JPS59136910A - Manufacture of radially anisotropic magnet - Google Patents
Manufacture of radially anisotropic magnetInfo
- Publication number
- JPS59136910A JPS59136910A JP58011813A JP1181383A JPS59136910A JP S59136910 A JPS59136910 A JP S59136910A JP 58011813 A JP58011813 A JP 58011813A JP 1181383 A JP1181383 A JP 1181383A JP S59136910 A JPS59136910 A JP S59136910A
- Authority
- JP
- Japan
- Prior art keywords
- magnetic field
- powder
- magnet
- magnet powder
- ring
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F41/00—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
- H01F41/02—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
- H01F41/0253—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Powder Metallurgy (AREA)
- Hard Magnetic Materials (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は、−軸異方性を有する磁石粉末、例えばバリウ
ムフェライト(BaO・Fe203)、ストロンチウム
フェライト(Sr@Fe203)、RCo5系(Rは希
土類を示す)、R2C0□7系そしてマンガンアルミ(
M n −A L )系等の磁石粉末を、前もってその
真の保磁力いHe)より大きな磁場で着磁した後、液体
と混ぜて懸濁させ、磁場中で遠心力を利用して圧粉成形
するというラジアル方向に異方性を持った異方性磁石の
製造方法に関するものである。DETAILED DESCRIPTION OF THE INVENTION The present invention provides magnetic powders having -axis anisotropy, such as barium ferrite (BaO Fe203), strontium ferrite (Sr@Fe203), RCo5 series (R represents rare earth), R2C0□ 7 series and manganese aluminum (
Magnet powder such as M n -A L ) system is magnetized in advance in a magnetic field larger than its true coercive force He The present invention relates to a method of manufacturing an anisotropic magnet having anisotropy in the radial direction by molding.
従来、ラジアル方向に異方性を有する磁石を製造するに
はロール法、プレス成形法がある。ロール法は、成形助
剤と磁石粉末の混合物をロールの間に通し、機械的に粒
子をロール方向と垂直に異方性を持つように配向させる
。そして、できた仮成形品を巻いて、円筒状にし、異方
性方向をラジアル方向にする。その後、焼結して切削加
工を施し磁石に仕方げるラジアル異方性磁石の製造方法
である。この方法は、フェライト磁石粉末にしか使用で
きないものであり、しかも粒子の配向度も機械的な方法
であるので充分ではない。プレス成形法は、磁気回路を
組んでコイルの磁場で、プレス4ν内の醸石粉禾をラジ
アル方向へ配向させた後、磁場を印加しながら圧縮成形
する製造方法である。Conventionally, there are roll methods and press molding methods for manufacturing magnets having radial anisotropy. In the roll method, a mixture of forming aid and magnetic powder is passed between rolls, and the particles are mechanically oriented perpendicularly to the roll direction so as to have anisotropy. The resulting temporary molded product is then rolled into a cylindrical shape, with the anisotropy direction radial. This is a method of manufacturing a radial anisotropic magnet in which the material is then sintered and cut into a magnet. This method can only be used for ferrite magnet powder, and the degree of orientation of the particles is also mechanical, so it is not sufficient. The press molding method is a manufacturing method in which a magnetic circuit is assembled to orient the brewerite powder in the press 4v in the radial direction using the magnetic field of the coil, and then compression molding is performed while applying the magnetic field.
この方法の成形例を第1図に示す。図で示す9の部分が
磁性粉末の入るキャビティであり、粉末は1のパンチに
よりP方向に圧縮される。成形されたリング状のラジア
ル異方性磁石は、第2図に示されたような形状になる。An example of molding using this method is shown in FIG. The part 9 shown in the figure is a cavity into which the magnetic powder is placed, and the powder is compressed in the P direction by the punch 1. The molded ring-shaped radially anisotropic magnet has a shape as shown in FIG.
外径をR1内径をr1長さをtそして肉厚をtとする。The outer diameter is R1, the inner diameter is r1, the length is t, and the wall thickness is t.
