JPS5853061B2 - Method for producing Fe-Cr-Co spinodal decomposition type magnetic material - Google Patents

Method for producing Fe-Cr-Co spinodal decomposition type magnetic material

Info

Publication number
JPS5853061B2
JPS5853061B2 JP52008720A JP872077A JPS5853061B2 JP S5853061 B2 JPS5853061 B2 JP S5853061B2 JP 52008720 A JP52008720 A JP 52008720A JP 872077 A JP872077 A JP 872077A JP S5853061 B2 JPS5853061 B2 JP S5853061B2
Authority
JP
Japan
Prior art keywords
decomposition type
shape
temperature
magnetic material
type magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP52008720A
Other languages
Japanese (ja)
Other versions
JPS5394216A (en
Inventor
正 佐藤
哲郎 山口
隆之 新行内
英和 土井
晃 望見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Metal Corp
Original Assignee
Mitsubishi Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Metal Corp filed Critical Mitsubishi Metal Corp
Priority to JP52008720A priority Critical patent/JPS5853061B2/en
Publication of JPS5394216A publication Critical patent/JPS5394216A/en
Publication of JPS5853061B2 publication Critical patent/JPS5853061B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)

Description

【発明の詳細な説明】 この発明は、Fe−Cr−co 系スピノーダル分解型
磁性材料を経済的に製造する方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for economically producing Fe-Cr-co based spinodal decomposition type magnetic materials.

一般に、通常の磁性材料は硬く、脆い性質をもつので塑
性加工性がなく、シかも被剛性が良くないという欠点を
もつのに対して、Fe−Cr−C。
In general, ordinary magnetic materials are hard and brittle, so they have the disadvantages of not having plastic workability and poor rigidity, whereas Fe-Cr-C.

系スピノーダル分解型磁性材料は、アルニコ磁石とほぼ
同等の磁気特性を有するばかりでなく、塑性加工むよび
切削加工が比較的容易であるという特性も兼ね備えてい
るなどすぐれた磁性材料として注目されている。
Spinodal decomposition type magnetic materials are attracting attention as excellent magnetic materials, as they not only have magnetic properties almost equivalent to those of alnico magnets, but also have the characteristics that plastic processing and cutting are relatively easy. .

上記Fe−Cr−co 系スピノーダル分解型磁性材料
は、Fe 、Cr ’よびCoを基本成分として含有し
、さらに磁気特性や熱処理性を向上させるためにSit
A7+ Nb+ Ta、’ri 、V、Mo。
The above-mentioned Fe-Cr-co spinodal decomposition type magnetic material contains Fe, Cr' and Co as basic components, and also contains Si to improve magnetic properties and heat treatability.
A7+ Nb+ Ta, 'ri, V, Mo.

およびWなどの成分を含有させたものからなり、その代
表的組成としては、重量%で、 Cr : 20〜40 %、 Co:10〜30%、 Si:6%以下、 Al :5φ以下、 Nb:5係以下、 Ta:5L:fb以下、 Ti:5係以下、 V :6係以下、 Mo:15係以下、 W :15多以下、 Fe >よび不可避不純物:残り、 からなるものが知られている。
and W, and its typical composition, in weight percent, is: Cr: 20-40%, Co: 10-30%, Si: 6% or less, Al: 5φ or less, Nb : 5 coefficient or less, Ta: 5L: fb or less, Ti: 5 coefficient or less, V: 6 coefficient or less, Mo: 15 coefficient or less, W: 15 or less, Fe > and unavoidable impurities: the remainder. ing.

上記組成のスピノーダル分解型磁性材料に3いて、Cr
の含有量を20〜40係としたのは、20係未満の含有
量では、Crに富んだ非磁性相α2の析出量が少なくな
るために抗磁力が小さくなって望1しくなく、また40
%を越えた含有量では、非磁性層が多くなって残留磁束
密度が低下するようになると共に、Crの合金化にもと
づく材料の硬化により塑性加工性が悪化し実用的でなく
なることによるものである。
In the spinodal decomposition type magnetic material with the above composition, Cr
The reason for setting the content of 20 to 40 is because if the content is less than 20, the amount of precipitated Cr-rich non-magnetic phase α2 will decrease, resulting in a decrease in coercive force, which is undesirable.
If the content exceeds %, the number of non-magnetic layers increases and the residual magnetic flux density decreases, and the plastic workability deteriorates due to hardening of the material due to alloying with Cr, making it impractical. be.

以下、同様に、coの含有量が10%未満では、Coに
富んだ磁性相α1の量が少ないために残留磁束密度が小
さくなって望1しくなく、一方30%を越えて含有させ
ると、急速に抗磁力が低下するようになると共に、C。
Similarly, if the Co content is less than 10%, the residual magnetic flux density becomes small due to the small amount of Co-rich magnetic phase α1, which is undesirable. On the other hand, if the Co content exceeds 30%, As the coercive force rapidly decreases, C.

の合金化にもとづく材料の硬化により塑性加工性が悪化
して実用的でなくなることから、10〜30係と定めら
れている。
The hardening of the material due to alloying deteriorates the plastic workability and makes it impractical, so it is set at between 10 and 30.

