JPS5852495A - Steel plate for vessel - Google Patents

Steel plate for vessel

Info

Publication number
JPS5852495A
JPS5852495A JP14776281A JP14776281A JPS5852495A JP S5852495 A JPS5852495 A JP S5852495A JP 14776281 A JP14776281 A JP 14776281A JP 14776281 A JP14776281 A JP 14776281A JP S5852495 A JPS5852495 A JP S5852495A
Authority
JP
Japan
Prior art keywords
alloy
layer
steel plate
plating layer
corrosion resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14776281A
Other languages
Japanese (ja)
Other versions
JPS6334238B2 (en
Inventor
Minoru Kamata
蒲田 稔
Yukinobu Higuchi
樋口 征順
Tomoya Oga
大賀 智也
Yukio Tsukamoto
幸雄 塚本
Akira Hata
秦 瑛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP14776281A priority Critical patent/JPS5852495A/en
Publication of JPS5852495A publication Critical patent/JPS5852495A/en
Publication of JPS6334238B2 publication Critical patent/JPS6334238B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/78Pretreatment of the material to be coated

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electrochemical Coating By Surface Reaction (AREA)
  • Electroplating Methods And Accessories (AREA)
  • Chemical Treatment Of Metals (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

PURPOSE:To obtain a steel plate for vessel which lends itself to a can making system by welding or deep drawing and has excellent corrosion resistance and painting performance by forming an Ni-Sn plating layer and a chromate film layer of specific coating weights successively on the surface of the steel plate. CONSTITUTION:An Ni-Sn alloy plating layer of 50-1,000mg/m<2> per side is formed on the surfaces of a steel plate, and a chromate film layer of 3-30mg/ m<2> per side in terms of Cr is formed on the surfaces of said plated layer. Here, the Ni-Sn alloy has much better corrosion resistance than Ni or Sn and can therefore reduce the thickness of the plating layer. This alloy is lower in m.p. than Ni and improves weldability by electric resistance. Since said alloy has a higher m.p. than Sn, the blackening of weld zones by welding heat and the degradation in corrosion resistance and painting performance are prevented. The chromate film layer on the plating layer prevents corrosion from unavoidable pinholes when said alloy plating layer is thin, and further the layer prevents the elution of the plating layer per se and improves painting performance.

Description

【発明の詳細な説明】 この発明は容器用鋼板に関する。[Detailed description of the invention] The present invention relates to a steel plate for containers.

近年、溶接による製缶方式(例えばスードロニツク溶核
法)あるいは絞り加工による製缶方式(例えば、 DI
加工法)は多様化し、著しい進歩をみせている。また、
これらの製缶方式に対応できる優れた性能をもった安価
な製缶用素材(容器用材料)が要求されている。このよ
うな要求を満すためには、溶接性および絞りしごき加工
性(製缶工具に対するかじり性)に優れると共に、容器
用材料に要求される性能、すなわち耐食性、塗料密着性
および塗装後の耐食性を兼ね備えたものでなければなら
ない。
In recent years, can making methods by welding (e.g. Sudronik melting process) or can making methods by drawing (e.g. DI
Processing methods) are diversifying and showing remarkable progress. Also,
There is a demand for inexpensive can-making materials (container materials) with excellent performance that can be used in these can-making methods. In order to meet these requirements, it is necessary to have excellent weldability and drawing and ironing workability (corrosion resistance against can making tools), as well as the performance required for container materials, namely corrosion resistance, paint adhesion, and corrosion resistance after painting. It must be a combination of the following.

従来、容器用材料としてブリキ材及び電解クロム酸処理
鋼板(TFS)が広く用いられている。しかし、前記新
しい方式の製缶の素材としては価格、溶接性、耐食性、
成形加工性および塗装性能の点で未だ改良の余地が残さ
れていた。すなわち、ブリキ材は溶接時に溶融金属に母
材のFeか拡散してFe −Sn系合金が形成されると
共に、この表面が著しく酸化される。このために、溶接
部およびその近傍の熱影響部が黒色化して外観を損うと
共に、耐食性および塗装性が劣化する。
Conventionally, tinplate and electrochromic acid treated steel sheets (TFS) have been widely used as materials for containers. However, the materials for the new method of can manufacturing are limited by price, weldability, corrosion resistance,
There was still room for improvement in terms of moldability and coating performance. That is, when tinplate material is welded, Fe in the base metal diffuses into the molten metal to form an Fe-Sn alloy, and the surface of this alloy is significantly oxidized. For this reason, the welded portion and the heat-affected zone in its vicinity turn black, impairing its appearance and deteriorating its corrosion resistance and paintability.

