JPS5853041B2 - Method for manufacturing rare earth cobalt magnetic material moldings - Google Patents

Method for manufacturing rare earth cobalt magnetic material moldings

Info

Publication number
JPS5853041B2
JPS5853041B2 JP55042945A JP4294580A JPS5853041B2 JP S5853041 B2 JPS5853041 B2 JP S5853041B2 JP 55042945 A JP55042945 A JP 55042945A JP 4294580 A JP4294580 A JP 4294580A JP S5853041 B2 JPS5853041 B2 JP S5853041B2
Authority
JP
Japan
Prior art keywords
granules
resin
rare earth
earth cobalt
fine powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55042945A
Other languages
Japanese (ja)
Other versions
JPS56139601A (en
Inventor
敏文 引場
康弘 金井
等 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Yuden Co Ltd
Original Assignee
Taiyo Yuden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Yuden Co Ltd filed Critical Taiyo Yuden Co Ltd
Priority to JP55042945A priority Critical patent/JPS5853041B2/en
Publication of JPS56139601A publication Critical patent/JPS56139601A/en
Publication of JPS5853041B2 publication Critical patent/JPS5853041B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は、改良された希土類コバルト磁性体成形物の製
造方法に関し、更に詳細には、所望の寸法の成形物を容
易に製造する方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improved method of manufacturing rare earth cobalt magnetic material moldings, and more particularly to a method of easily manufacturing molded products of desired dimensions.

希土類コバルト磁石材料として現在実用化されてL−る
R Co5.、RCo7、R2C007等は磁気異方性
が著しく犬きL゛ので、磁場配向で結晶方向をそろえな
げればならなL・。
L-R Co5. is currently in practical use as a rare earth cobalt magnet material. , RCo7, R2C007, etc., have extremely large magnetic anisotropy, so it is necessary to align the crystal directions by magnetic field orientation.

従って、従来は希土類コバルトの微粉末を成形の型に入
れ、磁界を加えて配向し、しかる後成形した。
Therefore, in the past, fine powder of rare earth cobalt was placed in a mold, oriented by applying a magnetic field, and then molded.

ところが、磁場配向するための希土類コバルトの微粉末
の大きさは3〜8μ程度、その比重は83〜8.55で
あり、更に磁気を帯びて(・る為、型に充填する際の流
動性、及び充填性が悪く、特に5胴φ以下の円板等の小
形成形品、及び複雑形状の成形品を作る際に微粉末を型
に一定量充填することが困難であった。
However, the size of the fine powder of rare earth cobalt for magnetic field orientation is about 3 to 8μ, its specific gravity is 83 to 8.55, and it is also magnetic (・), so the fluidity when filling the mold is , and the filling properties were poor, and it was difficult to fill a mold with a certain amount of fine powder, especially when making small molded products such as disks with a diameter of 5 cylinders or less, and molded products with complex shapes.

従って、小形又は複雑形状の製品を寸法のバラツキの少
ない状態で量産することは極めて難しかった。
Therefore, it has been extremely difficult to mass-produce small or complex-shaped products with little dimensional variation.

また摩擦による静電気及び衝撃により成形時に発火する
恐れがあるので、発火防止の有機溶剤を希土類コバルト
微粉末に混合する場合には、成形時の流動体及び充填性
カー更に悪くなった。
In addition, there is a risk of ignition during molding due to static electricity and impact caused by friction, so when an organic solvent to prevent ignition is mixed with rare earth cobalt fine powder, the fluidity and filling properties during molding become even worse.

そこで、本発明の目的は、所望形状の成形物を量産的に
作ることが可能な希土類コバルト磁性体成形物の製造方
法を提供することにある。
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a method for manufacturing rare earth cobalt magnetic material moldings, which allows mass production of molded products having desired shapes.