Siは溶体化処理時の冷却速度を遅くするために添加含
有されているが、その含有量が6係を越えると材料が脆
化して塑性加工性が悪化するようになることから、その
上限値が6係と定められている。
Si is added to slow down the cooling rate during solution treatment, but if the content exceeds 6, the material becomes brittle and plastic workability deteriorates, so the upper limit value is designated as Section 6.

寸たAlはα領域を拡大させて溶体化処理温度を下げ、
さらに抗磁力を若干向上させる目的で含有されているが
、5%を越えて含有させると材料が脆化して塑性加工性
が悪化することから、その上限値が5係と定められてい
る。
Smaller Al expands the α region and lowers the solution treatment temperature,
Further, it is contained for the purpose of slightly improving the coercive force, but if it is contained in an amount exceeding 5%, the material becomes brittle and plastic workability deteriorates, so the upper limit thereof is set at 5%.

Nb + Ta + T i、釦よびVは、いずれもα
領域を拡大して溶体化処理温度を下げ、さらにNb 、
Ta は塑性加工性を向上させるために添加含有されて
いるが、Nb : 51 Ta : 5%。
Nb + Ta + Ti, button and V are all α
Expanding the area and lowering the solution treatment temperature, further Nb,
Ta is added to improve plastic workability, Nb: 51 Ta: 5%.

Ti:6%、訃よびV: 6%をそれぞれ越えての含有
は抗磁力の低下を1ねくことから、前記の上限値以下の
含有にとどめられている。
If the content exceeds 6% for Ti and 6% for Ti and V, the coercive force will decrease by 1, so the content is kept below the above upper limit.

さらにM。kよびWの添加含有によって抗磁力が向上し
たものになっているが、それぞれ15%を越えた含有に
なると合金化による材料の硬化のために塑性加工性が低
下したものになるので、その含有量は前記上限値以下に
定められている。
More M. Coercive force is improved by adding K and W, but if the content exceeds 15% of each, plastic workability decreases due to hardening of the material due to alloying. The amount is set below the upper limit value.

従来、上記のような組成をもつスピノーダル分解型磁性
材料は、所定組成のものを溶解鋳造した後、必要に応じ
て圧延釦よぴ鍛造などの塑性加工、切削あ・よび打抜き
などの機械加工などを施して所望の形状を付与し、つい
で磁気特性を付与するための溶体化処理、磁場中熱処理
、ち−よび時効処理を行なう工程によって製造されてい
る。
Conventionally, spinodal decomposition type magnetic materials with the above composition have been melted and cast with a predetermined composition, and then subjected to plastic processing such as rolling and button forging, and machining such as cutting and punching, as necessary. It is manufactured by a process of imparting a desired shape by subjecting it to a desired shape, followed by solution treatment, heat treatment in a magnetic field, and aging treatment to impart magnetic properties.

特にこの従来溶解鋳造法によって複雑形状や高度の寸法
精度をもったスピノーダル分解型磁性材料を製造する場
合には、機械加工や熱間鍛造を行なう必要があるが、こ
の磁性材料は上記のように多量(20〜40%)のCr
を含有するために、機械加工は可能であるとはいっても
炭素鋼や低合金鋼に比較すればかなり機械加工性は悪い
ものとならざるを得す、捷た熱間鍛造を行なう場合にも
鍛造と焼鈍を数回繰り返して行なわないと所望の形状釦
よび寸法精度のものが得られない。
In particular, when manufacturing spinodal decomposition type magnetic materials with complex shapes and high dimensional accuracy using this conventional melting and casting method, it is necessary to perform machining and hot forging. Large amount (20-40%) of Cr
Although it is possible to machine it, its machinability is considerably poorer than that of carbon steel or low-alloy steel, and even when hot forging is performed. Unless forging and annealing are repeated several times, a button with the desired shape and dimensional accuracy cannot be obtained.

このように上記従来溶解鍛造法で複雑形状のものや高度
の寸法精度のものを製造する場合には加工工程が複雑と
なって手間がかかるためにコスト高となる問題点がある
As described above, when manufacturing products with complex shapes or products with high dimensional accuracy using the conventional melting and forging method, there is a problem in that the processing steps become complicated and time-consuming, resulting in high costs.

そこで、上記の従来溶解鍛造法のもつ問題点を解決する
ために通常の粉末冶金法を適用してスピノーダル分解型
磁性材料を製造することも検討されたが、この場合焼結
体の密度比を95%以上にするためには原料粉末を35
0mesh以下の粒度に微粉化して圧粉体の焼結性を促
進する必要があり、この結果微粉化工程が入ったことに
よる製造工程時間の延長を招くと共に、微粉化工程中に
Crに酸化傾向が現われるという問題点が発生した。
Therefore, in order to solve the above-mentioned problems with the conventional melting and forging method, it was considered to apply the normal powder metallurgy method to produce spinodal decomposition type magnetic materials, but in this case, the density ratio of the sintered body was In order to make it 95% or more, the raw material powder should be 35%
It is necessary to promote the sinterability of the green compact by pulverizing the powder to a particle size of 0 mesh or less, which results in an extension of the manufacturing process time due to the pulverization process, and also increases the tendency of oxidation of Cr during the pulverization process. A problem has arisen in which .