また、絞り成形による製缶方式、例えばDID缶の製造
においては、製缶後の塗料密着性が必ずしも満足するも
のではない。
Furthermore, in the can manufacturing method by drawing, for example, in the manufacture of DID cans, the paint adhesion after can manufacturing is not necessarily satisfactory.

一方、容器用鋼板としては、電解クロム酸処理鋼板(T
FS)が広(用いられ、その経済性及びコスト面は優れ
ている。しかし、TFSはその被膜が金属クロム及び水
和酸化クロムを主体とする酸化クロムからなるクロメー
ト被膜から構成されている。
On the other hand, electrolytic chromic acid treated steel sheet (T
FS) is widely used and has excellent economic efficiency and cost. However, TFS is composed of a chromate film consisting of metallic chromium and chromium oxide mainly composed of hydrated chromium oxide.

そのため、これらの金属クロム及びクロメート被膜は従
来から知られている様に溶接が困難な金属或いは酸化物
のため、溶接方式による製缶方式の場合には溶接部の強
度不足がしばしば生じる欠点がある。従って、TFSを
溶接缶用素材として使用する場合、溶接部に相当するT
FS表面を機械的に研削、除去して溶接缶を製造す、る
方法が一般的に行なわれてきた。
Therefore, as is known from the past, these metal chromium and chromate coatings are metals or oxides that are difficult to weld, so when welding is used to make cans, the strength of the welded part is often insufficient. . Therefore, when using TFS as a material for welded cans, TFS corresponding to the welded part
A commonly used method has been to mechanically grind and remove the FS surface to manufacture welded cans.

しかし、この方法ではTFSは片面当り約70〜150
119/m’の金属Cr層とこの表面に約10〜309
/。′のクロメート被膜層で一般に形成されているため
、その研削・除去はなかなか困難であるとともに、その
研削された酸化クロム、金属クロム或いは鉄粉等が溶接
部の近傍にピンクアップされ、缶内・外面を汚す等の問
題を生じる等、TFS表面を研削・除去する方法につい
ても問題が多い。
However, with this method, the TFS is approximately 70 to 150 per side.
119/m' metal Cr layer and about 10-309 on this surface.
/. Since it is generally formed of a chromate film layer of There are also many problems with the method of grinding and removing the TFS surface, such as contaminating the outer surface.

又、この電解クロム酸処理鋼板は、絞り成形加工、例え
ばDI加工に供される場合に、工具♂の摩擦によって一
部金属Crが工具に融着して、その後に続(成品に線状
キズなつける、所謂カジリ現象を生じ、外観耐食性が劣
化する等の欠点がある。
In addition, when this electrolytic chromic acid treated steel sheet is subjected to drawing processing, for example DI processing, part of the metal Cr is fused to the tool due to the friction of the tool ♂, resulting in subsequent (linear scratches on the product). There are disadvantages such as the occurrence of so-called galling phenomenon and deterioration of appearance corrosion resistance.

この発明は従来の容器用材料が有する前記のような欠点
を改良するためになされたもので、溶接あるいは絞り加
工による製缶方式に対応でき、耐食性および塗装性能に
優れた安価な容器用鋼板を提供しようとするものである
This invention was made in order to improve the above-mentioned drawbacks of conventional container materials, and provides an inexpensive steel sheet for containers that can be made by welding or drawing, and has excellent corrosion resistance and painting performance. This is what we are trying to provide.

この発明の容器用鋼板は片面当り50〜1000ql/
m2の付着量のNiとSnからなる合金メッキ層が形成
され、この合金メッキ層の表面に片面当り3〜31)’
51/rr?のクロメート被膜層が形成されている。
The steel plate for containers of this invention has a capacity of 50 to 1000 ql per side.
An alloy plating layer consisting of Ni and Sn is formed with a coating amount of 3 to 31) m2 per side on the surface of this alloy plating layer.
51/rr? A chromate coating layer is formed.

また、上記クロメート被膜層のうち金属クロム層が片面
当り15■/d以下であることが好ましい。
Further, it is preferable that the metal chromium layer of the above-mentioned chromate coating layer has a thickness of 15 .mu./d or less per side.

NiとSnからなるNi −Sn系合金メッキを行うこ
とによって次のような利点がある。
Plating with a Ni-Sn alloy consisting of Ni and Sn provides the following advantages.

Ni −Sn系合金は従来から知られているように耐食
性はNiあるいはSnより著しく良好である。
As is conventionally known, Ni-Sn alloys have significantly better corrosion resistance than Ni or Sn.