圧縮成形では、一方向に圧力をカロえるため、を方向に
著しい密度のバラつきを生じてしまう。また圧R3シて
ゆく途中で粉とプレス型(第1図で1と4)の壁面との
摩擦のため磁性体の配向度が乱れて性能が低下する。従
って肉厚tが小さくなればなる程成形は難しくなる。圧
縮成形では、大きなラジアル磁石な得ようとすると圧力
がプレス圧に依存しているため、ある大きさまでしか製
造できない。反対に、内径rの大きさも圧縮成形では制
限されあまり小さなrのものは製造できない。何故なら
第1図で2の径を小さくすると、利用できるラジアルの
配向磁界は低下し、圧縮方式であると、第2図のような
長きtの磁石を得ようとすると、圧縮前の配向時には、
第1図9のキャビィティは約6を必要とされるので、を
遊場はさらに115程度に減ってしまうからである。In compression molding, pressure is applied in one direction, resulting in significant density variations in the opposite direction. Further, during the press R3, the friction between the powder and the wall surfaces of the press molds (1 and 4 in FIG. 1) disturbs the orientation of the magnetic material, resulting in a decrease in performance. Therefore, the smaller the wall thickness t, the more difficult the molding becomes. In compression molding, if you want to get a large radial magnet, the pressure depends on the press pressure, so it can only be manufactured up to a certain size. On the other hand, the size of the inner diameter r is also limited in compression molding, and it is not possible to manufacture a product with a very small r. This is because when the diameter of 2 in Figure 1 is made smaller, the available radial orientation magnetic field decreases, and with the compression method, when trying to obtain a long t magnet as shown in Figure 2, the orientation before compression is ,
This is because the cavities shown in FIG. 19 require about 6 cavities, so the play area is further reduced to about 115 cavities.
本発明は、ロール法、プレス成形法の欠点を克復した高
性能で密度のバラっけのないしかも形状にとられれない
ラジアル異方性磁石の製造を目的としたものである。具
体的に述べると、以下のようになる。−軸異方性を有す
る磁石粉末を前もって1.その磁石粉末の有するiHc
よりも大きな磁場で着磁した後に、該磁石粉末を液
体に混ぜて懸濁式せ、該懸濁液をリング状の容器に封入
し、リングの動径方向に向いたラジアル方向の磁場を該
懸濁液に印−加し、磁石粉末をリング谷器内でラジアル
方向に配向させた後、そのままイ丑場を印加さぜた状態
でリングを回転させて磁場と平行に作用する遠心力を与
えることにより磁石粉末を藏・磁化することを特徴とす
るラジアル異方性磁石の製造方法である。また磁石粉末
に、コバルトを主体とした遷移金属(TMで示す)と希
土類元素(R)との合金で、しかもRTMZと衣した時
の2の値が7〜?である組成を有する、R2Co、7型
結晶構造を主体とした合金を用いることを特徴とする高
性能なラジアル異方性磁石の製造方法である。磁石粉末
を前もって高磁場で着磁をしておいてから、成形すると
いう方法は!待に磁石粉末が高℃・iHcを有する場合
に有効である。とりわけ、R2TM□7系の磁石粉末に
は、該粉末が磁壁のピニングにより保磁力が発生してい
ることから、時に有効である。何故、有効か説明する。The object of the present invention is to overcome the drawbacks of the roll method and press molding method, to produce a radially anisotropic magnet with high performance, uniform density, and shape flexibility. Specifically, it is as follows. - Magnet powder with axial anisotropy is prepared in advance in 1. iHc of the magnetic powder
After being magnetized with a magnetic field larger than After applying a magnetic field to the suspension and orienting the magnetic powder in the radial direction within the ring trough, the ring is rotated while an electric field is applied to generate a centrifugal force that acts parallel to the magnetic field. This is a method for producing a radial anisotropic magnet, characterized by magnetizing magnet powder by applying Also, when magnet powder is made of an alloy of cobalt-based transition metals (indicated by TM) and rare earth elements (R), and is coated with RTMZ, the value of 2 is 7~? This is a method for manufacturing a high-performance radial anisotropic magnet characterized by using an alloy mainly having a type 7 crystal structure of R2Co and having a composition as follows. What is the method of magnetizing magnetic powder in advance in a high magnetic field and then molding it? Furthermore, this method is effective when the magnet powder has a high temperature iHc. In particular, it is sometimes effective for R2TM□7-based magnet powder, since the powder generates a coercive force due to the pinning of domain walls. Explain why it is effective.