また一方、一般に350mesh以下の微粉末を原料粉
末として使用する場合、前記微粉末は見掛は密度が低し
こと、並びに圧粉体成形時の粉末粒子同志の摩擦が大き
いことなどの理由から、圧粉体の密度比を80%以上に
することは困難である。
On the other hand, when a fine powder of 350 mesh or less is generally used as a raw material powder, the fine powder has an apparently low density and the friction between the powder particles during compaction is large. It is difficult to increase the density ratio of the green compact to 80% or more.

このような80%以下の密度比をもった圧粉体から95
%以上の密度比をもった焼結体を得るということば、焼
結時の収縮が大きいことを意味するから、焼結体には著
しい変形や寸法の大きなばらつきが発生することになる
95% from such a green compact with a density ratio of 80% or less
Obtaining a sintered body having a density ratio of more than 1% means that the shrinkage during sintering is large, resulting in significant deformation and large dimensional variations in the sintered body.

したがって焼結体の11では所望の寸法精度を得ること
は困難であり、所望の寸法精度を得るためには、これに
加工を施さなければならない。
Therefore, it is difficult to obtain the desired dimensional accuracy with the sintered body 11, and in order to obtain the desired dimensional accuracy, it must be processed.

このように、通常の粉末冶金法によって製造する場合に
も、原料粉末の微粉化および焼結体の加工を必要とする
のでコスト高となるのを避けることができず、しかも微
粉化工程中のCr酸化によって磁気特性が害なわれると
いう欠点かある。
In this way, even when manufacturing using the normal powder metallurgy method, it is necessary to pulverize the raw material powder and process the sintered body, so high costs cannot be avoided. The drawback is that magnetic properties are impaired by Cr oxidation.

この発明は、上記の従来溶解鋳造法、並びに粉末冶金法
のもつ問題点を解決し、従来溶解鋳造法で製造したもの
とほぼ同等の磁気特性を有し、かつ複雑形状にして高い
寸法精度をもったFe−CrCo系スピノーダル分解型
磁性材料を簡単な工程で経済的に、前記磁性材料のもつ
塑性加工性を利用して製造する方法を提供するもので、
以下に示すa”eの主要工程からなることに特徴を有す
るものである。
This invention solves the problems of the conventional melt casting method and powder metallurgy method described above, and has magnetic properties almost equivalent to those manufactured by the conventional melt casting method, and has a complex shape with high dimensional accuracy. The present invention provides a method for economically producing a Fe-CrCo spinodal decomposition type magnetic material using a simple process and utilizing the plastic workability of the magnetic material,
It is characterized by consisting of the following main steps a''e.

すなわち、(a)例えば、上記のF e −Cr −C
o 系スピノーダル分解型磁性材料の代表的組成と実
質的同一の組成をもった所定組成のマトマイズ合金粉末
を得るために、基本成分としてのFe、CrXむよびC
oに、磁気特性や熱処理性を向上させる取分としてのS
i 、Al、Nb、Ta+ Ti + V+Mo %
チーよびVなどを添加して電気炉や高周波炉などで溶解
した後、これに水アトマイズatたはガスアトマイズ法
を適用する。
That is, (a) For example, the above Fe-Cr-C
In order to obtain a mattomized alloy powder with a predetermined composition that has substantially the same composition as a typical composition of an o-based spinodal decomposition type magnetic material, Fe, CrX, and C as basic components are used.
In addition to o, S is added to improve magnetic properties and heat treatability.
i, Al, Nb, Ta+Ti+V+Mo%
After adding Qi, V, etc. and melting in an electric furnace, high frequency furnace, etc., water atomization or gas atomization is applied.

(b) この結果得られた所定組成の合金粉末を金型
に入れ、最終形状に近い、または最終形状とは異なる単
純な形状をもった圧粉体を成形する。
(b) The resulting alloy powder having a predetermined composition is placed in a mold to form a green compact having a simple shape close to or different from the final shape.

なち・この場合圧粉体の密度比を75%以上にしなけれ
ば後述する熱間鍛造体の密度比を95%以上にすること
ができず、したがって圧粉体に75優以上の密度比をも
たせるためにば4 ton/i以上の成形圧力が必要で
あり、一方8 ton/祠を越えて上げても圧粉体の密
度上昇はほとんど期待できないことから、その成形圧力
は4〜8ton/−にするのが好ましい。
In this case, unless the density ratio of the green compact is set to 75% or more, the density ratio of the hot forged body (described later) cannot be increased to 95% or above. A molding pressure of 4 ton/i or more is required to maintain the powder compaction, and on the other hand, even if the pressure exceeds 8 ton/i, it is hardly expected that the density of the green compact will increase, so the molding pressure should be 4 to 8 ton/i. It is preferable to

(c) ついで、上記圧粉体を、酸化防止をはかるた
めに、例えば窒素ガスやアルゴンガスなどの中性雰囲気
昔たは水素ガスや分解アンモニアガスなどの還元雰囲気
中にむいて、好1しくは加熱に要する時間をできるだけ
短くして能率を上げるために高周波炉などを使用して急
速加熱する。
(c) Next, in order to prevent oxidation, the green compact is preferably exposed to a neutral atmosphere such as nitrogen gas or argon gas, or a reducing atmosphere such as hydrogen gas or decomposed ammonia gas. In order to shorten the heating time as much as possible and increase efficiency, a high-frequency furnace is used to rapidly heat the product.