特に、Ni −Sn系合金メッキを施した鋼板は容器用
材料として用いた場合、缶内容物としてしばしば含有さ
れる強い腐食作用を示すCX−および有機酸に対して極
めて良好な耐食性を有している。したがって、メッキ層
の厚みを薄(することができ、これによりコヌトダウン
を図ることができる。
In particular, when steel sheets plated with Ni-Sn alloys are used as container materials, they have extremely good corrosion resistance against CX- and organic acids, which exhibit strong corrosive effects and are often contained in can contents. There is. Therefore, the thickness of the plating layer can be made thinner, thereby reducing the thickness.

捷た、Ni −Sn系合金はNi (!: Snとの合
金化jこよりNiに比べて融点が低下し、電気抵抗によ
る溶接性が向上する。すなわち、融点が低いためナゲツ
トの形成が容易である。Ni −Sn系合金は上記のよ
うに融点が低いためNi より早く凝固する。
The melting point of the spun Ni-Sn alloy is lower than that of Ni due to alloying with Sn, and the weldability due to electrical resistance is improved.In other words, the low melting point makes it easy to form nuggets. As mentioned above, the Ni-Sn alloy solidifies faster than Ni because it has a lower melting point.

したがって、溶接時にNi −Sn系合金が凝固するま
でに溶接部分(溶着部)から溶融金属が飛び出して生じ
る溶接欠陥、いわゆる“散り”の発生が著しく少い。
Therefore, during welding, welding defects caused by molten metal flying out from the welded part (weld part) before solidification, so-called "splatter", are significantly less likely to occur.

さらにまた、Ni−8n系合金はSnに比べて融点が高
い。したがって、溶接熱によりブリキ板においてはFe
 −Sn系合金の生成によって生じる溶接部の黒色化な
らびに耐食性および塗装性能の劣化が防止される。
Furthermore, the Ni-8n alloy has a higher melting point than Sn. Therefore, due to welding heat, Fe
- Blackening of the weld zone and deterioration of corrosion resistance and coating performance caused by the formation of Sn-based alloys are prevented.

この発明では前述のようにNi −Sn系合金層の表面
にクロメート被膜層を形成する。クロメート被膜層の形
成は次のような効果を生じる。
In this invention, as described above, a chromate coating layer is formed on the surface of the Ni--Sn alloy layer. Formation of the chromate film layer produces the following effects.

Ni −Sn系合金メッキ層が薄い場合、ビンホールの
発生は避けられず、耐食性が落ちる。クロメート被膜層
はこのようなどンホールからの腐食を防ぎ、さらにメッ
キ層自体の溶出を防止する。したがって、耐食性が一段
と向上する。
When the Ni-Sn alloy plating layer is thin, the occurrence of bottle holes is unavoidable and the corrosion resistance deteriorates. The chromate coating layer prevents corrosion from such holes and further prevents the plating layer itself from being leached. Therefore, corrosion resistance is further improved.

また、この発明の鋼板を用いて作られる容器の大部分が
ラッカー塗装される。Ni −Sn系合金メッキ材は、
無処理材の壕までは表面に生成される酸化膜のため塗装
性能が劣る。メッキ表面にクロメート被膜層を形成する
ことにより塗装性能を向上させることができる。
Also, most of the containers made using the steel plate of this invention are lacquered. Ni-Sn alloy plating material is
Painting performance is poor due to the oxide film that forms on the surface of untreated wood. Coating performance can be improved by forming a chromate film layer on the plated surface.

つきに、Ni−Sn系合金メッキおよびクロメート被膜
が上記効果を生ずるに必要な条件および処理方法につい
て説明する。
At the same time, the conditions and treatment methods necessary for the Ni-Sn alloy plating and chromate coating to produce the above effects will be explained.

Ni −Sn系合金メッキ層の付着量は片面当りI〜1
000 q/rn’、好ましくは100〜500 q/
 ni’でなければならない。付着量が50gg/ r
r?未満である吉ビ/ホールの発生が多く、耐食性が劣
化する。また、付着量が1000 W/rr?を越える
と耐食性の効果が飽和すると共にコスト高となる。
The adhesion amount of Ni-Sn alloy plating layer is I~1 per side.
000 q/rn', preferably 100-500 q/
Must be ni'. Adhesion amount is 50gg/r
r? Corrosion resistance deteriorates due to the occurrence of many cracks/holes that are less than 100 mm. Also, the amount of adhesion is 1000 W/rr? If it exceeds this value, the corrosion resistance effect will be saturated and the cost will increase.

NiとSnの合金組成については、実験結果によればS
nが15〜90チ、好ましくは60〜80%、特に好ま
しくはNi −Sn合金において耐食性が特に優れてい
るNiSn合金組成(Sn約65%)であることが望ま
しい。Snが15チ未満であると合金の融点の低下が小
さく、溶接性の向上が顕著でない。また。
Regarding the alloy composition of Ni and Sn, according to the experimental results, S
It is desirable that n is 15 to 90%, preferably 60 to 80%, and particularly preferably a NiSn alloy composition (approximately 65% Sn), which has particularly excellent corrosion resistance in Ni-Sn alloys. If the Sn content is less than 15, the melting point of the alloy will not decrease significantly and the weldability will not improve significantly. Also.

