JPH0665789A - Material for welded can excellent in high-speed seam weldability, resistance to corrosion and heat and coating adhesion - Google Patents

Material for welded can excellent in high-speed seam weldability, resistance to corrosion and heat and coating adhesion

Info

Publication number
JPH0665789A
JPH0665789A JP22311192A JP22311192A JPH0665789A JP H0665789 A JPH0665789 A JP H0665789A JP 22311192 A JP22311192 A JP 22311192A JP 22311192 A JP22311192 A JP 22311192A JP H0665789 A JPH0665789 A JP H0665789A
Authority
JP
Japan
Prior art keywords
plating layer
layer
welding
alloy
plating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP22311192A
Other languages
Japanese (ja)
Inventor
Tomoya Oga
智也 大賀
Shigeru Hirano
茂 平野
Takashi Ichikawa
敬士 市川
Toshinori Katayama
俊則 片山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP22311192A priority Critical patent/JPH0665789A/en
Publication of JPH0665789A publication Critical patent/JPH0665789A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Chemically Coating (AREA)
  • Electroplating Methods And Accessories (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

PURPOSE:To produce a material for the welded can excellent in high-speed seam weldability, resistances to corrosion and heat and coating adhesion by successively forming an Ni-Fe alloy plating layer, an Sn plating layer and a chromate coating film on the surface of a steel sheet under specified conditions. CONSTITUTION:An Ni-Fe alloy plating layer (contg. about 10-80wt.% Fe) or an Ni-P alloy plating layer (contg. about 0.1-10wt.% P) is formed on the surface of a steel sheet at 150-2500mg/m<2> per side. An Sn plating layer, in which the Sn plating grains having 0.2-12.0mum diameter are interspersed at 400-2800mg/m<2>, is formed on the plating layer, and further, a chromate coating film is formed on the Sn plating layer at 1-50mg/m<2> expressed in terms of chromium. When the coated material is baked at high temp. for a short time and then high-speed seam welded, a material for the welded can having a sufficiently wide appropriate welding range and excellent in coating adhesion and corrosion resistance after coating is obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は高速シーム溶接性、耐熱
性、耐食性および塗料密着性に優れた被膜構成を有する
溶接缶用材料に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a material for a welding can having a coating structure excellent in high-speed seam weldability, heat resistance, corrosion resistance and paint adhesion.

【0002】[0002]

【従来の技術】近年、スードロニック法に代表されるシ
ーム溶接製缶法の実用化が急速に進展している。この溶
接製缶法の拡大に対処するため、溶接缶用材料として種
々の材料が開発され実用に供されている。これまで開発
された溶接缶材料としては次のものが挙げられる。 (1)鋼板表面に片面当たり150〜2500mg/m
2のNiメッキ層とクロム換算で2〜15mg/m2のク
ロメート被膜層で形成されている溶接缶用材料(特開昭
56−169788号公報) (2)鋼板上に重量比でNi/Ni+Fe=0.02〜
0.50の範囲の組成で厚さ10〜5000ÅのFe−
Ni合金層とその上に100〜1000mg/m 2のS
nメッキ層を設け、リフロー処理を行ってクロム換算料
で5〜20mg/m2のクロメート被膜層を設ける方法
(特開昭60−17099号) 更に、最近では (3)鋼板表面に片面当たり150〜2500mg/m
2のNi−Fe合金あるいはNi−P合金メッキ層を有
し、その上に粒径0.2〜4.0μのSnメッキ粒子を
10〜400mg/m2点在した錫メッキ層、更にその
上に1〜50mg/m2のクロメート被膜を有する溶接
缶用材料も公開されている。
2. Description of the Related Art In recent years, the system represented by the pseudoronic method is used.
Practical application of the dome welding can manufacturing method is progressing rapidly. This melt
In order to cope with the expansion of the canning method, it is used as a material for welding cans.
Various materials have been developed and put into practical use. Ever developed
The following can be mentioned as the welded can material. (1) 150 to 2500 mg / m per surface of steel plate
2Ni plating layer and 2 to 15 mg / m in terms of chromium2Ku
Welding can material formed of a chromate coating layer
No. 56-169788) (2) Ni / Ni + Fe = 0.02 on a steel plate by weight ratio
Fe-with a composition in the range of 0.50 and a thickness of 10 to 5000 Å
Ni alloy layer and 100-1000 mg / m on it 2Of S
An n-plated layer is provided and reflow processing is performed to convert it to chromium.
5 to 20 mg / m2Method for providing the chromate film layer
(JP-A-60-17099) Furthermore, recently, (3) 150 to 2500 mg / m on each side of the steel plate surface.
2Ni-Fe alloy or Ni-P alloy plating layer
And Sn-plated particles with a particle size of 0.2-4.0μ on it.
10-400 mg / m2Tin-plated layer scattered, and further
1-50mg / m on top2Welding with chromate coating
Materials for cans are also open to the public.