この場合の加熱温度は、900°C未満では温度が低い
ために次工程の熱間型鍛造時に釦ける前記急速加熱圧粉
体の変形抵抗が大きく、95%以上の密度比をもった熱
間鍛造体を得ることは困難なので900’C以上にする
必要がある。
In this case, if the heating temperature is less than 900°C, the deformation resistance of the rapidly heated green compact that is buttoned during hot die forging in the next step is large, and the hot die with a density ratio of 95% or more is Since it is difficult to obtain a forged body, the temperature must be 900'C or higher.

しかしある取分組成によっては900°Cより高く加熱
しても硬くて脆いσ相が存在する組織をもつものもある
ので、このような組成のものについてば900’C以上
の高温でσ相が消える温度以上に加熱しなければならな
い。
However, depending on the fractional composition, some materials have a structure in which the σ phase exists, which is hard and brittle even when heated above 900°C. It must be heated above the temperature at which it disappears.

一方1300°Cを越えた加熱温度にすると、加熱圧粉
体と接する部分の鍛造ダイスの酸化が著しく、鍛造ダイ
スの摩耗が激しくなって熱間鍛造体の寸法精度が低下す
るようになると共に、鍛造ダイスの破損の原因ともなる
ので130000を越えて加熱してはならない。
On the other hand, if the heating temperature exceeds 1300°C, the oxidation of the forging die in contact with the heated compact will be significant, the wear of the forging die will become severe, and the dimensional accuracy of the hot forged body will decrease. Do not heat above 130,000 ℃ as this may cause damage to the forging die.

(d) このように900〜1300’Cの温度範囲
内の温度に加熱した圧粉体に熱間型鍛造を施して最終形
状と同一、昔たばこれとほぼ同一の形状をもつと共に、
密度比95優をもった熱間鍛造体を成形する。
(d) Hot die forging is applied to the powder compact heated to a temperature within the temperature range of 900 to 1300'C, and it has the same final shape and almost the same shape as the old cigarette roll, and
A hot forged body with a density ratio of over 95 is formed.

この場合熱間鍛造体の密度比を95%以上と限定したの
は、95%未満の密度比では、磁気特性、特に残留磁束
密度Brが従来溶解鋳造法で製造したものに比較して劣
ったものとなるからである。
In this case, the density ratio of the hot forged body was limited to 95% or more because if the density ratio was less than 95%, the magnetic properties, especially the residual magnetic flux density Br, would be inferior to those manufactured by the conventional melt casting method. Because it becomes something.

また密度比を95%以上にすると、次工程の磁気特性付
与のための熱処理工程に訃いて寸法変化がほとんど発生
せず、熱間型鍛造工程にむいて得られた高寸法精度が最
終工程1で保持されるようになる。
In addition, when the density ratio is 95% or more, almost no dimensional change occurs during the heat treatment process for imparting magnetic properties in the next process, and the high dimensional accuracy obtained for the hot die forging process is maintained in the final process 1. will be retained.

なむ、前記のように、熱間型鍛造を行なう前の圧粉体の
形状としては、最終形状に近い形状とする場合と、最終
形状と比較してこれより単純な形状とする場合とがある
が、前者の場合には鍛造時の塑性変形量が少ないので真
密度にきわめて近い密度をもった熱間鍛造体を得ること
は困難であるが、鍛造に要する圧力は比較的低くてすむ
という利点がある。
As mentioned above, the shape of the green compact before hot die forging is either close to the final shape or simpler than the final shape. However, in the former case, the amount of plastic deformation during forging is small, so it is difficult to obtain a hot forged body with a density very close to the true density, but the advantage is that the pressure required for forging is relatively low. There is.

一方後者の場合には、鍛造ダイスの製造コストが安価に
なると共に、鍛造時に大巾な塑性変形が可能になるので
真密度またばこれに近い密度の熱間鍛造体が得られると
いう利点はあるが、比較的高い鍛造圧力が必要であり、
したがってそれだけ大型の鍛造プレスを必要とする。
On the other hand, in the latter case, the manufacturing cost of the forging die is low, and since wide plastic deformation is possible during forging, a hot forged body with a true density or a density close to this can be obtained. However, relatively high forging pressure is required;
Therefore, a larger forging press is required.

前記のいずれの形状を採用するかは、密度比が上るにつ
れて残留磁束密度が大きくなるということをふ1えて要
求される磁気特性に応じた密度比を確保するように適宜
選択してやれはよい。
Which of the above shapes to adopt may be selected appropriately so as to ensure a density ratio corresponding to the required magnetic properties, taking into account that the residual magnetic flux density increases as the density ratio increases.