Snが9096を越えると合金の融点が大きく低下し、
メッキ原板からのFeの拡散が著しく、溶接部および熱
影響部の変色、耐食性および塗装性の劣化をもたらす。
When Sn exceeds 9096, the melting point of the alloy decreases significantly,
The diffusion of Fe from the plated original plate is significant, resulting in discoloration of the weld zone and heat-affected zone, and deterioration of corrosion resistance and paintability.

なお、合金組成が上記範囲内であると、鋼板の耐食性、
ひい℃は塗装後の性−能も向上する。即ち、前記した如
(Ni −Sn合金の耐食性が良好で腐食速度が小さい
ため、塗装後腐食水溶液に長期間曝された場合に塗膜を
通して侵入してくる腐食水溶液に対する腐食速度が極め
て小さく、メッキ面の腐食生成物に起因する塗膜のフク
レ(所謂、ブリスター)、塗膜の剥離等の性能劣化が極
めて生じに(い。
In addition, when the alloy composition is within the above range, the corrosion resistance of the steel plate,
If the temperature is lower than that, the performance after painting will also be improved. That is, as mentioned above (Ni-Sn alloy has good corrosion resistance and a low corrosion rate, so if it is exposed to a corrosive aqueous solution for a long period of time after painting, the corrosion rate of the corrosive aqueous solution that penetrates through the coating film is extremely low, and the corrosion rate is extremely low. Performance deterioration such as blistering (so-called blistering) and peeling of the paint film due to corrosion products on the surface is extremely likely to occur.

メッキ浴は通常行われているNi −Sn系合金の電気
メッキ浴が用いられる。例えば、 Nr  とsn+が
共存含有されるピロリン酸系浴、塩化物系浴或いはフン
化物系浴等が用いられる。
As the plating bath, a commonly used Ni--Sn alloy electroplating bath is used. For example, a pyrophosphoric acid bath, a chloride bath, a fluoride bath, etc. in which Nr and sn+ are co-contained are used.

クロメート被膜量はクロム換算量で片面当り3〜(資)
W / m2.好ましくは5〜201nQ / m’で
なければならない。クロメート被膜は水利酸化クロムを
主体とする酸化クロム被膜からのみ構成されてもよく、
また金属クロム層とその表面に形成される水利酸化クロ
ムを主体とする酸化クロム被膜とから構成されてもよい
The amount of chromate film is 3~ (capital) per side in chromium equivalent amount.
W/m2. Preferably it should be 5-201 nQ/m'. The chromate film may be composed only of a chromium oxide film mainly composed of water-containing chromium oxide,
Alternatively, it may be composed of a metal chromium layer and a chromium oxide coating mainly composed of water-containing chromium oxide formed on the surface of the metal chromium layer.

クロメート被膜量が3 ”f / m’未満では、合金
メッキ層に対する耐食性および塗装性能の向上効果が得
られない。
If the amount of chromate coating is less than 3"f/m', the effect of improving the corrosion resistance and coating performance of the alloy plating layer cannot be obtained.

クロメート被膜量が301197 m’を越えると、耐
食性および塗装性能の向上効果か飽和すると共に。
When the amount of chromate coating exceeds 301197 m', the effect of improving corrosion resistance and coating performance becomes saturated.

性能面で次のような問題が生じる。溶接による製缶方式
の場合ζ電気抵抗溶接時に溶接ナゲツトの均一生成が十
分に行われなくなり、“散り”の発生も著しく、所要の
溶接強度が得られない。また、絞り加工による製缶方式
の場合、クロメート被膜量が増加すると絞りしごき加工
時にクロメート被膜の一部が剥離して、その耐食性が劣
化する現象が時として発生する。
The following problems arise in terms of performance. In the case of the can-making method by welding, weld nuggets are not sufficiently uniformly generated during electric resistance welding, and "splashing" occurs significantly, making it impossible to obtain the required welding strength. In addition, in the case of a can manufacturing method using drawing, when the amount of chromate coating increases, a part of the chromate coating sometimes peels off during the drawing and ironing process, resulting in deterioration of its corrosion resistance.

クロメート被膜層において金属クロム層が生成される場
合、金属クロム層の量が15■/−以下、好ましくは1
097m2以下であると溶接性および絞り加工性の向上
に効果があ°ることか実験により明らかになっている。
When a metallic chromium layer is formed in the chromate coating layer, the amount of the metallic chromium layer is 15 μ/- or less, preferably 1
Experiments have shown that a thickness of 097 m2 or less is effective in improving weldability and drawing workability.

