス冷却器2に送入する。
Next, the ammonium sulfate aqueous solution from the oxidation tower 8a is sent to the gas cooler 2 through the oxidation tower effluent pipe 14b.

硫安は安定物質であり、この水溶液ではアンモニア、亜
硫酸ガスの分圧がないためガス冷却器2では、ボイラ排
ガスの増湿冷却とともに該硫安水溶液の濃縮のみが行な
われる。
Ammonium sulfate is a stable substance, and since there is no partial pressure of ammonia or sulfur dioxide gas in this aqueous solution, the gas cooler 2 only performs humidification and cooling of the boiler exhaust gas and concentration of the ammonium sulfate aqueous solution.

また、アンモニアガスの分圧がないため、亜硫酸アンモ
ニウムのヒユームは発生しない。
Furthermore, since there is no partial pressure of ammonia gas, no ammonium sulfite fume is generated.

従って、ミストコットレル4は小型となる。ガス冷却器
2からの該硫安水溶液の1部はポンプ6によってガス冷
却器抜出液パイプ15を経てr逸機10に送られるが、
その途中でアンモニア水補給パイプ16bからアンモニ
ア水を添加される。
Therefore, the mist cotterel 4 becomes small. A portion of the ammonium sulfate aqueous solution from the gas cooler 2 is sent to the ritter 10 via the gas cooler extraction liquid pipe 15 by the pump 6;
On the way, ammonia water is added from the ammonia water supply pipe 16b.

このアンモニア水の添加により、ガス冷却器2内で該硫
安水溶液中に溶解するにいたった亜硫酸ガスを亜硫酸ア
ンモニウムとし、さらに該硫安水溶液中に入ったススお
よび重金属類に対しては過剰のアンモニアで重金属類を
水酸化物としてススを巻き込んで析出させ、沢逸機10
で沢過して除去する。
By adding this ammonia water, the sulfur dioxide gas that has dissolved in the ammonium sulfate aqueous solution in the gas cooler 2 is converted into ammonium sulfite, and the soot and heavy metals that have entered the ammonium sulfate aqueous solution are treated with excess ammonia. Heavy metals are precipitated as hydroxides by involving soot, and Sawaitki 10
Remove by rinsing thoroughly.

濾過機10を出た該水溶液は酸化塔8bに入り、そこで
酸化用ブロワ−9bからの空気によって該硫安水溶液中
に少量溶存する亜硫酸アンモニウムを硫安に酸化せしめ
、酸化効率を上げることにより、純度の高い硫安水溶液
が得られる。
The aqueous solution exiting the filter 10 enters the oxidation tower 8b, where the ammonium sulfite dissolved in a small amount in the ammonium sulfate aqueous solution is oxidized to ammonium sulfate by the air from the oxidation blower 9b, and the purity is improved by increasing the oxidation efficiency. A high ammonium sulfate aqueous solution is obtained.

さらに、該硫安水溶液中の過剰のアンモニアは酸化塔8
bから放散されるので、酸化塔8bから純度の高い硫安
水溶液を結晶装置11に送ることができる。
Furthermore, excess ammonia in the ammonium sulfate aqueous solution is removed from the oxidation tower 8.
Since the ammonium sulfate aqueous solution is released from the oxidation tower 8b, a highly pure ammonium sulfate aqueous solution can be sent to the crystallizer 11 from the oxidation tower 8b.

酸化塔8bから放散された過剰アンモニアは吸収塔3に
送られるので、アンモニアの損失はない。
Excess ammonia released from the oxidation tower 8b is sent to the absorption tower 3, so there is no loss of ammonia.

第3図は本発明の別の実施例のフローシートで、ガス冷
却塔2から抜き出した液の異なる調整方法を示す。
FIG. 3 is a flow sheet of another embodiment of the present invention, showing a different method of conditioning the liquid extracted from the gas cooling tower 2.