昔た鍛造時の潤滑剤としては、微細黒鉛や窒化ボロンな
どの固体潤滑剤を水捷たは油などに分散含有させたもの
を使用してやればよい。
In the past, as a lubricant for forging, a solid lubricant such as fine graphite or boron nitride dispersed in water or oil may be used.

e)ついで、上記熱間鍛造体に対して、磁気特性を付与
するための溶体化処理、磁場中熱処理、釦よび時効処理
などを行なうが、これらの処理条件は従来溶解鋳造法に
唱いて得られたものに施している通常の処理条件と同一
である。
e) Next, the above-mentioned hot forged body is subjected to solution treatment, heat treatment in a magnetic field, button and aging treatment, etc. in order to impart magnetic properties, but these treatment conditions are not applicable to conventional melt casting methods. The processing conditions are the same as those normally applied to processed materials.

すなわち、溶体化処理は温度1100〜1400℃に3
0分〜3時間保持することによって行なうのが一般的で
ある。
That is, the solution treatment is performed at a temperature of 1100 to 1400°C for 30 minutes.
This is generally carried out by holding for 0 minutes to 3 hours.

なお、通常Crを含有するFe系圧粉体を上記のような
高温に長時間加熱する場合には、Crの酸化を防止する
ために、約10 ” 〜10 ’ TorrO高真
空雰囲気中、またば−40℃以下の低露点高純度の中性
または還元性ガス雰囲気中で行なわれるが、上記(d)
項で得られた95%以上の密度比をもった熱間鍛造体に
釦いては、前記熱間鍛造体中のボアは外部から隔離され
ているので、熱間鍛造体の溶体化処理を目的とした加熱
に際しては、特に高真空または高純度ガスの雰囲気は必
要でなく、10 ” 〜10 ”Torrの真空中
や、特に精製高純度化処理を行なっていない通常の中性
捷たは還元性ガス中で、溶体化処理のための加熱を行な
っても熱間鍛造体の内部が酸化することはない。
In addition, when heating Fe-based powder compacts containing Cr for a long period of time to the above-mentioned high temperatures, in order to prevent oxidation of Cr, it is heated in a high vacuum atmosphere of about 10'' to 10' TorrO, or The above (d) is carried out in a high purity neutral or reducing gas atmosphere with a low dew point of -40°C or less.
Regarding the hot forged body having a density ratio of 95% or more obtained in Section 1, since the bore in the hot forged body is isolated from the outside, it is necessary to perform solution treatment of the hot forged body. For heating, a particularly high vacuum or high purity gas atmosphere is not required, and heating in a vacuum of 10" to 10" Torr, or in an ordinary neutral or reducing gas atmosphere that has not been particularly purified and purified. Even if heating for solution treatment is performed in gas, the inside of the hot forged body will not be oxidized.

さらに、このことは雰囲気として中性豊たは還元性ガス
を使用する場合、連続炉の使用が可能となるので製造コ
ストの低減に寄与するのである。
Furthermore, this makes it possible to use a continuous furnace when a neutral rich or reducing gas is used as the atmosphere, contributing to a reduction in manufacturing costs.

この発明は、上記(a)〜(e)項に示される主要工程
からなるのであって、以下に実施例により具体的に説明
する。
This invention consists of the main steps shown in sections (a) to (e) above, and will be specifically explained below using Examples.

実施例 1 Cr:28.0%、Co:16.0%、Si:1.0%
Al:0.3φ、Ti:1.O係、Nb:0.15係、
Fe :残りからなる合金を、アルミナルツボに装入し
、電気炉において加熱溶解し、合金溶湯温度が1700
’Cになった時点で、これに水アトマイズ法を適用して
80mesh以下の粒度をもった合金粉末を製造した。
Example 1 Cr: 28.0%, Co: 16.0%, Si: 1.0%
Al: 0.3φ, Ti: 1. O person, Nb: 0.15 person,
Fe: The remaining alloy was charged into an alumina crucible and heated and melted in an electric furnace until the molten alloy temperature reached 1700℃.
'C, water atomization was applied to this to produce alloy powder having a particle size of 80 mesh or less.

ついで、この水アトマイズ合金粉末を金型に入れ、6T
on/cTL の成形圧力を付加して、密度比81係を
もち、最終形状に近い寸法、すなわち中央部に円柱状2
段凹みを有し、外径15mmψ×高さ12.1mmをも
った圧粉体を成形した。
Next, this water atomized alloy powder was put into a mold and 6T
By applying a molding pressure of on/cTL, it has a density ratio of 81 and a dimension close to the final shape, that is, a cylindrical shape in the center.
A green compact having stepped recesses and an outer diameter of 15 mm ψ and a height of 12.1 mm was molded.