上記目的を達成するための本発明は、例えばRCo5、
RCo7、R2Co12等の希土類コバルト原料の微粉
末を加圧成形して無配向の希土類コバルトブロックを作
る工程と、前記希土類コバルトブロックを破壊して前記
微粉末の集合から成る無配向の粒状物を作り、5〜15
0メツシユの範囲のフルイを通過する粒状物を得る工程
と、前記フルイを通過した前記粒状物を樹脂溶液に浸漬
し、取り出し、しかる後乾燥して樹脂で包囲された樹脂
被覆粒状物とし、5〜150メツシユの範囲のフルイを
通過する樹脂被覆粒状物を得る工程と、前記樹脂被覆粒
状物を成形用の型に充填する工程と、前記型の中の前記
樹脂被覆粒状物に磁界を付与して前記樹脂被覆粒状物を
破壊して微粉末とすると共に磁場配向をなし、しかる後
加圧成形する工程とを含んだ希土類コバルト磁性体成形
物の製造方法に係わるものである。
The present invention for achieving the above object includes, for example, RCo5,
A step of press-molding fine powder of a rare earth cobalt raw material such as RCo7, R2Co12, etc. to create a non-oriented rare earth cobalt block, and breaking the rare earth cobalt block to create a non-oriented granular material consisting of a collection of the fine powders. , 5-15
5. Obtaining granules that pass through a sieve in the range of 0 mesh, immersing the granules that have passed through the sieve in a resin solution, taking them out, and then drying them to obtain resin-coated granules surrounded by resin; A step of obtaining resin-coated granules that passes through a sieve in the range of ~150 meshes, a step of filling the resin-coated granules into a mold for molding, and a step of applying a magnetic field to the resin-coated granules in the mold. The present invention relates to a method for producing a rare earth cobalt magnetic material molded article, which includes the steps of: breaking the resin-coated granules into fine powder, oriented them in a magnetic field, and then press-molding them.

上記発明によれば、微粉末の集合から成る無配向の粒状
物を樹脂溶液に浸漬し、取り出し、乾燥して樹脂被覆粒
状物を得て、これを型に充填し、充填後に磁界で粒状物
を破壊して微粉末とするので、寸法のバラツキが少なく
且つ特性が良L・磁石を容易に製造することが出来る。
According to the above invention, non-oriented granules consisting of a collection of fine powders are immersed in a resin solution, taken out and dried to obtain resin-coated granules, which are then filled into a mold, and after being filled, the granules are shaped using a magnetic field. Since it is broken into fine powder, it is possible to easily manufacture L magnets with less variation in dimensions and good characteristics.

以下、図面を参照して本発明の実施例につL・て述べる
Hereinafter, embodiments of the present invention will be described with reference to the drawings.

まず、SmCo5とSmCo4とを例えばco含有量が
64重量φとなるように1:1に混合したサマニウム〜
コバルト合金組成物を、ジェットミルボールミル、振動
ミル等によって粒径的3〜8μ、平均粒径的5μの微粉
末とする。
First, samanium is prepared by mixing SmCo5 and SmCo4 in a 1:1 ratio such that the co content is 64 weight φ.
The cobalt alloy composition is made into a fine powder with a particle size of 3 to 8 μm and an average particle size of 5 μm using a jet mill, a ball mill, a vibration mill, or the like.

尚この際、発火防止のために、窒素ガス中又は有機溶剤
中で原料を粉砕する。
At this time, the raw material is pulverized in nitrogen gas or an organic solvent to prevent ignition.

次に、造粒するための前段階として、希土類コバルト原
料の微粉末を好ましくは0.5〜3 ton、/cry
、より好ましくは6 ton/ciの圧力で円板状又は
六面体状に加圧成形し第1図Aに示すような希土類コバ
ルトブロック1を形成する。
Next, as a preliminary step to granulation, fine powder of rare earth cobalt raw material is preferably 0.5 to 3 tons/cry.
A rare earth cobalt block 1 as shown in FIG. 1A is formed by pressure molding into a disk shape or a hexahedral shape, more preferably at a pressure of 6 ton/ci.

尚このブロック1の成形は配向磁界を加えずに行う。Note that this block 1 is formed without applying an orienting magnetic field.