磁石粉が磁場方向に配向する時の力fは、f=rXHX
Iで与えられる。ただし、rは粒子直径、Hは磁場強度
、工は磁化である。磁石粉が完全に飽和していないと、
磁化工が低いばかりでなく、逆方向の磁化(I cr−
I )により逆方向に力が働き、磁、扮の回転力は、△
f= 2 rH(Ior )だけ弱まってしまう。ただ
し、foは飽和磁化、foはI。の時の回転力である。The force f when the magnet powder is oriented in the direction of the magnetic field is f=rXHX
It is given by I. However, r is the particle diameter, H is the magnetic field strength, and x is the magnetization. If the magnetic powder is not completely saturated,
Not only is the magnetization low, but the magnetization in the opposite direction (I cr-
I ) causes a force to work in the opposite direction, and the rotational force of the magnetic and magnetic parts is △
It is weakened by f=2 rH (Ior). However, fo is saturation magnetization, and fo is I. This is the rotational force when .
以下実施例に従い本発明を説明してゆく。The present invention will be described below with reference to Examples.
実施例(1)
第5図に本発明によるラジアル異方性磁石の遠心加圧成
形機を示す。1.5.9は強磁性体よりなり、7の磁粉
懸濁液の入ったキャビィティにラジアル方向の磁場をコ
イル1,6より誘導する。Example (1) FIG. 5 shows a centrifugal pressure molding machine for radially anisotropic magnets according to the present invention. 1.5.9 is made of a ferromagnetic material, and a radial magnetic field is induced from coils 1 and 6 into the cavity containing the magnetic powder suspension in 7.
5は回転子で非磁性体よりなっている。4はベアリング
で5の回転子を支えている。回転子はベルトあるい(d
ギアにより外部から力を伝達されて回転する。回転子の
中にはリング状の容器8に注入された磁性懸濁液が入っ
ている。5 is a rotor made of a non-magnetic material. 4 supports the rotor 5 with a bearing. The rotor is a belt or (d
It rotates when force is transmitted from the outside through gears. The rotor contains a magnetic suspension injected into a ring-shaped container 8.
次に本発明による遠心加圧成形機を用いたラジアル磁石
の製造方法について述べる。第1表のような磁粉と液の
懸濁液を作製した。磁粉と液の体積比は磁粉が50 V
o 7%とした。平均粒度はストロンチウムフェライ
トが1.2μm1希土類遷移金属合金が屋2と5が5μ
m、A4が10μm である。Next, a method for manufacturing a radial magnet using a centrifugal pressure molding machine according to the present invention will be described. A suspension of magnetic powder and liquid as shown in Table 1 was prepared. The volume ratio of magnetic powder and liquid is 50 V for magnetic powder.
o 7%. The average particle size is 1.2μm for strontium ferrite, 5μm for rare earth transition metal alloys 2 and 5.
m, A4 is 10 μm.
懸濁液は各届((対して2種類作製した。−刀は前もっ
て着磁したもの、他方は着磁しなかったものである。Two types of suspensions were prepared for each type of suspension: one was pre-magnetized and the other was not.
第1表
青磁はすべて20KOeで行った。作製きれた懸濁液は
、まず第5図の回転内のリング状容器に、懸濁液を注入
する。回転子は上下半分に割れる構造になっており、容
器は簡単に脱着できる。第5図に示すように全体のセッ
トが完了したら、磁場コイル2.乙に電流を流して磁磁
を発生させる。All celadon in Table 1 was tested at 20 KOe. The suspension that has been prepared is first poured into a ring-shaped container inside the rotor shown in FIG. The rotor has a structure that splits into upper and lower halves, and the container can be easily attached and detached. When the entire set is completed as shown in FIG. 5, the magnetic field coil 2. A current is passed through B to generate magnetism.
このW、d’i、mの向きを2と6とでは反対にして、
誘尋されて、出て来た磁場がお互いに反発するようにす
る。ポールで反発された/a4は、第5図に示すように
外側の円形のヨークに導れて、キャビイテイクにはラジ
アル方間の磁場が発生する。このようにして、最初に出
湯を発生させると、懸濁液中の磁粉は、殆んど摩擦なし
に回転して磁場方向に配向する。次に、磁場を印加しな
がら、外部動力により回転子を除々に回1伝させ、最後
には高速同転にする。すると、磁粉は遠心力により加圧
され容器内にラジアル方向に異方性を持った磁石ができ
る。充分加圧した後、逆磁界を印刀目して磁石を消磁し
てから回転を止めて、容器を取り出す。The directions of W, d'i, and m are reversed for 2 and 6,
The magnetic fields that come out after being induced repel each other. The /a4 repelled by the pole is guided to the outer circular yoke as shown in FIG. 5, and a radial magnetic field is generated at the cavity take. In this way, when tap water is first generated, the magnetic particles in the suspension rotate with almost no friction and are oriented in the direction of the magnetic field. Next, while applying a magnetic field, the rotor is gradually caused to rotate one revolution by external power, and finally, the rotor is made to rotate at high speed. Then, the magnetic particles are pressurized by centrifugal force, forming a magnet with radial anisotropy inside the container. After applying sufficient pressure, demagnetize the magnet by applying a reverse magnetic field, stop rotating, and remove the container.