つぎに前記圧粉体を高周波炉を用いて水素雰囲気中で温
度1180℃に60秒間急速加熱後、前記圧粉体成形に
使用した金型寸法、すなわち前記圧粉体寸法よりわずか
大きい寸法をもった鍛造ダイス内に入れて、密度比98
%をもち、最終形状寸法、すなわち平面寸法は実質的に
上記圧粉体のそれと同一であるが高さが10.0mmを
もった熱間鍛造体を鍛造圧力6Ton/−を適用して成
形した。
Next, the green compact is rapidly heated for 60 seconds at a temperature of 1180°C in a hydrogen atmosphere using a high frequency furnace, and then molded with dimensions slightly larger than the dimensions of the mold used for forming the green compact, that is, the dimensions of the green compact. The density ratio is 98.
%, the final shape and dimensions, i.e., the planar dimensions, were substantially the same as those of the green compact, but the height was 10.0 mm. A hot forged body was formed by applying a forging pressure of 6T/-. .

なあ−1鍛造に際しては、平均粒径0.5μmの天然黒
鉛を水中に10重重量%散含有させたものを潤滑剤とし
て使用した。
During the forging, 10% by weight of natural graphite with an average particle size of 0.5 μm dispersed in water was used as a lubricant.

続いて前記熱間鍛造体に対して、電気炉を使用して、い
ずれも分解アンモニアガス中で、温度1250℃に2時
間保持の溶体化処理、40000eの磁場中で温度63
00Cに25分保持の磁場中熱処理、さらには温度61
0℃に1時間保持釦よび温度560’Cに5時間保持の
時効処理を施して、この発明にかかるスピノーダル分解
型磁性材料(以下本発明磁性材料という)を製造した。
Subsequently, the hot forged body was subjected to solution treatment using an electric furnace at a temperature of 1,250°C for 2 hours in decomposed ammonia gas, and a temperature of 63°C in a magnetic field of 40,000e.
Heat treatment in a magnetic field held at 00C for 25 minutes, and further at a temperature of 61
A spinodal decomposition type magnetic material according to the present invention (hereinafter referred to as the magnetic material of the present invention) was produced by performing aging treatment by holding at 0° C. for 1 hour and holding at a temperature of 560° C. for 5 hours.

な釦、前記本発明磁性材料にはほとんど寸法変化は見ら
れず、したがって最終形状の寸法精度をもつものであっ
た。
Almost no dimensional change was observed in the magnetic material of the present invention, and therefore it had the dimensional accuracy of the final shape.

一方、比較の目的で、上記の水アトマイズ合金粉末と同
一の組成をもった合金を電気炉で加熱溶解し、合金溶湯
温度1700°Cで出湯して、外径15.5mmψ×高
さ100mmの円柱状鋳物を製造した。
On the other hand, for the purpose of comparison, an alloy having the same composition as the above-mentioned water atomized alloy powder was heated and melted in an electric furnace, and the molten alloy was tapped at a temperature of 1700°C. A cylindrical casting was produced.

ついでこの結果得られた鋳物を機械加工によって上記の
熱間鍛造体と同一の寸法に仕上げ、続いてこれに上記実
施例1に釦けると同一の条件で溶体化処理、磁場中熱処
理、釦よび時効処理を施して、従来溶解鋳造法によるス
ピノーダル分解型磁性材料(以下従来磁性材料という)
を製造した。
The resulting casting was then machined to have the same dimensions as the hot forged body described above, and then subjected to solution treatment, heat treatment in a magnetic field, button and button under the same conditions as described in Example 1 above. A spinodal decomposition type magnetic material (hereinafter referred to as conventional magnetic material) obtained by aging treatment and conventional melting and casting method.
was manufactured.

このようにして製造した両磁性材料から外径3柵ψ×長
さ6mmの寸法をもった試片を切出し、磁気特性を測定
したところ、第1表に示される結果を示した。
A sample having dimensions of 3 mm outer diameter x 6 mm length was cut out from the magnetic material produced in this manner, and its magnetic properties were measured, and the results shown in Table 1 were obtained.

第1表に示されるように、本発明磁性材料は従来磁性材
料とほとんど同じ磁気特性をもつことが明らかである。
As shown in Table 1, it is clear that the magnetic material of the present invention has almost the same magnetic properties as the conventional magnetic material.

実施例 2 Cr:27.0%、CO:25.0%、Mo : 3.
0%、Si:0.5%、Al:o、3%、Nb : 0
.25 %、V:0.5%、Fe :残りからなる合
金を、アルミナルツボに装入し、電気炉において温度1
7000Gに加熱溶解後、窒素ガスを使用するガスアト
マイズ法により100 mesh以下の粒度をもった合
金粉末を製造した。
Example 2 Cr: 27.0%, CO: 25.0%, Mo: 3.
0%, Si: 0.5%, Al: o, 3%, Nb: 0
.. An alloy consisting of 25%, V: 0.5%, and Fe: the remainder was charged into an alumina crucible and heated to 1 in an electric furnace at a temperature of 1.
After heating and melting at 7000G, an alloy powder having a particle size of 100 mesh or less was produced by gas atomization using nitrogen gas.

ついで前記ガスアトマイズ合金粉末を金型に入れ、7T
on/iの成形圧力を付加して、密度比83%をもち、
最終形状と比較して単純な形状、すなわち外径7.8m
mψ×内径3.0師ψ×高さ10.9mmの寸法をもっ
た円筒状圧粉体を成形した。
Then, the gas atomized alloy powder was put into a mold and 7T
Adding on/i molding pressure, it has a density ratio of 83%,
Simple shape compared to final shape, i.e. outer diameter 7.8m
A cylindrical green compact having dimensions of mψ x inner diameter 3.0 mm x height 10.9 mm was molded.