次に、希土類コバルトブロック1を破壊し、好ましくは
5〜150メツシユの範囲のフルイ(目)開キ約011
04咽〜3.962mmの範囲のフルイ)を通過、より
好ましくは20〜80メツシユの範囲のフルイ(目の開
き約0.175〜0.833wnの範囲のフルイ)を通
過した第1図Bに示すような粒状物2を作る。
Next, the rare earth cobalt block 1 is broken and the sieve opening is preferably about 011 in the range of 5 to 150 meshes.
In Figure 1 B, after passing through a sieve having a mesh size of 0.04 to 3.962 mm, more preferably a sieve having a mesh size of 20 to 80 mm (a sieve having a mesh size of approximately 0.175 to 0.833 mm). Make granules 2 as shown.

即ち、希土類コバルト微粉末の無配向集合物である粒状
物2を作る。
That is, granules 2, which are non-oriented aggregates of rare earth cobalt fine powder, are produced.

尚この粒状物2は、後の配向成形工程に於げる配向磁界
による粒子運動によってこの粒状物2を再び微粉末に破
壊し且つ配向することが可能な大きさのものでなげれば
ならなL−8 次ニ、上記粒状物2を、メチルセルロース エチルセル
ロース、ニトロセルロース等から選択された少なくとも
1種の繊維素樹脂を約0.5重量係溶解したエチルアル
コール溶液に、約5秒間浸漬し、しかる後、ろ過によっ
て樹脂エチルアルコール溶液と粒状物2とを分離し、約
70〜80℃で約1時間真空乾燥し、凝集したものがあ
ったらほぐして再度フルイによって好ましくは5〜15
0メツシユパスより好ましくは20〜80メツシユパス
に相当の粒状物とし、第1図Cに説明的に示すように希
土類コ・・ルト粒状物2を樹脂膜3で包囲した樹脂包囲
粒状物4を形成する。
The granules 2 must be of such a size that they can be broken down into fine powder and oriented again by the particle movement caused by the orientation magnetic field in the subsequent orientation molding process. L-8 Next, the above granular material 2 is immersed for about 5 seconds in an ethyl alcohol solution containing about 0.5 weight of at least one cellulose resin selected from methylcellulose, ethylcellulose, nitrocellulose, etc. After that, the resin ethyl alcohol solution and the particulate matter 2 are separated by filtration, and vacuum dried at about 70 to 80°C for about 1 hour.
The granules are preferably equivalent to 20 to 80 mesh passes rather than 0 mesh pass, and resin-enclosed granules 4 are formed by surrounding the rare earth core granules 2 with a resin film 3, as illustrated in FIG. 1C. .

尚この樹脂包囲粒状物4を、後の配向成形工程に於ける
配向磁場で微粉末に破壊することが出来る程度の強度に
形成する。
The resin-enclosed granules 4 are formed to have such a strength that they can be broken into fine powder by the orientation magnetic field in the subsequent orientation molding step.

このため、比較的結合強度の弱L・繊維素樹脂によって
極めて薄し゛樹脂膜3を形成することが要求される。
Therefore, it is required to form an extremely thin resin film 3 using L-cellulose resin, which has a relatively weak bonding strength.

次に、配向成形するために、第1図りに示す如く成形用
型5の例えば直径3胴、深さ7?#lの凹部6に樹脂包
囲粒状物4を充填する。
Next, for orientation molding, a mold 5 is used, for example, with a diameter of 3 mm and a depth of 7 mm, as shown in the first diagram. The #l recess 6 is filled with resin-enclosed granules 4.

この充填は、従来のように微粉末の状態でなされず、無
配向樹脂包囲粒状物4でなすので、流動性の良℃・状態
で迅速に所望量の充填を行うことが出来る。
This filling is not done in the form of fine powder as in the conventional case, but is done in the form of non-oriented resin-surrounding granules 4, so that the desired amount of filling can be carried out quickly at a temperature with good fluidity.