A1〜5の試料は、乾燥させてから取り出し、焼結する
。A2,5に対しては、焼結後熱処理を施して保磁力を
与える。扁4は、最初から保磁力のある磁粉を用いてあ
り、磁石を容器から取り出し、樹脂を洗浄してから、樹
脂硬化のためのキユアリングを行う。このような方法に
より、種々のラジアル異方性磁石が作製できる。得られ
た磁石の性能を振動試料型磁気測定、殴で測定した結果
を第2表に示す。測定は磁石のいろい女湯所から、小さ
な円柱状試料を切り田して行った。密度のバラつきは1
チ以内におさえられており、圧縮成形のよう((、第2
図に示すt方向の密度のバラつきは殆んどなかった。従
って残留磁束密度のバラつきも1%以内であり、最大エ
ネルギー積も4%以内のバラつきに抑えられた。また本
力法は、非常に配向性のよいことがx4回折により確認
された。Samples A1 to A5 are dried, then taken out and sintered. A2 and A5 are subjected to post-sintering heat treatment to impart coercive force. The flat plate 4 uses magnetic powder that has a coercive force from the beginning, and after the magnet is removed from the container and the resin is washed, curing is performed to harden the resin. Various radially anisotropic magnets can be manufactured by such a method. The performance of the obtained magnet was measured by vibrating sample magnetic measurement and punching, and the results are shown in Table 2. Measurements were carried out by cutting small cylindrical samples from various women's baths in the magnet. The density variation is 1
It looks like compression molding ((, second
There was almost no variation in density in the t direction shown in the figure. Therefore, variation in residual magnetic flux density was suppressed to within 1%, and variation in maximum energy product was suppressed to within 4%. Furthermore, it was confirmed by x4 diffraction that the present force method has very good orientation.
第2衣
(注:′記号は粉未着磁品)
きらに、番号1(′の記号をついだ粉末着磁したものは
配向性の同上が著しく、このことは磁気性能にも反映さ
れている。2nd coating (Note: The ' symbol indicates a product that has not been magnetized with powder) In addition, the number 1 (the powder magnetized product with the ' symbol has the same remarkable orientation as above, and this is also reflected in the magnetic performance. There is.
本発明法によれば、圧縮成形では製造不可能であるt寸
の長いラジアル磁石も、製造可能である。According to the method of the present invention, radial magnets with a long t dimension, which cannot be manufactured by compression molding, can also be manufactured.
また、・■2図のむもo、 g 間以下のものも容易に
作製できる。不発明の装置は遠心力で加圧するので圧縮
成形では不可能な大きな磁石を製造できる。In addition, it is also possible to easily fabricate a structure between o and g in Fig. 2. Since the uninvented device applies pressure using centrifugal force, it can produce large magnets that are impossible with compression molding.
そして、カロ圧してから液を抜いてさらに懸濁液を追加
して、加圧するということを繰り返せば、Rに比してt
の厚い研石も作製できる。Then, if you repeat the process of pressurizing, draining the liquid, adding more suspension, and pressurizing, you will get t compared to R.
It is also possible to make thick grinding stones.
以上のように、不発明により従来のものより高性能で形
状の笥j約があまりないリング伏のラジアル異方性磁石
が町nととなった。不発明による磁石の用途ハ、ステッ
プモータ、DCサーボモーター、ボーrスコイル、磁気
軸受等が考えられ、これらの小型化、両性能化に与える
影響は太きい。As described above, due to inventiveness, a ring-shaped radial anisotropic magnet has been developed which has higher performance than conventional magnets and has a smaller shape. Possible uses for uninvented magnets include step motors, DC servo motors, baud rx coils, magnetic bearings, etc., and the impact on miniaturization and performance enhancement of these is significant.