つぎにとの圧粉体を高周波炉を用いて分解アンモニアガ
ス雰囲気中で温度1200℃。
Next, the green compact was decomposed using a high frequency furnace at a temperature of 1200°C in an atmosphere of decomposed ammonia gas.

に30秒間急速加熱した後、10Ton/i の圧力
をかけて熱間型鍛造を行ない、外径12.0+nmψ×
内径3.0mmψ×高さ6.2mの寸法をもつと共に、
外周面にそって半径2rIImの円弧底面をもつ縦溝が
等間隔に8本形成されている熱間鍛造体を成形した。
After rapid heating for 30 seconds, hot die forging was carried out by applying a pressure of 10Ton/i to an outer diameter of 12.0+nmψ×
It has dimensions of 3.0 mm ψ inner diameter x 6.2 m height,
A hot forged body was formed in which eight vertical grooves each having an arcuate bottom surface with a radius of 2rIIm were formed at equal intervals along the outer circumferential surface.

前記熱間鍛造体は99.8%の密度比をもつと共に、最
終形状寸法をもっていた。
The hot forged body had a density ratio of 99.8% and the final geometry.

なお、鍛造に際しては、平均粒径0.5μmの天然黒鉛
を水中に15重重量外散含有させたものを潤滑剤として
使用した。
In addition, during forging, natural graphite with an average particle size of 0.5 μm dispersed in water at a concentration of 15% was used as a lubricant.

続いて前記熱間鍛造体に対して、電気炉を使用して、い
ずれも水素ガス雰囲気中で、温度1220℃に2時間保
持後急冷の溶体化処理と、温度600℃に1時間保持お
よび温度570℃に2時間保持の時効処理を施して、本
発明磁性材料を製造したが、前記本発明磁性材料には前
記の熱処理による寸法変化がほとんど発生してむらず、
したがって所望の最終形状の寸法精度をもつものであっ
た。
Subsequently, the hot forged body was subjected to solution treatment using an electric furnace, in which the temperature was held at 1220°C for 2 hours and then rapidly cooled, and the temperature was held at 600°C for 1 hour and the temperature The magnetic material of the present invention was manufactured by subjecting it to an aging treatment held at 570° C. for 2 hours, but the magnetic material of the present invention almost always experienced dimensional changes due to the heat treatment.
Therefore, it had the desired final shape dimensional accuracy.

一方、比較の目的で、上記のガスアトマイズ合金粉末と
同一の組成をもった合金を電気炉で温度1700°Cに
加熱溶解した後、外径8.6 mmψ×内径3.0mm
ψ×高さ9.0mmの寸法をもった円筒状鋳物に鋳造し
、この鋳物に3回の熱間型鍛造および2回の焼鈍を交互
に施して、上記実施例2にむいて得られた熱間鍛造体と
同一の寸法をもったものに仕上げた。
On the other hand, for the purpose of comparison, an alloy having the same composition as the above gas atomized alloy powder was heated and melted in an electric furnace at a temperature of 1700°C, and then an outer diameter of 8.6 mmφ x inner diameter of 3.0 mm was prepared.
A cylindrical casting with dimensions of ψ×height 9.0 mm was cast, and this casting was alternately subjected to three hot die forgings and two annealing to obtain the product for Example 2 above. Finished with the same dimensions as the hot forged body.

な釦、前記熱間型鍛造は、3回とも高周波炉を用い、分
解アンモニア雰囲気中で温度12000Cに30秒間加
熱後、12Ton/−の圧力を付加することによって行
ない、また前記焼鈍は、いずれも電気炉を用い、分解ア
ンモニアガス雰囲気中で温度12000Cに60分保持
により行った。
The above-mentioned hot die forging was performed all three times using a high-frequency furnace by heating to a temperature of 12,000C for 30 seconds in a decomposed ammonia atmosphere, and then applying a pressure of 12T/-, and the annealing was performed in all three cases. Using an electric furnace, the temperature was maintained at 12,000C for 60 minutes in a decomposed ammonia gas atmosphere.

引続いて上記実施例2にむけると同一の条件で溶体化処
理および時効処理を施して従来磁性材料を製造した。
Subsequently, solution treatment and aging treatment were performed under the same conditions as in Example 2 to produce a conventional magnetic material.

この結果得られた上記の両磁性材料から外径311TI
Iψ×長さ6mmの寸法をもった試片を切出し、磁性特
性を測定したところ第2表に示す結果が得られた。
The outer diameter of the above-mentioned both magnetic materials obtained as a result is 311 TI.
A sample having dimensions of Iψ x length 6 mm was cut out and its magnetic properties were measured, and the results shown in Table 2 were obtained.

第2表に示されるように、この場合も本発明磁性材料は
従来磁性材料とほとんど同じ磁気特性をもつことが明ら
かである。
As shown in Table 2, it is clear that the magnetic material of the present invention has almost the same magnetic properties as the conventional magnetic material in this case as well.