即ち、金属クロム層が多(生成されると、その融点が高
いため均一ナゲツトの形成が妨げられ、又DI加工によ
って製缶工具(ダイス、ポンチ等)に金属Crm融着さ
れ、その後に加工される成品に線状傷を発生せしめる、
所謂カジリ現象を多発する。
That is, when a large number of metallic chromium layers are formed, the high melting point prevents the formation of uniform nuggets, and the metallic chromium is fused to can-making tools (dies, punches, etc.) by DI processing, and then processed. causing linear scratches on the product.
The so-called galling phenomenon occurs frequently.

クロメート被膜の形成は次の条件で行われる。Formation of the chromate film is performed under the following conditions.

クロメート処理浴としては、無水クロム酸、クロム酸塩
(クロム酸アンモン、クロム酸ソーター等)、重クロム
酸塩(重クロム酸アンモン、重クロム酸カリ等)の水溶
液あるいは上記水溶液に陰イオン(so4”−2、F−
等)を添加した水溶液が用いられる。特に、陰イオンの
添加はそのクロメート処理浴中での陰極電解処理によっ
て、適切な電流密度を選択するこ♂によって金属クロム
層の析出によってNi −Sn系合金層のピンホールを
ふさぎ、耐食性をより一層向上させる。しがし、陰イオ
ンの添加は溶接性あるいは耐かじり性に対して悪影響を
及ぼす度合の大きい金属クロム層を生じるので、金属ク
ロム層の量が15■/m2以下となるようにクロメート
処理条件を選定することが必要である。
The chromate treatment bath is an aqueous solution of chromic acid anhydride, chromate (ammonium chromate, chromate sorter, etc.), dichromate (ammonium dichromate, potassium dichromate, etc.), or an anion (SO4 ”-2, F-
etc.) is used. In particular, the addition of anions can be done by cathodic electrolytic treatment in the chromate treatment bath, and by selecting an appropriate current density, the pinholes in the Ni-Sn alloy layer are blocked by the precipitation of a metallic chromium layer, which improves corrosion resistance. Improve further. However, since the addition of anions produces a large metallic chromium layer that has a negative effect on weldability or galling resistance, the chromate treatment conditions must be adjusted so that the amount of metallic chromium layer is 15 μm/m2 or less. It is necessary to make a selection.

クロメート処理浴の濃度は、lO〜150Vlが適当で
ある。濃度が1og/I)未満であると処理浴の安定性
および老化性の点で好ましくない。また、濃度が150
Vlを越えると前記耐食性等の向上の効果が飽和すると
共に、処理浴のメッキ板による持ち出しが多くなり、不
経済である。
The appropriate concentration of the chromate treatment bath is 10 to 150 Vl. If the concentration is less than 1 og/I), it is unfavorable in terms of stability and aging properties of the treatment bath. Also, the concentration is 150
If Vl is exceeded, the effect of improving corrosion resistance and the like is saturated, and a large amount of the processing bath is carried out by the plated plate, which is uneconomical.

クロメート処理は陰極処理捷たは陰極および陽極処理の
組合せで行われる。電流密度および処理時間は所要の被
膜量が得られるように選定され、通常は電流密度が5〜
30 A/dm2.処理時間が1〜3秒である。例えば
、CrO3−5O4−2氷浴 (SO4−2/Cr+6
−1150)の場合、電流密度が30A/dm2以上で
は金属クロムの析出が著しく、極く短時間の処理によっ
ても金属クロムの析出を15ツ/i以下に抑えることが
困難である。また処理浴の温度は常@〜90℃の範囲で
行なわれる。
Chromate treatment is carried out by cathodic treatment or a combination of cathodic and anodic treatment. The current density and processing time are selected to obtain the required coating amount, usually when the current density is 5~
30 A/dm2. Processing time is 1 to 3 seconds. For example, CrO3-5O4-2 ice bath (SO4-2/Cr+6
-1150), when the current density is 30 A/dm2 or more, the precipitation of metallic chromium is significant, and it is difficult to suppress the precipitation of metallic chromium to 15 T/i or less even with extremely short treatment. Further, the temperature of the treatment bath is usually in the range of @ to 90°C.

次に、前記のクロメート処理後そのまま或いは水洗後6
5℃以上かつpH4〜10の高温水で水洗することによ
り、より一層クロメート処理後の性能を向上せしめるの
に有効である。
Next, after the chromate treatment as described above or after washing with water,
Washing with high-temperature water having a temperature of 5° C. or higher and a pH of 4 to 10 is effective in further improving the performance after chromate treatment.