【0003】まず、(1)のNiメッキ/クロメート処
理鋼板は錫を用いないTFS型の溶接缶用材料として、
実用上充分良好な溶接性を有しその優れた耐熱性、塗料
密着性および塗装後耐食性から大量に実用に供されてい
る。また、(2)のNi系の下地処理を有する薄錫メッ
キ型の材料(以下『LTS』と称す)は、より一層の溶
接性の向上を狙い塗装焼き付け後に軟質、低融点の金属
錫(以下『free−Sn』と称す)を確保し、耐食性
はNi系の下地処理により確保でき、最近実用に供され
てきた。これらの材料は、いずれも良好な溶接性と塗装
後耐食性を備えた優れた溶接缶用材料であり、内容物等
使用される用途に応じて使い分けられている。(3)の
粒状Sn/Ni−Feあるいは粒状Sn/Ni−Pメッ
キ鋼板は、良好な溶接性、耐食性、耐熱性、塗料密着性
を有しているが、まだ実用には供されていない。
First, the Ni-plated / chromated steel sheet (1) is used as a TFS-type welding can material that does not use tin.
It has a sufficiently good weldability for practical use, and due to its excellent heat resistance, paint adhesion and corrosion resistance after coating, it has been put to practical use in large quantities. The thin tin-plated material (hereinafter referred to as “LTS”) having the Ni-based undercoating of (2) is a soft, low-melting metal tin (hereinafter referred to as “LTS”) that is soft and has a low melting point after baking for the purpose of further improving weldability. "Free-Sn") and corrosion resistance can be ensured by a Ni-based undercoating, which has recently been put to practical use. All of these materials are excellent materials for welding cans having good weldability and corrosion resistance after painting, and are properly used according to the intended use such as contents. The granular Sn / Ni-Fe or granular Sn / Ni-P plated steel sheet of (3) has good weldability, corrosion resistance, heat resistance and paint adhesion, but has not yet been put to practical use.

【0004】[0004]

【発明が解決しようとする課題】近年、さらにより一層
の製缶技術の進歩と製缶コストダウンが相俟って、原板
素材の薄手化と高温短時間での塗装焼き付けおよびシー
ム溶接の高速化が強く要請されている。即ち、原板素材
の薄手化は現状の板厚0.20〜0.24mmから0.
20mm以下の薄手材が要請され、高温短時間焼き付け
では現状の塗料の焼き付け条件200〜210℃×10
minから錫の融点(232℃)以上の温度まで数十秒
で昇温させその間に塗料の焼き付けを行うという高温短
時間焼き付けが強く要請されている。シーム溶接の高速
化は、溶接機のハードの検討により従来の40〜60m
/minのワイヤースピードから70〜100m/mi
nという高速化が計画されている。しかし、これらの薄
手化と高温短時間焼き付けおよび高速シーム溶接と言う
条件に前記の公知技術を適用した場合には、以下のよう
な問題が発生する。
In recent years, further progress in can-making technology and cost reduction in can-making, in combination with the further reduction in can-making cost, enables thinning of the original plate material and high-speed coating baking and seam welding at high temperature and in a short time. Is strongly requested. That is, the thinning of the original plate material is from the current plate thickness of 0.20 to 0.24 mm to 0.
A thin material of 20 mm or less is required, and in the high temperature short time baking, the current paint baking conditions are 200 to 210 ° C x 10
There is a strong demand for high-temperature short-time baking in which the temperature is raised from min to a temperature above the melting point of tin (232 ° C.) in several tens of seconds, and the paint is baked during that time. The speed of seam welding can be increased to 40 to 60 m by considering the hardware of the welding machine.
70-100m / mi from wire speed of / min
A speedup of n is planned. However, when the above-mentioned known technique is applied to the conditions of thinning, high temperature short time baking and high speed seam welding, the following problems occur.

【0005】まず、Niメッキ/クロメート処理鋼板は
板厚の薄手化に伴い、十分な溶接強度と良好な溶接外観
が得られる適正溶接範囲が非常に狭くなるという問題が
ある。これは、溶接電流が増加し十分な溶接強度が得ら
れる前に溶融金属が飛び出し(以下『散り』と称す)、
塗装後耐食性および溶接強度の劣化が生じるという問題
である。高温短時間焼き付けに対しては、Niメッキ/
クロメート処理鋼板はその良好な耐熱性により十分対応
可能であり、良好な塗装後耐食性を確保可能である。一
方、LTS型の材料は薄手化に伴う溶接性の劣化は、缶
内外面相当面の錫メッキ量をコントロールすることによ
り回避できるが、高温短時間焼き付けを行うと塗料の焼
き付け温度が錫の融点を越えるため、表層の錫が熔融し
塗装後耐食性が顕著に劣化するという問題が発生する。
First, the Ni-plated / chromate-treated steel sheet has a problem that the proper welding range for obtaining sufficient welding strength and good welding appearance becomes extremely narrow as the sheet thickness becomes thinner. This is because the molten metal jumps out (hereinafter referred to as "scatter") before the welding current increases and sufficient welding strength is obtained.
This is a problem that corrosion resistance and welding strength deteriorate after coating. Ni plating /
Chromate-treated steel sheet can sufficiently support its good heat resistance, and can secure good corrosion resistance after painting. On the other hand, in the case of LTS type materials, deterioration of weldability due to thinning can be avoided by controlling the tin plating amount on the inner and outer surfaces of the can, but when baking at high temperature for a short time, the baking temperature of the paint is the melting point of tin. Therefore, there is a problem that the tin in the surface layer is melted and the corrosion resistance after coating is significantly deteriorated.