次に結晶の方向をそろえるための磁場配向磁界を例えば
6キロエルステツド(kOe)以上の強さで加える。
Next, an orienting magnetic field is applied with a strength of, for example, 6 kiloersteds (kOe) or more to align the direction of the crystal.

この結果、強力な磁界によって粒状物4が運動し、第1
図Eに示す如く微粉末7に破壊され、同時に結晶方向が
C軸方向にそろえられる。
As a result, the granules 4 move due to the strong magnetic field, and the first
As shown in Figure E, it is broken into fine powder 7, and at the same time the crystal direction is aligned in the C-axis direction.

しかる後、磁場配向された微粉末7を例えば7 ton
/ciで加圧成形し、例えば1140℃、1時間の焼成
をなし、第1図Fに示すような円柱状磁性体成形物8を
完成させる。
After that, for example, 7 tons of fine powder 7 oriented in a magnetic field is
/ci, and fired at, for example, 1140° C. for 1 hour to complete a cylindrical magnetic molded product 8 as shown in FIG. 1F.

上記方法によれば、型5に原料を微粉末で充填せずに粒
状物4で充填するので、充填が容易となり、量産性が向
上する。
According to the above method, the mold 5 is filled with the granular material 4 instead of the fine powder, which facilitates filling and improves mass productivity.

また所定量の充填を比較的正確に行うこと力和丁能にな
り、成形物80寸法のバラツキカー少なくなる。
In addition, relatively accurate filling of a predetermined amount increases efficiency and reduces the variation in the dimensions of the molded product 80.

また粒状物4で充填するので、微粉末充填の場合よりも
、原料のロスが少なくなる。
Furthermore, since the filling is performed using granular material 4, there is less loss of raw material than when filling with fine powder.

また、樹脂膜3を設けるため、粒状物4が安定化すると
共に、発火が防止され、取扱L・が容易になる。
Further, since the resin film 3 is provided, the granules 4 are stabilized, ignition is prevented, and handling becomes easier.

尚上述の方法に於ける型5の凹部6に対する粒状物4の
充填重量と、ブロック1を形成する際の圧力との関係を
求めたところ第2図となった。
The relationship between the weight of the granules 4 filled into the recesses 6 of the mold 5 and the pressure used to form the block 1 in the above-described method is shown in FIG. 2.

第2図の縦軸の充填増加率は、従来の微粉末をそのまま
凹部6に無振動で充填した時の重量d。
The filling increase rate on the vertical axis in FIG. 2 is the weight d when the conventional fine powder is directly filled into the recess 6 without vibration.

、本実施例によってブロック1を種々の圧力で作って造
粒し、粒状物4を無振動で充填した時の重量をdpとし
た場合に於けるdp−do / do X 100 (
饅)を示して℃゛る。
, dp-do/do
℃ ゛.

この第2図から明らかなように、ブロック1を作る時の
圧力を0.5〜8 ton/cnfとすれば10%以上
も充填重量が増加する。
As is clear from FIG. 2, if the pressure when making the block 1 is set to 0.5 to 8 ton/cnf, the filling weight increases by more than 10%.

そして、ブロック形成の圧力を6 ton/ciにする
と約37係充填重量が増加し、ブロック形成圧力をそれ
以上増加させると、充填重量は減少する。
When the block forming pressure is increased to 6 ton/ci, the filling weight increases by about 37%, and when the block forming pressure is increased further, the filling weight decreases.

この6ton/crA以上で減少する原因は、粒状物4
0粒度分布の変化が関係して℃・るものと思われる。
The reason for this decrease at 6 tons/crA or more is due to particulate matter 4
It is thought that the change in particle size distribution is related to the change in temperature.

ブロック1の形成時の圧力を8 ton/cm以上にし
ても充填重量は微粉末充填の重量よりも犬きL・が、後
の磁気配向工程で粒状物4を破壊するのが困難になる。
Even if the pressure at the time of forming the block 1 is set to 8 ton/cm or more, the filling weight is still smaller than the weight of the fine powder filling, so that it becomes difficult to destroy the granules 4 in the subsequent magnetic orientation process.