すなわち、r逸機10を出たpHの高いガス冷却器2か
らの抜出液はpH調整タンク18内で硫酸供給パイプ1
7から硫酸を添加され、該抜出液中の亜硫酸アンモニウ
ムは次の(6)式で硫安となる。
In other words, the liquid extracted from the gas cooler 2 with a high pH that has exited the gas cooler 10 is fed to the sulfuric acid supply pipe 1 in the pH adjustment tank 18.
Sulfuric acid is added from Step 7, and the ammonium sulfite in the extracted liquid becomes ammonium sulfate according to the following equation (6).

pH調整タンク18の液はポンプ19で放散塔20に送
られ、そこでブロワ−21から送られた空気と接触して
亜硫酸ガスが放散され、純度の高い硫安水溶液が結晶装
置11に送られる。
The liquid in the pH adjustment tank 18 is sent to a stripping tower 20 by a pump 19, where it comes into contact with air sent from a blower 21 to diffuse sulfur dioxide gas, and a highly pure ammonium sulfate aqueous solution is sent to the crystallizer 11.

放射基20から放散された亜硫酸ガスは吸収塔3に送ら
れるので、亜硫酸ガスの損失はない。
Since the sulfur dioxide gas released from the radioactive base 20 is sent to the absorption tower 3, there is no loss of sulfur dioxide gas.

本発明の効果は次の通りである。The effects of the present invention are as follows.

(1)吸収塔から抜き出した循環液を酸化塔に送り、酸
化塔での酸化によって該循環液を硫安水溶液とし、該硫
安水溶液でガス冷却をするため、亜硫酸アンモニウムの
ヒユームが発生しないので、ミストコットレルの小型化
が四能となる、(2)ガス冷却器では硫酸アンモニウム
水溶液が濃縮されるので結晶装置の小型化が可能となる
(1) The circulating fluid extracted from the absorption tower is sent to the oxidation tower, where it is oxidized to turn it into an aqueous ammonium sulfate solution, and the ammonium sulfite aqueous solution is used for gas cooling, so ammonium sulfite fume is not generated. (2) The gas cooler concentrates the ammonium sulfate aqueous solution, making it possible to downsize the crystallization device.