【0006】また、粒状Sn/Ni−Feあるいは粒状
Sn/Ni−Pメッキ鋼板では従来の溶接スピードでは
良好な溶接性を確保可能であるが、溶接スピードが増加
すると適正溶接範囲が狭くなり、シーム溶接の高速化に
は十分対応できない。本発明はこれらの問題に対処する
ため、高温短時間焼き付けを行い高速シーム溶接を行っ
た場合に十分広い適正溶接範囲を有し、かつ良好な塗料
密着性と塗装後耐食性を発揮する溶接缶用材料を提供せ
んとするものである。特に、本発明はメッキ原板として
薄手材を使用した場合に良好な溶接性を確保するのに極
めて顕著な効果を発揮する。
Further, in the case of granular Sn / Ni-Fe or granular Sn / Ni-P plated steel sheet, good weldability can be secured at the conventional welding speed, but as the welding speed increases, the proper welding range becomes narrower and the seam It cannot fully cope with the speeding up of welding. To solve these problems, the present invention has a sufficiently wide proper welding range when performing high-speed short-time baking and high-speed seam welding, and for a welding can that exhibits good paint adhesion and post-paint corrosion resistance. It is intended to provide materials. In particular, the present invention exerts a very remarkable effect in ensuring good weldability when a thin material is used as the plating original plate.

【0007】[0007]

【課題を解決するための手段】本発明者らは溶接缶用材
料の適正な表面被膜構成について検討した結果、高速溶
接時においても散りの発生がなく十分な溶接強度が得ら
れる広い適正溶接範囲を確保するには溶接極輪/材料界
面および材料/材料界面の接触抵抗を極力低減させるこ
とであることが判明した。接触抵抗を低減させるには塗
装焼き付け後のfree−Sn残留量が最も効果的では
あるが、材料表層の全面にfree−Snが存在する
と、錫メッキ層は耐熱性に劣るため高温短時間焼き付け
を行った場合free−Snが熔融し、良好な塗装後耐
食性を確保することが困難である。
DISCLOSURE OF THE INVENTION As a result of investigations by the present inventors on an appropriate surface coating composition of materials for welding cans, a wide appropriate welding range in which no scattering occurs even at high speed welding and sufficient welding strength can be obtained. It was found that the contact resistance at the weld pole / material interface and the material / material interface is reduced as much as possible in order to secure the above. The residual amount of free-Sn after baking is most effective for reducing the contact resistance, but when free-Sn is present on the entire surface of the material, the tin plating layer is inferior in heat resistance, so baking at high temperature for a short time is required. When it is performed, free-Sn melts, and it is difficult to secure good corrosion resistance after coating.

【0008】これらの問題を解決し溶接缶用材料として
実用的な性能を両立させるためには以下のような手段が
最も有効であることが判明した。即ち、高温短時間焼き
付けで錫メッキ層が完全に熔融し塗装後耐食性の顕著な
劣化を招く事なく接触抵抗を低減させるためには、錫メ
ッキ層を粒状で点在させることが大きな効果があること
が判った。この時に高速溶接の際にも優れた溶接性を発
揮させるためには、従来の被膜構成より粒状Snのメッ
キ量および粒径を増大させ、厳密にコントロールするこ
とが重要である。更に、粒状Snメッキ層の下層には耐
熱性および耐食性の良好なNi−Fe合金層あるいはN
i−P合金メッキ層を設けることにより、高温短時間焼
き付けに十分耐えられ良好な塗料密着性と塗装後耐食性
を確保できることを見いだした。つまり、良好な溶接性
と耐食性および高温短時間焼き付けに耐え得る良好な耐
熱性を確保するには鋼板表面にNi−Fe合金層あるい
はNi−P合金メッキ層を施し、その上に粒状の錫メッ
キ層を設けることがポイントとなる。
It has been found that the following means are most effective in solving these problems and achieving both practical performance as a material for a welding can. That is, in order to reduce the contact resistance without causing significant deterioration of the corrosion resistance after coating due to complete melting of the tin plating layer by baking at high temperature for a short time, the tin plating layer is interspersed in a granular form with a great effect. I knew that. At this time, in order to exhibit excellent weldability even in high-speed welding, it is important to increase the plating amount and particle size of the granular Sn and strictly control it, compared with the conventional coating structure. Further, a Ni-Fe alloy layer or N having excellent heat resistance and corrosion resistance is formed below the granular Sn plating layer.
It has been found that by providing the i-P alloy plating layer, it is possible to sufficiently withstand high temperature short time baking and to secure good paint adhesion and corrosion resistance after coating. That is, in order to secure good weldability and corrosion resistance and good heat resistance capable of withstanding short-time high temperature baking, a Ni-Fe alloy layer or a Ni-P alloy plating layer is formed on the surface of the steel sheet, and then granular tin plating is applied thereon. The point is to provide layers.