第1図は、蛇米の圧縮法によるラジアル異方性磁石の一
法を示す。1・・・上バンチ、2・・・5蚤aa件コア
、6,5・・・コイル、4・・・プレスダイ、6・・・
下パンチ、7・・・強磁性体、8・・・非磁性体、9・
・・キャビイテイ(6g粉)
第2図は、す/グ状のラジアル異方性磁石を示す。
φR・・・外径、φr・・・内径、t・・・長さ、t・
・・肉厚第3図a、bは、本発明によるラジアル異方性
磁石成形機でめる。1・・・強磁性ポール、2,6・・
・コイル、3・・・回転子、4・・・ベアリング、5・
・・強磁性ヨーク、7・・・磁粉懸濁液、8・・・容器
、9・・・強磁性コア。
以上
出願人 株式会社 諏訪精工台
232図
第3図
手続補正書(方式)
1 弓f イ′I の 表 行く
昭和58年 特泊願第 1181552 発明の名称
ラジアル異方性磁石の製造方法
3 補正をする名
代表城役中村恒也
4代理人
5、 補正命令のF(イJ
別紙の通り
1、 明細書 11頁5行〜同6行目
「第6図a、bは、本発明によるラジアル異方性磁石成
形機である。」 とあるを、「刺7.3図すは、本発明
によるラジアル異方性2 図面 第6図を補正し添付す
る。
以 上
代理人 最 上 務FIG. 1 shows one method of creating a radially anisotropic magnet using the serpentine compression method. 1... Upper bunch, 2... 5 aa core, 6, 5... Coil, 4... Press die, 6...
Lower punch, 7... ferromagnetic material, 8... non-magnetic material, 9.
...Cavity (6g powder) Figure 2 shows a radially anisotropic magnet with a square and square shape. φR...outer diameter, φr...inner diameter, t...length, t.
...The wall thicknesses in Fig. 3 a and b are determined by the radial anisotropic magnet molding machine according to the present invention. 1...Ferromagnetic pole, 2,6...
・Coil, 3...Rotor, 4...Bearing, 5.
...Ferromagnetic yoke, 7. Magnetic powder suspension, 8. Container, 9. Ferromagnetic core. Applicant: Suwa Seikodai Co., Ltd. 232 Figure 3 Procedural Amendment (Method) 1 Table of bow f I'I 1981 Special Patent Application No. 1181552 Title of Invention Method for Manufacturing Radial Anisotropic Magnet 3 Amendment Representative Tsuneya Nakamura 4 Agent 5 F of the amendment order 7.3 is a radial anisotropy 2 drawing according to the present invention. Figure 6 has been amended and attached hereto.
Claims (2)
粉末の真の保磁力iHc より大きな磁場で着磁した
後、該磁石粉末を液体に混ぜて懸濁させ、該)ピ濁液を
リング伏の容器に封入し、リングの動径方向に向いたラ
ジアル方向の外部磁場を該懸濁液に印加し、磁石粉末を
リング容器内でラジアル方向に配向させた後、そのまま
の磁場を印加させた状態でリングを回転させて外部磁場
と平行に作用する遠心力を与えることにより磁石粉末な
緻否成形することを特許とするラジアル異方性磁石の製
造方法。(1) - Magnet powder having axial anisotropy is magnetized in advance in a magnetic field larger than the true coercive force iHc of the magnet powder, and then the magnet powder is mixed with a liquid and suspended; is sealed in a ring-shaped container, a radial external magnetic field directed in the radial direction of the ring is applied to the suspension, the magnetic powder is radially oriented in the ring container, and then the magnetic field is applied as it is. This is a patented method for manufacturing radial anisotropic magnets that involves forming magnet powder into compact shapes by rotating a ring while applying a centrifugal force that acts in parallel with an external magnetic field.