本発明は、以上のごとく、設備の小型化を四能ならしめ
るボイラ等の排ガスのアンモニア−硫安法による排煙脱
硫方法を提供するもので、その工業的価値はきわめて大
きい。
As described above, the present invention provides a method for desulfurizing flue gas from a boiler or the like by using the ammonia-ammonium sulfate method, which enables miniaturization of equipment, and has extremely high industrial value.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のアンモニア−硫安によるボイラの排ガス
の排煙脱硫方法の1例のフローシート、第2図は本発明
の一実施例のフローシート、第3図は本発明の別の実施
例のフローシートである。 図において、 1・・・−排ガス誘引ファン、2・−・・・・ガス冷却
器、3・・・・・・吸収塔、4・・・・・・ミストコッ
トレル、5・・山・煙突、6・・・・−・冷却器ポンプ
、7・・・・・・吸収塔ポンプ、8a、8b−一・−・
−酸化塔、9 a t 9 b・・・・・・酸化用ブロ
ワ−10−・・・・・沢逸機、11・・・・・・結晶装
置、12・・・・・・ボイラ、13 t 16 a +
16 b・・・・・・アンモニア水補給パイプ、14
a・・・・・・吸収塔抜出液パイプ、14b・−・・・
・酸化塔抜出液パイプ、15・・・・・・ガス冷却器抜
出液パイプ、17・−・−・・硫酸供給パイプ、18・
・−・・・pH調整タンク、19−・・−ポンプ、20
・−・・・・放散塔、21・・・・−・ブロワ−110
1・・・−・・排ガス誘引ファン、102・・・・・・
ガス冷却器、103・・・・・・吸収塔、104・・・
・・・ミストコットレル、105・−・・・・煙突、1
06・・・−・・冷却器ポンプ、107・・・・・−吸
収塔ポンプ、108・・・・・・酸化塔、109・・・
・・−酸化用ブロワ−,110・・・・・・沢逸機、1
11・・・・・・結晶装置、112・・・・・・ボイラ
、113・・・・・・アンモニア水補給パイプ、114
・・・・・・吸収塔抜出液ポンプ、115・・・・・・
ガス冷却器抜出液パイプ、116・・・・・・アンモニ
ア水補給パイプ。
Fig. 1 is a flow sheet of an example of a conventional method for desulfurizing boiler exhaust gas using ammonia-ammonium sulfate, Fig. 2 is a flow sheet of an embodiment of the present invention, and Fig. 3 is another embodiment of the present invention. This is a flow sheet. In the figure, 1... - exhaust gas induction fan, 2... gas cooler, 3... absorption tower, 4... mist cotterel, 5... mountain/chimney, 6...- Cooler pump, 7... Absorption tower pump, 8a, 8b-1...
- Oxidation tower, 9 a t 9 b...Oxidation blower-10-...Sawaichi machine, 11...Crystallization device, 12...Boiler, 13 t 16 a +
16 b...Ammonia water supply pipe, 14
a... Absorption tower effluent pipe, 14b...
・Oxidation tower effluent pipe, 15...Gas cooler effluent pipe, 17.--.Sulfuric acid supply pipe, 18.
---pH adjustment tank, 19---pump, 20
・・・・・・・Radiation tower, 21・・・・Blower-110
1...---Exhaust gas induction fan, 102...
Gas cooler, 103... Absorption tower, 104...
...Mist Cottrell, 105...Chimney, 1
06... - Cooler pump, 107... - Absorption tower pump, 108... Oxidation tower, 109...
...-Oxidation blower-, 110...Sawaitki, 1
11...Crystallization device, 112...Boiler, 113...Ammonia water supply pipe, 114
...Absorption tower effluent pump, 115...
Gas cooler extraction liquid pipe, 116...Ammonia water supply pipe.

Claims (1)

【特許請求の範囲】[Claims] 1 ボイラ等からのイオウ酸化物を含む高温の排ガスの
アンモニア−硫安法によるガス冷却工程と吸収工程と酸
化工程とを主工程とする排煙脱硫方法において、該吸収
工程における液として濃度10%以下のアンモニア水を
使用し、該吸収工程における循環吸収液の一部を抜き出
して、これにアンモニア水を補給したのち、酸化工程に
送入し、該酸化工程にて該循環吸収液を硫安水溶液とし
、該硫安水溶液を該ガス冷却工程に導入して該ガス冷却
工程において該硫安水溶液を濃縮し、該冷却工程よりの
濃縮された硫安水溶液を別の酸化工程に送入し、該別の
酸化工程にて高純度化された該硫安水溶液を結晶装置に
送り、高純度硫安を得ることを特徴とする排煙脱硫方法
1 In a flue gas desulfurization method whose main steps are a gas cooling step using an ammonia-ammonium sulfate method, an absorption step, and an oxidation step for high-temperature exhaust gas containing sulfur oxides from a boiler, etc., the concentration of the liquid in the absorption step is 10% or less. Using ammonia water, a part of the circulating absorption liquid in the absorption process is extracted, and after replenishing it with ammonia water, it is sent to the oxidation process, and in the oxidation process, the circulating absorption liquid is converted into an ammonium sulfate aqueous solution. , introducing the ammonium sulfate aqueous solution into the gas cooling step, concentrating the ammonium sulfate aqueous solution in the gas cooling step, sending the concentrated ammonium sulfate aqueous solution from the cooling step to another oxidation step; A flue gas desulfurization method characterized in that the ammonium sulfate aqueous solution highly purified in the step is sent to a crystallizer to obtain high purity ammonium sulfate.
JP50084797A 1975-07-10 1975-07-10 Flue gas desulfurization method Expired JPS5857213B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP50084797A JPS5857213B2 (en) 1975-07-10 1975-07-10 Flue gas desulfurization method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP50084797A JPS5857213B2 (en) 1975-07-10 1975-07-10 Flue gas desulfurization method