【0009】また、良好な塗料密着性と塗装後耐食性を
確保するには粒状Snメッキ層の上にクロメート被膜層
を設けなくてはならないが、水和酸化クロム層は絶縁体
であり微量存在する金属クロムは高融点のためクロメー
ト被膜は溶接性にはマイナス要因である。そのため、ク
ロメート被膜は良好な塗料密着性と塗装後耐食性を確保
できる必要最少量に規制しなければならない。本発明者
らはこれらの考え方を基本に詳細に検討した結果、薄手
材で高温短時間焼き付け可能な溶接缶用材料として優れ
た溶接性、塗料密着性、塗装後耐食性を有する溶接缶用
材料が得られることを知見した。本発明はその知見に基
づいてなされたもので、その要旨は鋼板表面に片面当た
り、150〜2500mg/m2のNi−Fe合金層、
あるいはNi−P合金メッキ層を有し、その上に粒径
0.2〜12.0μのSnメッキ粒子を400〜280
0mg/m2で点在したSnメッキ層、更にその上にク
ロム換算で1〜50mg/m2のクロメート被膜を形成
させた高速シーム溶接性、耐食性、耐熱性および塗料密
着性に優れた溶接缶用材料を提供することにある。
Further, in order to secure good paint adhesion and corrosion resistance after coating, a chromate film layer must be provided on the granular Sn plating layer, but the hydrated chromium oxide layer is an insulator and exists in a trace amount. Since chromium metal has a high melting point, the chromate coating has a negative effect on weldability. Therefore, the chromate film must be regulated to the minimum amount necessary to ensure good paint adhesion and corrosion resistance after painting. As a result of a detailed study based on these ideas, the present inventors found that a material for a welding can having excellent weldability as a material for a welding can that can be baked at high temperature for a short time with a thin material, paint adhesion, and corrosion resistance after painting It was found that it can be obtained. The present invention was made on the basis of the findings, and the gist thereof is a Ni-Fe alloy layer of 150 to 2500 mg / m 2 per surface of a steel plate,
Alternatively, it has a Ni-P alloy plated layer, on which Sn plated particles having a particle size of 0.2 to 12.0 [mu] are 400 to 280.
Welding can with excellent high-speed seam weldability, corrosion resistance, heat resistance, and paint adhesion, with a Sn plating layer scattered at 0 mg / m 2 and a chromate film of 1 to 50 mg / m 2 in terms of chromium formed on the Sn plating layer. The purpose is to provide materials.

【0010】[0010]

【作用】以下に本発明について詳細に説明する。本発明
において、メッキ原板としては特に規制されるものでは
なく、通常容器材料として使用される鋼板を用いる。メ
ッキ原板の製造法、材料などに特に規制されるものでは
なく、通常の鋼片製造工程から熱間圧延、酸洗、冷間圧
延、焼鈍、調質などの工程を経て製造される。更に、こ
のメッキ原板は必要とされる缶体強度および板厚に応じ
て冷間圧延後焼鈍を行ってから再冷間圧延(即ち2CR
法)する製造工程で製造してもよい。まず、良好な耐熱
性、耐食性、塗料密着性を発揮する被膜構成について述
べる。前述したように求められている耐熱性は、錫の融
点以上まで数十秒で昇温する高温短時間での塗料焼き付
けであり、この焼き付け条件に耐えて良好な塗装後耐食
性を確保するには、少なくとも錫よりも高い融点を有す
る金属のメッキを施さなくてはならない。また、耐熱性
のみではなく良好な耐食性、塗料密着性と粒状錫メッキ
層により確保した良好な溶接性を損なわない特性も備え
ておかなくてはならない。
The present invention will be described in detail below. In the present invention, the original plating plate is not particularly limited, and a steel plate that is usually used as a container material is used. There is no particular restriction on the manufacturing method, material, etc. of the plated original plate, and it is manufactured through ordinary steel slab manufacturing processes such as hot rolling, pickling, cold rolling, annealing and tempering. Further, this plated original plate is cold-rolled and then annealed according to the required can strength and plate thickness, and then re-cold-rolled (that is, 2CR).
Method). First, the coating composition that exhibits good heat resistance, corrosion resistance, and paint adhesion will be described. The heat resistance required as described above is baking of the paint in a high temperature in a short time at a temperature that rises above the melting point of tin in a few tens of seconds, and in order to withstand this baking condition and secure good post-paint corrosion resistance. , At least a metal having a melting point higher than that of tin must be plated. Further, not only heat resistance, but also good corrosion resistance, paint adhesion, and properties that do not impair the good weldability secured by the granular tin plating layer must be provided.