第3図は粒状物4を磁気配向する時の磁界とこの配向で
形成された成形物の最大エネルギー積(BH)max
との関係を示すものである。
Figure 3 shows the magnetic field when magnetically orienting the granules 4 and the maximum energy product (BH) max of the molded product formed with this orientation.
It shows the relationship between

但し、フロック1を3ton/cfiで形成し、20メ
ツシユのフルイをパスした粒状物2を得て、これをエチ
ルセルロースO−5重量φのエチルアルコール溶液に浸
漬し、真空乾燥させることによって形成した粒状物4を
使用して測定した。
However, granules formed by forming floc 1 at 3 ton/cfi, passing through a 20-mesh sieve, obtaining granules 2, immersing them in an ethyl alcohol solution of ethyl cellulose O-5 weight φ, and drying under vacuum. Measurement was carried out using Sample 4.

粉末状態の場合には6〜8kOe の磁界で殆んど配向
すると言われてL・ろが、粒状物4を破壊して配向する
場合には。
In the case of a powder, it is said that most of the particles are oriented by a magnetic field of 6 to 8 kOe, and when the granules 4 are destroyed and oriented by L.

6〜8kOe では十分に破壊且つ配向されず、12
koe の磁界でほぼ十分に破壊且つ配向され、大き
な最大エネルギー積(BH)max の成形物を得るこ
とが出来る。
At 6 to 8 kOe, it is not sufficiently destroyed and oriented, and 12
The magnetic field of koe is almost sufficient to destroy and orient the molded product, and a molded product with a large maximum energy product (BH) max can be obtained.

従って、粒状物4の磁気破壊は12kOe 以上で行う
ことが望ましも・。
Therefore, it is desirable that the magnetic destruction of the granules 4 be carried out at 12 kOe or higher.

しかし、6kOe以上であれば、実用可能な程度の(B
H)maxを得ることは可能である。
However, if it is 6 kOe or more, it is at a practical level (B
H) It is possible to obtain max.

第4図は粒状物4の径と成形物の最大エネルギー積(B
H)max との関係を示すものである。
Figure 4 shows the diameter of the granule 4 and the maximum energy product (B
H) max.

但し、フロック1を3 ton、/c4の圧力で形成し
、各メツシュのフルイをパスした粒状物2を作り、これ
をエチルセルロース0.5重量係のエチルアルコール溶
液に浸漬して真空乾燥し、12kOe の磁界で破壊且
つ配向させ、しかる後7 ton/c77fの圧力で成
形し、これを1140℃、1時間焼成したものの特性を
示す。
However, the floc 1 is formed at a pressure of 3 ton/c4, and the granules 2 that pass through the sieve of each mesh are made, and this is immersed in an ethyl alcohol solution of 0.5 weight part of ethyl cellulose and vacuum dried to produce 12 kOe. The properties are shown below after being broken and oriented in a magnetic field of 1,000 lbs., then molded at a pressure of 7 ton/c77 f, and then fired at 1140° C. for 1 hour.

この第4図から粒状物2及び4が小さL・程配向度が良
L・ことが判る。
From FIG. 4, it can be seen that the smaller the grains 2 and 4, the better the degree of orientation L.

しかし、5メツシュバス程度の粒径の粒状物4を使用し
ても、実用に十分可能な最大エネルギー積(BH)ma
x を有する磁石が得られる。
However, even if granules 4 with a particle size of about 5 mesh baths are used, the maximum energy product (BH) ma that is sufficient for practical use
A magnet with x is obtained.

粒径を小さくすれば、配向度が良くなり、特性の優れた
磁石を得ろことが可能になるが、従来の微粉末充填に近
づくので、充填が困難になり、量産性の低下、1広のバ
ラツキ等が生じる。
If the particle size is made smaller, the degree of orientation will improve and it will be possible to obtain a magnet with excellent characteristics, but this will approach the conventional method of filling with fine powder, making filling difficult, reducing mass productivity, and increasing the Variations may occur.