上述のように、この発明によれば、従来溶解鋳造法によ
って製造されたものと同程度の磁気特性を有するF e
−Cr−Co 系スピノーダル分解型磁性材料をほ
とんど機械加工を必要とすることなく、しかも複雑形状
のものを高い寸法精度で経済的に製造することができる
のである。
As described above, according to the present invention, Fe having magnetic properties comparable to those manufactured by the conventional melting and casting method.
-Cr-Co spinodal decomposition type magnetic materials can be manufactured economically with a high degree of dimensional accuracy and have complex shapes with almost no machining required.

Claims (1)

【特許請求の範囲】 1 Fe−Cr−co 系スピノーダル分解型磁性材料
に相当する組成を有する合金粉末より、最終形状に近い
、丑たばこれより単純な形状をもち、かつ75%以上の
密度比をもった圧粉体を成形し、ついで、との圧粉体を
、中性雰囲気捷たは還元雰囲気中で、900〜1300
0Cの範囲内の所定温度に急速加熱した後、これに熱間
型鍛造を施して、最終形状と同一、渣たばほぼ同一の形
状をもち、かつ95%以上の密度比をもった熱間鍛造体
とし、 引続いて、この熱間鍛造体に、磁気特性を付与するため
の通常の溶体化処理、磁場中熱処理、ち・よび時効処理
を施すことを特徴とするFe−CrCo系スヒマスヒソ
−ダル分解型磁性材料方法。
[Scope of Claims] 1. A material having a shape closer to the final shape than an alloy powder having a composition corresponding to a Fe-Cr-co spinodal decomposition type magnetic material, a shape simpler than a cigarette butt, and a density ratio of 75% or more. A green compact with a temperature of 900 to 1300
After rapidly heating to a predetermined temperature within the range of 0C, hot die forging is performed to obtain a hot die that has the same shape as the final shape, almost the same shape as the residue, and has a density ratio of 95% or more. A Fe-CrCo system characterized by forming a forged body and subsequently subjecting the hot forged body to ordinary solution treatment, heat treatment in a magnetic field, and aging treatment to impart magnetic properties. Dull decomposition type magnetic materials method.
JP52008720A 1977-01-31 1977-01-31 Method for producing Fe-Cr-Co spinodal decomposition type magnetic material Expired JPS5853061B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP52008720A JPS5853061B2 (en) 1977-01-31 1977-01-31 Method for producing Fe-Cr-Co spinodal decomposition type magnetic material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP52008720A JPS5853061B2 (en) 1977-01-31 1977-01-31 Method for producing Fe-Cr-Co spinodal decomposition type magnetic material

Publications (2)

Publication Number Publication Date
JPS5394216A JPS5394216A (en) 1978-08-18
JPS5853061B2 true JPS5853061B2 (en) 1983-11-26

Family

ID=11700772

Family Applications (1)

Application Number Title Priority Date Filing Date
JP52008720A Expired JPS5853061B2 (en) 1977-01-31 1977-01-31 Method for producing Fe-Cr-Co spinodal decomposition type magnetic material

Country Status (1)

Country Link
JP (1) JPS5853061B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022172995A1 (en) * 2021-02-10 2022-08-18 日立金属株式会社 Iron-chromium-cobalt alloy magnet and method for producing same

Also Published As

Publication number Publication date
JPS5394216A (en) 1978-08-18

Similar Documents

Publication Publication Date Title
KR100360533B1 (en) Method for producing high silicon steel, and silicon steel
US3999952A (en) Sintered hard alloy of multiple boride containing iron
US20020106297A1 (en) Co-base target and method of producing the same
EP0079755B1 (en) Copper base spinodal alloy strip and process for its preparation
US3183127A (en) Heat treatable tool steel of high carbide content
JP2004511658A (en) Co-Mn-Fe soft magnetic alloy
US3658604A (en) Method of making a high-speed tool steel
US4018632A (en) Machinable powder metal parts
JPS5853061B2 (en) Method for producing Fe-Cr-Co spinodal decomposition type magnetic material
US4069043A (en) Wear-resistant shaped magnetic article and process for making the same
JPS62287041A (en) Production of high-alloy steel sintered material
US4321091A (en) Method for producing hot forged material from powder
JPS5823462B2 (en) Fe-Cr-Co spinodal decomposition type sintered magnetic material with high density
US2944893A (en) Method for producing tool steels containing titanium carbide
US2366371A (en) Powder metallurgy
US2192741A (en) Method of making a sintered alloy
JP3353836B2 (en) Iron powder for powder metallurgy, its production method and iron-base mixed powder for powder metallurgy
US4854978A (en) Manufacturing method for high hardness member
JPS59190338A (en) Manufacture of alnico type permanent magnet alloy
JP2000045025A (en) Production of rolled silicon steel
JP2000119792A (en) Production of soft magnetic alloy sheet
JP2908018B2 (en) Method for producing high hardness sintered member and metal powder mixture
Ramachandrarao Rapid solidification of steels
US2169187A (en) Copper base alloy
JPS62109902A (en) Method for sintering green compact of iron-base powder