【0011】本発明者らは種々の検討を重ねた結果、N
i−Fe合金属あるいはNi−P合金メッキ層を施すこ
とによりこれらの問題点を解決することができることが
判明した。即ち、Ni−Fe合金あるいはNi−P合金
の高い融点を有効に活用することにより、高温短時間焼
き付けに耐え得る良好な耐熱性が発揮でき、良好な塗装
後耐食性と溶接性が確保できることが判った。特に、溶
接性については上層の粒状錫により得られる良好な溶接
性を損なう事なく、更にNi−Fe合金あるいはNi−
P合金メッキ層の優れた鍛接性により良好な溶接性を発
揮することが判明した。鍛接性とは溶接時に完全に金属
が熔融して強い溶接強度を発揮するほかに、金属が完全
に熔融することなく高温時の加熱圧着により強い接合強
度が得られる特性であり、Ni−Fe合金層あるいはN
i−P合金メッキ層は鍛接性が優れている金属である。
As a result of various investigations conducted by the present inventors, N
It has been found that these problems can be solved by applying an i-Fe alloy metal or Ni-P alloy plating layer. That is, it was found that by effectively utilizing the high melting point of the Ni-Fe alloy or the Ni-P alloy, good heat resistance capable of withstanding high temperature short time baking can be exhibited, and good post-painting corrosion resistance and weldability can be secured. It was In particular, regarding the weldability, the good weldability obtained by the upper layer granular tin is not impaired, and the Ni-Fe alloy or Ni-
It has been found that the P alloy plating layer exhibits excellent weldability due to the excellent forgeability. Forge weldability is a characteristic that not only the metal completely melts at the time of welding to exert a strong welding strength, but also strong bonding strength can be obtained by thermocompression bonding at high temperature without completely melting the metal. Layer or N
The i-P alloy plating layer is a metal having excellent forgeability.

【0012】また、Ni−Fe合金層あるいはNi−P
合金メッキ層は良好な耐食性を確保するという観点から
も重要である。Ni金属自体は極めて良好な耐食性を示
すが、鋼板上にNiメッキを施す場合にはメッキ層のピ
ンホール部でFeとNiの局部電池を形成し、Feが溶
解するため鋼板に孔食が発生する。しかし、Ni−Fe
合金あるいはNi−P合金メッキ層の場合は、電位がN
i金属に比べてベーシック(卑)なので合金層のピンホ
ールが存在しても、地鉄とメッキ層の間で局部電池を形
成して鋼板に孔食が発生する程度は少ない。つまり、N
i−Fe合金あるいはNi−P合金メッキ層のほうがN
iメッキ層に比べて耐食性は向上する。
Further, a Ni-Fe alloy layer or Ni-P
The alloy plating layer is also important from the viewpoint of ensuring good corrosion resistance. Although Ni metal itself exhibits extremely good corrosion resistance, when Ni plating is applied to the steel plate, a local battery of Fe and Ni is formed in the pinhole part of the plating layer, and Fe is dissolved, so pitting corrosion occurs in the steel plate. To do. However, Ni-Fe
In the case of alloy or Ni-P alloy plated layer, the potential is N
Since it is more basic than i metal, even if there are pinholes in the alloy layer, there is little occurrence of pitting corrosion in the steel sheet by forming a local battery between the base metal and the plating layer. That is, N
The i-Fe alloy or Ni-P alloy plated layer is more N
Corrosion resistance is improved as compared with the i-plated layer.

【0013】更に、塗料密着性に関しては粒状Snが析
出していないNi−Fe合金層あるいはNi−P合金メ
ッキ層にクロメート被膜が生成した部分で良好な密着性
が確保可能である。粒状Sn析出部で良好な塗料密着性
が確保しにくい理由は、塗料焼き付け時に脆弱な酸化錫
が生成し、それが製缶加工等のダメージにより破壊され
塗膜剥離の原因になるからである。Ni−Fe合金層あ
るいはNi−P合金メッキ層ではそのような脆弱な酸化
膜は生成せず良好な塗料密着性を確保することができ
る。このNi−Fe合金層あるいはNi−P合金メッキ
量については、適正メッキ量として150〜2500m
g/m2に規制される。Ni−Fe合金層あるいはNi
−P合金メッキ量が150mg/m2未満では、メッキ
層のピンホールが多く良好な耐食性を確保することがで
きなく、良好な耐熱性も確保することができない。ま
た、それらのメッキ量が2500mg/m2を越えると
メッキ層のピンホールが減少することによる耐食性およ
び耐熱性の向上効果が飽和すると共に経済的なディメリ
ットが発生する。
Further, regarding the paint adhesion, good adhesion can be ensured in the portion where the chromate film is formed on the Ni-Fe alloy layer or the Ni-P alloy plating layer in which the granular Sn is not deposited. The reason why it is difficult to secure good paint adhesion at the granular Sn precipitation portion is that brittle tin oxide is generated during paint baking, which is destroyed by damage such as can manufacturing and causes peeling of the coating film. In the Ni-Fe alloy layer or the Ni-P alloy plated layer, such a brittle oxide film is not formed and good paint adhesion can be secured. The Ni-Fe alloy layer or Ni-P alloy plating amount is 150 to 2500 m as an appropriate plating amount.
regulated to g / m 2 . Ni-Fe alloy layer or Ni
The -P alloy plating amount is less than 150 mg / m 2, can not be pinholes in the plating layer to secure many good corrosion resistance, also can not be ensured good heat resistance. Further, when the plating amount exceeds 2500 mg / m 2 , the effect of improving the corrosion resistance and heat resistance due to the reduction of pinholes in the plating layer is saturated, and an economic disadvantage occurs.