従って150メツシユ以下のフルイを通過した粒状物と
することが望ましく、更に80メツシユ以下のフルイを
通過した粒状物とすることが望ましL・。
Therefore, it is desirable to use granules that have passed through a sieve with a mesh size of 150 or less, and it is further desirable that the granules have passed through a sieve with a mesh size of 80 or less.

一方、粒状物40粒径が大きくなり過ぎると、破壊しに
くくなり且っ配向度が悪くなり、(BH)maxが低下
し、特性の良L・磁石を作ることが不可能になる。
On the other hand, if the particle size of the granular material 40 becomes too large, it becomes difficult to break and the degree of orientation deteriorates, resulting in a decrease in (BH)max, making it impossible to produce an L magnet with good characteristics.

従って5メツシュ以上のフルイを通過した粒状物4を使
用することが望ましく、20メツシユ以上のフルイを通
過したものが更に望ましく・0 以上、本発明の実施例につL・て述べたが、本発明はこ
れに限定されるものではなく、更に変形可能なものであ
る。
Therefore, it is desirable to use granules 4 that have passed through a sieve with 5 meshes or more, and even more preferably to use granules 4 that have passed through a sieve with 20 meshes or more. The invention is not limited to this, but can be further modified.

例えば、メチルセルロース、エチルセルロース、ニトロ
セルロース等の繊維素樹脂の代りに、ポリビニールアル
コール、エポキシ、ポリウレタン、フェノール樹脂等を
使用してもよし・。
For example, instead of cellulose resins such as methylcellulose, ethylcellulose, and nitrocellulose, polyvinyl alcohol, epoxy, polyurethane, phenolic resin, etc. may be used.

又、場合によって樹脂膜3の形成を省略してもよL・。Also, depending on the case, the formation of the resin film 3 may be omitted.

また成形工程後、必要に応じて減磁工程又は着磁工程等
を設けてもよL・。
Further, after the molding process, a demagnetization process or a magnetization process may be performed as necessary.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例に係わる希土類コバルト磁性体
成形物の各工程の状態を順次に示す説明的断面図、第2
図はブロック形成圧力と充填増加率との関係を示すグラ
フ、第3図は配向磁界の強さと成形物の(BH)max
との関係を示すグラフ、第4図は粒状物の径と成形物
の(BH)maxとの関係を示すグラフである。 尚図面に用℃・られて℃・る符号にお(・て、1は希土
類コバルトブロック、2は粒状物、3は樹脂膜、4は樹
脂包囲粒状物、5は型、6は凹部、7は微粉末、8は成
形物である。
FIG. 1 is an explanatory sectional view sequentially showing the state of each process of a rare earth cobalt magnetic material molded product according to an embodiment of the present invention, and FIG.
The figure is a graph showing the relationship between block forming pressure and filling increase rate, and Figure 3 is a graph showing the relationship between the strength of the orienting magnetic field and the (BH) max of the molded product.
FIG. 4 is a graph showing the relationship between the diameter of the granule and (BH)max of the molded product. In the drawings, 1 is a rare earth cobalt block, 2 is a granule, 3 is a resin film, 4 is a resin-enclosed granule, 5 is a mold, 6 is a recess, 7 8 is a fine powder, and 8 is a molded product.

Claims (1)