(TM)で示すと希土類元素(Rで示す)との合金で、
しかもRTMZと表した時の2の値が7〜9である組成
の、R2C017型結晶構造を主体とした合金を用いる
ことを′F!f9とする特許請求の範囲第1項記載のラ
ジアル異方性磁石の製造方法。(2) Magnet powder is an alloy of transition metals (TM) mainly composed of cobalt and rare earth elements (denoted by R),
Moreover, it is recommended to use an alloy mainly composed of an R2C017 type crystal structure with a composition in which the value of 2 when expressed as RTMZ is 7 to 9! The method for manufacturing a radially anisotropic magnet according to claim 1, wherein the magnet is f9.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58011813A JPS59136910A (en) | 1983-01-27 | 1983-01-27 | Manufacture of radially anisotropic magnet |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58011813A JPS59136910A (en) | 1983-01-27 | 1983-01-27 | Manufacture of radially anisotropic magnet |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS59136910A true JPS59136910A (en) | 1984-08-06 |
Family
ID=11788246
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP58011813A Pending JPS59136910A (en) | 1983-01-27 | 1983-01-27 | Manufacture of radially anisotropic magnet |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS59136910A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7201809B2 (en) * | 2002-08-29 | 2007-04-10 | Shin-Etsu Chemical Co., Ltd. | Radial anisotropic ring magnet and method of manufacturing the ring magnet |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4869097A (en) * | 1971-12-22 | 1973-09-20 | ||
JPS5161410A (en) * | 1974-09-30 | 1976-05-28 | Gen Electric | |
JPS53110920A (en) * | 1977-03-10 | 1978-09-28 | Namiki Precision Jewel Co Ltd | Method of making rare earth cobalt based permanent magnet alloy |
JPS5636107A (en) * | 1979-09-03 | 1981-04-09 | Hideo Suzuki | Manufacture of anisotropic magnet |
JPS56139601A (en) * | 1980-04-02 | 1981-10-31 | Taiyo Yuden Co Ltd | Production of rare earth cobalt magnetic material molding |
-
1983
- 1983-01-27 JP JP58011813A patent/JPS59136910A/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4869097A (en) * | 1971-12-22 | 1973-09-20 | ||
JPS5161410A (en) * | 1974-09-30 | 1976-05-28 | Gen Electric | |
JPS53110920A (en) * | 1977-03-10 | 1978-09-28 | Namiki Precision Jewel Co Ltd | Method of making rare earth cobalt based permanent magnet alloy |
JPS5636107A (en) * | 1979-09-03 | 1981-04-09 | Hideo Suzuki | Manufacture of anisotropic magnet |
JPS56139601A (en) * | 1980-04-02 | 1981-10-31 | Taiyo Yuden Co Ltd | Production of rare earth cobalt magnetic material molding |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7201809B2 (en) * | 2002-08-29 | 2007-04-10 | Shin-Etsu Chemical Co., Ltd. | Radial anisotropic ring magnet and method of manufacturing the ring magnet |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS61112310A (en) | Manufacture of permanent magnet | |
US5751828A (en) | Magnetic circuit unit for loud-speaker and method of manufacturing the same | |
WO2005124800A1 (en) | Methods of producing radial anisotropic cylinder sintered magnet and permanent magnet motor-use cylinder multi-pole magnet | |
JP5904124B2 (en) | Arc-shaped magnet having polar anisotropic orientation, method for manufacturing the same, and mold for manufacturing the same | |
TW200407919A (en) | Radial anisotropic ring magnet and its manufacturing method | |
WO2005124796A1 (en) | Radial anisotropic cylindrical sintered magnet and permanent magnet motor | |
JP4358743B2 (en) | Method for manufacturing bonded magnet and method for manufacturing magnetic device including bonded magnet | |
JP2003257762A (en) | Ring magnet, manufacturing method therefor, rotor, rotating machine, magnetic field generating apparatus therefor, and ring magnet manufacturing apparatus | |
JPS6134249B2 (en) | ||
Popov et al. | Preparation of sintered Nd-Fe-B magnets by pressless process | |
JPS59136910A (en) | Manufacture of radially anisotropic magnet | |
JPS5999705A (en) | Manufacture of magnet having radial anisotropy | |
JPS5923448B2 (en) | anisotropic magnet | |
JPH08111337A (en) | Method and apparatus for forming field of permanent magnet | |
JPS6349889B2 (en) | ||
JP2022516212A (en) | Soft magnetic composite material with two-dimensional magnetic moment and high operating frequency band and its preparation method | |
JPS60931B2 (en) | Anisotropic magnet manufacturing method and manufacturing device | |
JPS60211908A (en) | Manufacture of cylindrical permanent magnet | |
JP3538762B2 (en) | Method for producing anisotropic bonded magnet and anisotropic bonded magnet | |
JPH02161708A (en) | Manufacture of radial anisotropic magnet | |
JP2002030304A (en) | Method and apparatus for forming radial magnetic field | |
JPS61154118A (en) | Molding method in magnetic field of rare earth magnet and device thereof | |
JPS61204318A (en) | Manufacture of magnet material | |
JPH02153507A (en) | Manufacture of resin-bonded type permanent magnet | |
JPS59211502A (en) | Production of permanent magnet body having surface multipolar anisotropy |