【0014】合金組成に関しては、特に規制するもので
はないが以下の範囲が好ましい範囲である。Ni−Fe
合金層では合金層中のFe%は重量%で10〜80%が
好ましい。Fe%が10%未満では、電位的にNiメッ
キ層と変わらないためピンホール部から孔食の懸念があ
る。また、Fe%が80%を越えるとNi金属の効果が
失なわれ耐食性が劣化する傾向にある。従って、Ni−
Fe合金層のFe%は10〜80%が好ましい。更に、
Ni−P合金層に関しても、P%は重量%で0.1〜1
0%が好ましい。P%が0.1%未満では、Pの効果が
失われるため電位的にNiメッキ層と変わなくなり、ピ
ンホール部からの孔食が懸念される。一方、P%が10
%を越えると合金層が硬くなり製缶加工によりクラック
が発生しやすくなり耐食性の劣化をもたらす傾向にあ
る。よって、Ni−P合金メッキ層中のP%は、0.1
〜10%が好ましい。
The alloy composition is not particularly limited, but the following range is a preferable range. Ni-Fe
In the alloy layer, Fe% in the alloy layer is preferably 10 to 80% by weight. When Fe% is less than 10%, there is a possibility of pitting corrosion from the pinhole portion because the potential is not different from that of the Ni plating layer. On the other hand, when the Fe% exceeds 80%, the effect of the Ni metal is lost and the corrosion resistance tends to deteriorate. Therefore, Ni-
The Fe% of the Fe alloy layer is preferably 10 to 80%. Furthermore,
As for the Ni-P alloy layer, P% is 0.1 to 1 by weight.
0% is preferable. If P% is less than 0.1%, the effect of P is lost and the potential is no different from that of the Ni plating layer, and pitting corrosion from the pinhole portion is feared. On the other hand, P% is 10
If it exceeds%, the alloy layer becomes hard and cracks are likely to occur during the can-making process, and the corrosion resistance tends to deteriorate. Therefore, P% in the Ni-P alloy plated layer is 0.1
10% is preferable.

【0015】Ni−Fe合金層を施す方法としては特に
規制しないが、以下の方法が適当である。 (1)通常実施されている硫酸浴、塩化物浴等から合金
メッキする方法。 (2)ワット浴、硫酸浴、塩化物浴等からNiメッキ層
を行い、加熱処理によりNi金属を地鉄中に拡散させN
i−Fe合金層を形成させる方法。 (3)(1)で得られたNi−Fe合金メッキ層を更に
加熱処理をして拡散層を得る方法。 (2)、(3)の方法は、拡散工程と焼純工程を兼ねれ
ばより経済的なメリットが発揮できる。Ni−Pに関し
ても特に規制するものではなく、以下の方法が適当であ
る。 (1)硫酸浴、塩化物浴等から電解でNi−P合金メッ
キする方法。 (2)硫酸浴、塩化物浴等に次亜リン酸ソーダを添加し
無電解でNi−P合金メッキをする方法。
The method for applying the Ni-Fe alloy layer is not particularly limited, but the following method is suitable. (1) A method of alloy plating which is usually carried out from a sulfuric acid bath, a chloride bath or the like. (2) An Ni plating layer is formed from a Watts bath, a sulfuric acid bath, a chloride bath, etc., and the Ni metal is diffused into the base iron by heat treatment to form N.
A method of forming an i-Fe alloy layer. (3) A method in which the Ni—Fe alloy plated layer obtained in (1) is further heat-treated to obtain a diffusion layer. The methods (2) and (3) can exhibit more economical advantages if the diffusion step and the refining step are combined. Ni-P is not particularly limited, and the following method is suitable. (1) A method of electrolytically plating a Ni-P alloy from a sulfuric acid bath, a chloride bath or the like. (2) A method in which sodium hypophosphite is added to a sulfuric acid bath, a chloride bath or the like and electroless Ni-P alloy plating is performed.