【特許請求の範囲】 1 希土類コバルト原料の微粉末を加圧成形して無配向
の希土類コバルトブロックを作る工程と、前記希土類コ
バルトフロックを破壊して前記微粉末の集合から成る無
配向の粒状物を作り、5〜150メツシユの範囲のフル
イを通過する粒状物を得る工程と、 前記フルイを通過した前記粒状物を樹脂溶液に浸漬し、
取り出し、しかる後乾燥して樹脂で包囲された樹脂被覆
粒状物とし、5〜150メツシユの範囲のフルイを通過
する樹脂被覆粒状物を得る工程と、 前記樹脂被覆粒状物を成形用の型に充填する工程と、 前記型の中の前記樹脂被覆粒状物に磁界を付与して前記
樹脂被覆粒状物を破壊して微粉末とすると共に磁場配向
をなし、しかる後加圧成形する工程と、 を含んだ希土類コバルト磁性体成形物の製造方法。
[Scope of Claims] 1. A step of press-molding a fine powder of a rare earth cobalt raw material to produce a non-oriented rare earth cobalt block, and a step of destroying the rare earth cobalt floc to form non-oriented granules made of an aggregate of the fine powder. and obtaining granules that pass through a sieve in the range of 5 to 150 meshes; immersing the granules that have passed through the sieve in a resin solution;
a step of taking out the resin-coated granules, which is then dried to obtain resin-coated granules surrounded by resin, and passing through a sieve in the range of 5 to 150 meshes; and filling the resin-coated granules into a mold for molding. and a step of applying a magnetic field to the resin-coated granules in the mold to break the resin-coated granules into fine powder and magnetic field orientation, followed by pressure molding. A method for manufacturing rare earth cobalt magnetic material moldings.
JP55042945A 1980-04-02 1980-04-02 Method for manufacturing rare earth cobalt magnetic material moldings Expired JPS5853041B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP55042945A JPS5853041B2 (en) 1980-04-02 1980-04-02 Method for manufacturing rare earth cobalt magnetic material moldings

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP55042945A JPS5853041B2 (en) 1980-04-02 1980-04-02 Method for manufacturing rare earth cobalt magnetic material moldings

Publications (2)

Publication Number Publication Date
JPS56139601A JPS56139601A (en) 1981-10-31
JPS5853041B2 true JPS5853041B2 (en) 1983-11-26

Family

ID=12650142

Family Applications (1)

Application Number Title Priority Date Filing Date
JP55042945A Expired JPS5853041B2 (en) 1980-04-02 1980-04-02 Method for manufacturing rare earth cobalt magnetic material moldings

Country Status (1)

Country Link
JP (1) JPS5853041B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59136910A (en) * 1983-01-27 1984-08-06 Seiko Epson Corp Manufacture of radially anisotropic magnet
JPS59229401A (en) * 1983-06-09 1984-12-22 Tohoku Metal Ind Ltd Granulating method of rare earth cobalt magnetic powder

Also Published As

Publication number Publication date
JPS56139601A (en) 1981-10-31

Similar Documents

Publication Publication Date Title
US4063970A (en) Method of making permanent magnets
Eshelman et al. Properties of Nd‐Fe‐B anisotropic powder prepared from rapidly solidified materials
JPS5853041B2 (en) Method for manufacturing rare earth cobalt magnetic material moldings
US4321222A (en) Method of manufacturing plastic-bonded anisotropic permanent magnets
JP4089212B2 (en) Method for producing granulated powder of rare earth alloy and method for producing sintered rare earth alloy
JPS6245685B2 (en)
JP2952914B2 (en) Manufacturing method of anisotropic bonded magnet
JPH01114008A (en) Manufacture of bond magnet
KR100201684B1 (en) Rare-earth magnet manufacturing method
JPH0450725B2 (en)
JPS59115506A (en) Manufacture of resin coupled type radial anisotropic magnet
JPS6393105A (en) Manufacture of isotropic bonded magnet
JPS5932107A (en) Composite soft magnetic material
JPS63146414A (en) Manufacture of bonded magnet
JPH01114009A (en) Manufacture of bond magnet
JPH0412010B2 (en)
JP2001068313A (en) Anisotropic magnet power compound, its manufacturing method and manufacturing method of anisotropic bond magnet using the same
JPS63308904A (en) Manufacture of bond magnet
JPH03198303A (en) Manufacture of powder for nd-fe-b anisotropic bond magnet
JPH0878219A (en) Compound and bonded magnet
JPH03151612A (en) Manufacture of resin-bonded type permanent magnet molded object
JPH03151604A (en) Magnet roll and manufacture thereof
JPH01114005A (en) Pelletization of permanent magnet powder
JPS59103308A (en) Manufacture of permanent magnet
JPH04309207A (en) Manufacture of bonded magnet