即ち、この高温水処理によりクロメート被膜中の水可溶
成分であるSO4”−2等の陰イオンあるいはCr+6
  を溶出せしめることにより塗装後の耐食性が増す。
That is, this high-temperature water treatment removes anions such as SO4"-2 or Cr+6, which are water-soluble components in the chromate film.
Corrosion resistance after painting increases by leaching out.

すなわち、上記のように水洗されたNi −8n  系
合金メッキ・クロメート処理鋼板はクロメート被膜から
溶出し易い成分が減少している。したがって、塗装後、
鋼板が腐食性水溶液に曝されても、水可溶成分によって
生じる塗膜の膨れ(ブリスター)が生じにく(なり、塗
装のはく離等の欠陥が太き(減少する。
That is, in the Ni-8n alloy plated and chromate-treated steel sheet washed with water as described above, the components that are easily eluted from the chromate coating are reduced. Therefore, after painting,
Even when a steel plate is exposed to a corrosive aqueous solution, blistering of the paint film caused by water-soluble components is less likely to occur, and defects such as paint peeling become thicker (reduced).

而して、この高温水処理において、その温度及び田を規
定するのは以下の理由による、即ち、高温水処理はクロ
メート被膜中に含有されるCr  。
In this high-temperature water treatment, the temperature and conditions are specified for the following reasons: In the high-temperature water treatment, the Cr contained in the chromate film.

SO4”−2イオン等の陰イオンのクロメート被膜から
の溶出除去及びコロイド状のCr   の水酸化物から
なるクロメート被膜の脱水、縮合反応を促進させるため
に行なわれる。
This is carried out to remove anions such as SO4''-2 ions from the chromate coating and to promote dehydration and condensation reactions of the chromate coating made of colloidal Cr hydroxide.

従って、上記の効果を高速、短時間間で行なわしめるた
めに、その温度或いはpHを上記の様に規定するのが好
ましい。
Therefore, in order to achieve the above effects at high speed and in a short period of time, it is preferable to specify the temperature or pH as described above.

声が4未満では、クロメート被膜中のCr+6  或い
は5o4−”等の陰イオンの溶出が妨げられるので好ま
しくない。又、その閣が10をとえるとクロメート被膜
を溶解する恐れがあるのでpH]o以下のものが使用さ
れることになる。
If the value is less than 4, it is undesirable because the elution of anions such as Cr+6 or 5o4-'' in the chromate film will be hindered.If the value is less than 10, the chromate film may be dissolved, so the pH]o The following will be used:

特に、溶出速度を考慮した場合pH6〜9の範囲におい
て最も好ましく、炭酸アンチン、炭酸ノーダー等でpH
調整を行なってもよい。
In particular, when elution rate is considered, a pH range of 6 to 9 is most preferable;
Adjustments may be made.

又、この処理に使用される水の温度は65〜100℃、
好ましくは70〜95℃の高温水が使用される。
In addition, the temperature of the water used for this treatment is 65 to 100°C,
Preferably high temperature water of 70-95°C is used.

A’lJち、高速、短時間の処理によって、水可溶性成
分をクロメート被膜から溶出・除去するためには高温処
理が当然必要であると共に、これらの溶出に加うるにコ
ロイド状のCr  の水酸化物からなるクロメート被膜
の脱水、縮合反応を促進させて、水和度の低い、すなわ
ちオキン化度の高い難溶性のクロメート被膜を構成する
ためlこ、上記温度での高温水処理が好ましい。
A'lJ: In order to elute and remove water-soluble components from the chromate film by high-speed, short-time processing, high-temperature treatment is of course necessary, and in addition to these elutions, hydroxylation of colloidal Cr. High-temperature water treatment at the above-mentioned temperature is preferred in order to accelerate the dehydration and condensation reaction of the chromate film made of the chromate film and form a poorly soluble chromate film with a low degree of hydration, that is, a high degree of oxidation.

尚、処理時間については、0.3秒以上の処理時間でな
ければ、クロメート被膜からの溶出処理、特にCr+6
  の溶出が充分でなく、クロメート被膜のオキン化度
向上が充分でなく、本発明の目的とする効果が得られず
、また10秒以上の処理時間ては工業的にあまり経済的
でな(、使用水中のSO4”−等陰イオン或いは水中に
含まれる他の不純物等の再浸透によりクロメート被膜中
に溶出しやすい成分が含有される悪影響が生じるので処
理時間は10秒以下に限定される。
Regarding the treatment time, unless the treatment time is 0.3 seconds or more, elution treatment from the chromate film, especially Cr+6
The elution of the chromate film is not sufficient, the degree of oxidation of the chromate film is not sufficiently improved, the desired effect of the present invention cannot be obtained, and a treatment time of 10 seconds or more is not industrially economical (, The treatment time is limited to 10 seconds or less because re-penetration of anions such as SO4'' in the water used or other impurities contained in the water causes the chromate film to contain components that are easily eluted.