【0016】次に、良好な溶接性を発揮する被膜構成の
作用効果について述べる。溶接性は散りの発生がなく、
十分な溶接強度が得られる適性溶接範囲が広ければ広い
ほど溶接性は良好と評価される。シーム溶接性の向上に
は電極/材料界面および材料/材料界面での接触抵抗の
低減が最も効果がある。その理由は、電極/材料および
材料/材料界面での接触抵抗が高いと溶接時に電流が集
中するため、局部的な発熱が起こり散りが発生する。つ
まり、溶接強度を確保するために溶接電流を増加させて
いった場合、十分な溶接強度が得られる前に局部発熱が
起こった場所で散りが発生するため、適正溶接範囲が存
在しなくなり溶接性は不良と評価される。これに対し、
電極/材料および材料/材料界面の接触抵抗が低い材料
の場合には、電流が集中するために起こる局部的な発熱
が起こりにくく、散りの発生なく十分な溶接強度が得ら
れるため溶接性は良好と評価される。
Next, the function and effect of the coating structure that exhibits good weldability will be described. Weldability does not occur,
The wider the suitable welding range with which sufficient welding strength can be obtained, the better the weldability is evaluated. The most effective way to improve seam weldability is to reduce the contact resistance at the electrode / material interface and the material / material interface. The reason for this is that if the contact resistance at the electrode / material and material / material interface is high, the current concentrates during welding, causing localized heat generation and scattering. In other words, if the welding current is increased in order to secure the welding strength, scattering occurs at the location where local heat is generated before sufficient welding strength is obtained, so there is no proper welding range and weldability Is rated as bad. In contrast,
In the case of materials with low contact resistance at the electrode / material and material / material interface, local heat generation due to current concentration is less likely to occur, and sufficient welding strength can be obtained without scattering, resulting in good weldability. Is evaluated.

【0017】このようなシーム溶接性の傾向は、特に溶
接スピードが増加した高速溶接の際に顕著に現れる。つ
まり、従来のワイヤースピードで40〜60m/min
という溶接スピードでは、接触抵抗がそれほど低くなく
ても適正溶接範囲は存在する。しかし、70〜100m
/minと溶接スピードが増加すると単位時間当たりの
溶接入熱量が多くなるため『散り』が発生しやすくな
り、適正溶接範囲は狭くなる。高速溶接時にも広い溶接
範囲を有するためには、接触抵抗のよりいっそうの低減
が必要となってくる。このように電極/材料および材料
/材料界面の接触抵抗を低減させるにはこれまでの公知
技術であるNiメッキ後クロメート処理を施すという被
膜構成のみでは不十分であり、Niメッキ層の上層に錫
メッキ層を粒状で付与することが接触抵抗の低減には非
常に有効であることが判明した。つまり、良好な溶接性
を発揮できる被膜構成としては鋼板表面にまずNi−F
e合金層あるいはNi−P合金メッキ層メッキを施し、
その上に粒状錫メッキを施し、更にクロメート被膜を設
けるという被膜構成が適正である。
Such a tendency of seam weldability becomes remarkable especially in high-speed welding in which the welding speed is increased. In other words, 40-60m / min at the conventional wire speed
With such welding speed, there is a proper welding range even if the contact resistance is not so low. However, 70-100m
As the welding speed increases with the / min, the amount of welding heat input per unit time increases and "scattering" easily occurs, and the appropriate welding range becomes narrow. In order to have a wide welding range even during high-speed welding, it is necessary to further reduce the contact resistance. Thus, in order to reduce the contact resistance at the electrode / material and the material / material interface, the coating structure of performing the chromate treatment after Ni plating, which is a known technique, is not sufficient, and tin on the upper layer of the Ni plating layer is not sufficient. It has been found that applying the plating layer in a granular form is very effective in reducing the contact resistance. That is, as a coating structure capable of exhibiting good weldability, first the Ni-F is applied to the steel plate surface.
e alloy layer or Ni-P alloy plating layer plating,
A suitable coating structure is that granular tin plating is applied on top of this and a chromate coating is further provided.

【0018】Ni−FeあるいはNi−P合金メッキ層
の上層に粒状錫メッキ層を設けることにより、接触抵抗
が低減でき良好な溶接性が確保できる理由は以下のよう
に考えられる。 (1)軟質な錫金属がNiメッキ層の下層に存在するこ
とにより、溶接時に極輪から加えられる加圧力により極
輪/材料および材料/材料間での接触面積が広がり、接
触抵抗が大幅に低減できる。 (2)錫金属が低融点のため溶接時の発熱により容易に
溶解し、極輪/材料及び材料/材料間の接触面積を広げ
る効果が大であり、溶接抵抗が減少するため溶接時の局
部的な電流の集中が防げる。
The reason why the contact resistance can be reduced and good weldability can be secured by providing the granular tin plating layer on the Ni-Fe or Ni-P alloy plating layer is considered as follows. (1) Since the soft tin metal is present in the lower layer of the Ni plating layer, the contact area between the pole wheel / material and the material / material is widened by the pressure applied from the pole wheel during welding, and the contact resistance is greatly increased. It can be reduced. (2) Since tin metal has a low melting point, it is easily melted by the heat generated during welding, which has the great effect of widening the contact area between the pole wheel / material and material / material, and the welding resistance is reduced, so the local area during welding. Current concentration can be prevented.