Publications (2)

Publication Number Publication Date
JPS527870A JPS527870A (en) 1977-01-21
JPS5857213B2 true JPS5857213B2 (en) 1983-12-19

Family

ID=13840682

Family Applications (1)

Application Number Title Priority Date Filing Date
JP50084797A Expired JPS5857213B2 (en) 1975-07-10 1975-07-10 Flue gas desulfurization method

Country Status (1)

Country Link
JP (1) JPS5857213B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53113774A (en) * 1977-03-17 1978-10-04 Ishikawajima Harima Heavy Ind Co Ltd Desulfurizing method for exhaust combustion gas and apparatus for conducting the same
US4248842A (en) * 1979-03-05 1981-02-03 International Telephone & Telegraph Corporation Removal of contaminants and recovery of by-products from hot waste gas stream
US5362458A (en) * 1993-03-22 1994-11-08 General Electric Environmental Services, Incorporated Process for the simultaneous absorption of sulfur oxides and production of ammonium sulfate
DE19731062C2 (en) * 1997-07-19 2001-07-12 Lurgi Lentjes Bischoff Gmbh Process for the removal of acid gases from flue gases, in particular from power plant waste gases and waste gases from waste incineration plants
ES2388089T3 (en) * 2005-12-19 2012-10-08 Fluor Technologies Corporation Two stage fast cooling scrubber

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5118979A (en) * 1974-06-28 1976-02-14 Walter & Cie Ag Haigasukara so2 oyobi * mataha sonotanosanseiseibunojokyosuruhoho

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5118979A (en) * 1974-06-28 1976-02-14 Walter & Cie Ag Haigasukara so2 oyobi * mataha sonotanosanseiseibunojokyosuruhoho

Also Published As

Publication number Publication date
JPS527870A (en) 1977-01-21

Similar Documents

Publication Publication Date Title
USRE31236E (en) Method of removing sulfur dioxide from combustion exhaust gas
US4009244A (en) Process for removing oxides of nitrogen and sulfur from exhaust gases
JP5000557B2 (en) Wet flue gas desulfurization equipment
US4123506A (en) Utilization of impure steam contaminated with hydrogen sulfide
JPS60172335A (en) Wet type stack gas desulfurization apparatus
CN101352644A (en) Wet flue gas denitration technique for nitrite recovery
CN105233647B (en) A kind of method of ammonium sulfide solution desulphurization denitration
US3226192A (en) Process of treating waste gas containing sulfur oxide
US4133650A (en) Removing sulfur dioxide from exhaust air
JP2012081451A (en) Apparatus and method for treating flue gas coming from combustion apparatus of oxygen combustion type, and wet-type method and apparatus for desulfurizing flue gas for use therein
JPS5829251B2 (en) Wet flue gas desulfurization gypsum recovery method
JPS5857213B2 (en) Flue gas desulfurization method
CN105498504B (en) Iron pellet sintering exhaust gas cleaner and its purification method and application
JPH0557141A (en) Flue gas desulfurization apparatus
US4178348A (en) Process for removing sulfur oxides in exhaust gases
JP3692219B2 (en) Smoke exhaust treatment method and smoke exhaust treatment apparatus
JP2009095698A (en) Method for filling with gypsum slurry and limestone slurry in flue gas desulfurizer
JPS5951328B2 (en) Method for absorbing and removing sulfur oxides in exhaust gas using red mud slurry containing calcium ions
JP2000053980A (en) Purification of gas
JPS6145485B2 (en)
JPS59132921A (en) Apparatus for treating exhaust gas
JPH0929060A (en) Treatment of exhaust gas
JPH06165912A (en) High performance stack gas desulfurizing method
JPH0244840Y2 (en)
JPH05111614A (en) Treatment of exhaust gas