高温水の適用方法であるが、前述の条件を満足するもの
であれば、浸漬処理、スプレィによる噴射処理、高温水
蒸気と低温水溶液の混合温湯による噴射処理いずれても
良い。
As for the method of applying high-temperature water, any of immersion treatment, spray treatment, and injection treatment with hot water mixed with high-temperature steam and low-temperature aqueous solution may be used as long as the above-mentioned conditions are satisfied.

なお、この発明において、メッキ浴に不可避的不純物と
して含まれる金属イオンか、メッキ層に電析され、含有
されてもこの発明の範囲に含まれる。例えば、Ni金属
にしばしば不可避的不純物として含有されるCoか、メ
ッキ層に含有されるが、このような場合も何らこの発明
の範囲を逸脱するものではない。
In addition, in the present invention, even if metal ions contained as inevitable impurities in the plating bath are electrodeposited and contained in the plating layer, it is within the scope of the present invention. For example, Co, which is often contained as an unavoidable impurity in Ni metal, is contained in the plating layer, but such cases do not depart from the scope of the present invention.

ここで、この発明の実施例について説明する。Examples of the present invention will now be described.

第1表は、種々の条件のもとてメッキおよびクロメート
被膜処理を行い、溶接性等の試験結果を比較して示し又
いる。各性能の評価は次のようにして行った。
Table 1 compares and compares the test results of weldability, etc., performed by plating and chromate coating under various conditions. Each performance was evaluated as follows.

(1)  耐食性の評価 5℃の0.5モル酒石酸に試料を48時間浸漬したのち
、腐食減量を測定した。
(1) Evaluation of corrosion resistance After a sample was immersed in 0.5M tartaric acid at 5°C for 48 hours, the corrosion loss was measured.

(21溶接性の評価 電極として銅ワイヤ−(約1.5朋φ)を移動させなが
ら加圧下で重ね合わせて電気抵抗溶接を行う方式(スー
ドロニツク・タイプ)により鋼板を溶接した。そして、
均一なナゲツト形成および十分な溶接強度が得られる電
流範囲および加圧力の範囲でその溶接性を評価した。ま
た、溶接時の熱影響により溶接部および溶接部近傍の外
観変色の度合により溶接部の外観を評価した。
(21 Evaluation of Weldability Steel plates were welded by a method (Suudronik type) in which a copper wire (approximately 1.5 mm in diameter) was moved and overlapped under pressure as an electrode for electrical resistance welding (Sudronik type).
The weldability was evaluated within the range of current and pressure in which uniform nugget formation and sufficient welding strength were obtained. In addition, the appearance of the welded part was evaluated based on the degree of discoloration of the welded part and the vicinity of the welded part due to thermal effects during welding.

(3)  塗装後の性能評価 エポキシフェノール系塗料を4.5μmの厚みで塗装後
、  1.5 % NaCI)と1.5%クエン酸を含
有する空気飽和水溶液中に96時間浸漬した。
(3) Performance evaluation after coating After coating with an epoxy phenol paint to a thickness of 4.5 μm, the sample was immersed in an air-saturated aqueous solution containing 1.5% NaCI) and 1.5% citric acid for 96 hours.

ゴバン目試験で二次塗料密着性を評価した。Secondary paint adhesion was evaluated using a goblin test.

また、塗装面にスクラッチを入れて、上記浸漬後のスク
ラッチ部の腐食状態で塗装後材食性を評価した。
In addition, a scratch was made on the painted surface, and the corroded state of the scratched portion after the above-mentioned immersion was used to evaluate the corrosion resistance of the material after painting.

(4)耐かじり性 バウデン摩擦試験機を用い同一個所を繰り返し擦過し、
摩擦係数が急激に増大するまでの擦過回数で評価した。
(4) Scratching the same area repeatedly using a Bowden friction tester,
Evaluation was made based on the number of times of rubbing until the friction coefficient suddenly increased.

試験条件はチップが10朋φ鋼球、荷重が5oog、擦
過速度が1000m/min  であった。
The test conditions were as follows: the tip was a 10 mm diameter steel ball, the load was 50og, and the rubbing speed was 1000 m/min.

なお、第1表中の評価記号は次の内容を示している。Note that the evaluation symbols in Table 1 indicate the following contents.

Claims (1)

【特許請求の範囲】 1、鋼板表面に片面当り50〜1000 W/ m’の
NiとSnからなる合金メッキ層力く形成され、この合
金メッキ層の表面にCr換算最で片面当り3〜30■/
♂のクロメート被膜層が形成された鋼板ストリップより
なることを特徴とする容器用鋼板。 2、前記クロメート被膜層内に形成される金属クローム
層が片面当り15 Mg/ m’以下であることを特徴
とする特許請求の範囲第1項記載の容器用鋼板。 3、前記容器が溶接缶である特許請求の範囲第1項また
は第2項記載の容器用鋼板。 4、前記容器がt”)加工缶である特許請求の範囲第1
項または第2項記載の容器用鋼板。
[Claims] 1. An alloy plating layer consisting of Ni and Sn with a strength of 50 to 1000 W/m' per side is formed on the surface of the steel plate, and a maximum of 3 to 30 W/m' per side in terms of Cr is formed on the surface of this alloy plating layer. ■/
A steel plate for a container, comprising a steel plate strip on which a male chromate film layer is formed. 2. The steel sheet for containers according to claim 1, wherein the metal chromium layer formed within the chromate coating layer has a concentration of 15 Mg/m' or less per side. 3. The steel plate for a container according to claim 1 or 2, wherein the container is a welded can. 4. Claim 1, wherein the container is a processing can.
The steel plate for containers according to item 1 or 2.
JP14776281A 1981-09-21 1981-09-21 Steel plate for vessel Granted JPS5852495A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14776281A JPS5852495A (en) 1981-09-21 1981-09-21 Steel plate for vessel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14776281A JPS5852495A (en) 1981-09-21 1981-09-21 Steel plate for vessel

Publications (2)

Publication Number Publication Date
JPS5852495A true JPS5852495A (en) 1983-03-28
JPS6334238B2 JPS6334238B2 (en) 1988-07-08

Family

ID=15437586

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14776281A Granted JPS5852495A (en) 1981-09-21 1981-09-21 Steel plate for vessel

Country Status (1)

Country Link
JP (1) JPS5852495A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63274518A (en) * 1987-05-02 1988-11-11 Ikeda Bussan Co Ltd Production of trim material for vehicle

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63274518A (en) * 1987-05-02 1988-11-11 Ikeda Bussan Co Ltd Production of trim material for vehicle

Also Published As

Publication number Publication date
JPS6334238B2 (en) 1988-07-08

Similar Documents

Publication Publication Date Title
JPS602396B2 (en) Acid tin plating bath
JPS5930798B2 (en) Steel plate for welded can containers and its manufacturing method
JPS6046199B2 (en) Manufacturing method of surface-treated steel plate for welded cans with high rust resistance
JPS6214240B2 (en)
JPS6136595B2 (en)
JPS5852495A (en) Steel plate for vessel
JPS5932556B2 (en) Manufacturing method of chromate-coated steel sheet for containers with excellent weldability and corrosion resistance after painting
JPS5947040B2 (en) Steel plate for containers with excellent weldability and corrosion resistance after painting and its manufacturing method
JPS6240396A (en) Surface treated steel sheet for can having superior weldability and corrosion resistance
JP2583297B2 (en) Ultra-thin welding can material with excellent seam weldability, paint adhesion and post-paint corrosion resistance
JP4452198B2 (en) Surface-treated steel sheet with excellent seam weldability
JP2577246B2 (en) Manufacturing method of surface-treated steel sheet for coating base with excellent processing corrosion resistance
JPH0431039B2 (en)
JP2726008B2 (en) High performance Sn-based multi-layer plated steel sheet with excellent corrosion resistance, weldability and paint adhesion
JPS6123786A (en) Manufacture of steel sheet for vessel having superior corrosion resistance
JP3670844B2 (en) Chemical treatment of tin-plated steel sheet
JPS59107096A (en) Surface treated steel sheet for seam welded can with superior corrosion resistance, weldability and coatability
JP3894383B2 (en) Surface-treated steel sheet with excellent high-speed seam weldability, adhesion, and corrosion resistance, and its manufacturing method
JPS5989784A (en) Manufacture of steel sheet for welded can with superior corrosion resistance after coating
JPS6396294A (en) Production of steel sheet having excellent weldability and corrosion resistance
JP2593194B2 (en) Manufacturing method of surface-treated steel sheet for cans with excellent corrosion resistance after coating
JPS6353288A (en) Low-cost surface treated steel sheet having superior weldability
JP3140305B2 (en) Manufacturing method of tin-coated steel sheet with excellent paint adhesion
JPS5932557B2 (en) Manufacturing method of chromate-coated steel sheet for containers with excellent weldability and corrosion resistance after painting
JPH0665789A (en) Material for welded can excellent in high-speed seam weldability, resistance to corrosion and heat and coating adhesion