【0019】上記の作用効果を少ない錫メッキ量で得る
ためには錫メッキ層は通常の平滑なメッキ層では困難で
あり、錫メッキ層を粒状にすることが重要である。それ
は、平滑な錫メッキ層では高温短時間塗装焼き付け時に
錫メッキ層が全て合金化するため、軟質低融点のfre
e−Snが残留しなくなり接触抵抗の低減効果が発揮で
きなくなる。錫メッキ層の合金化は鋼板と錫メッキ層の
界面で高さ方向に進行するため、粒状錫メッキ層であれ
ば高温短時間焼き付け後においても良好な溶接性を発揮
するfree−Sn残留量を確保可能である。従って、
良好な溶接性を得るために粒状錫メッキ層が施される
が、そのメッキ量は400〜2800mg/m2に規制
される。これは、粒状錫メッキ量が400mg/m2
満では高温短時間焼き付け時に合金化が進行し、fre
e−Sn残留量が十分確保できないため特に単位時間当
たりの入熱量の大きな高速溶接時に良好な溶接性を発揮
できない。
In order to obtain the above-mentioned effects with a small amount of tin plating, it is difficult for the tin plating layer to be an ordinary smooth plating layer, and it is important to make the tin plating layer granular. This is because the smooth tin-plated layer is alloyed entirely during baking at high temperature and for a short time, so that it has a soft low melting point fre.
The e-Sn does not remain and the contact resistance reduction effect cannot be exhibited. Since the alloying of the tin plating layer proceeds in the height direction at the interface between the steel plate and the tin plating layer, if the granular tin plating layer is used, the amount of residual free-Sn that exhibits good weldability even after high temperature and short time baking is exhibited. Can be secured. Therefore,
A granular tin plating layer is applied to obtain good weldability, but the plating amount is regulated to 400 to 2800 mg / m 2 . This is because when the amount of granular tin plating is less than 400 mg / m 2 , alloying proceeds during high temperature short time baking,
Since a sufficient residual amount of e-Sn cannot be secured, good weldability cannot be exhibited especially during high-speed welding with a large heat input per unit time.

【0020】また、粒状錫メッキ量が2800mg/m
2を越えると、free−Sn残留効果が飽和すると共
に、低融点のfree−Snが多く残留し過ぎるため、
後述するように上層にNiメッキ層を設けても錫の融点
を越える温度まで達する高温焼き付けを行うと、錫金属
が熔融し耐食性が顕著に劣化する。つまり、高温焼き付
けに耐え得る耐熱性が確保できなくなる。更に、粒状錫
メッキのサイズは粒経0.2〜12.0μに規制され
る。これは、粒径が0.2μ未満では高温短時間焼き付
けにより、高さ方向への合金化の進行によりfree−
Snが残留しなくなり、良好な溶接性が確保できなくな
る。また、その粒径が12.0μを越えると溶接性向上
効果が飽和し経済的メリットがなくなると共に、耐熱性
が劣化するため高温焼き付けにより、錫金属が熔融し塗
装後耐食性が劣化するからである。このように、良好な
溶接性と耐熱性を両立させ得る粒状錫メッキ層の適正か
つ経済的なメッキ量とその粒径は400〜2800mg
/m2および0.2〜12.0μである。鋼板上に粒状
錫メッキ層を施す方法は特に規制しないが、以下のよう
な方法が好ましい。Sn2+イオンの希薄な酸性水溶液中
で低電流密度により錫メッキを行えば、鋼板上に粒状錫
メッキ層が形成可能である。例えば、Sn2+イオン量は
1〜400g/lの酸性溶液中で0.1〜30A/dm
2の電流密度で錫メッキを行うことが好ましい。
The amount of granular tin plating is 2800 mg / m
When it exceeds 2 , the free-Sn residual effect is saturated, and too much free-Sn with a low melting point remains, so
As will be described later, even if a Ni plating layer is provided as an upper layer, when high temperature baking reaching a temperature exceeding the melting point of tin is performed, tin metal is melted and corrosion resistance is significantly deteriorated. That is, it becomes impossible to secure heat resistance that can withstand high temperature baking. Further, the size of the granular tin plating is regulated to 0.2-12.0 μ of grain size. This is because if the grain size is less than 0.2 μm, free-heating occurs due to the progress of alloying in the height direction due to high temperature short time baking.
Sn does not remain and good weldability cannot be secured. If the particle size exceeds 12.0μ, the effect of improving the weldability is saturated, the economic merit is lost, and the heat resistance deteriorates. Therefore, the high temperature baking melts the tin metal and deteriorates the corrosion resistance after coating. . In this way, the proper and economical plating amount and particle size of the granular tin plating layer capable of achieving both good weldability and heat resistance are 400 to 2800 mg.
/ M 2 and 0.2-12.0μ. The method of applying the granular tin plating layer on the steel sheet is not particularly limited, but the following method is preferable. If tin plating is performed with a low current density in a dilute acidic aqueous solution of Sn 2+ ions, a granular tin plating layer can be formed on the steel sheet. For example, the amount of Sn 2+ ions is 0.1 to 30 A / dm in an acidic solution of 1 to 400 g / l.
It is preferable to perform tin plating at a current density of 2 .

【0021】さらに、このような被覆層を有したメッキ
鋼板に、塗料密着性、塗装耐食性の向上からクロメート
処理を施す。クロメート被膜は缶内面に対しては缶内容
物が塗膜を通過して塗膜下で腐食が進行するアンダーカ
ッティングコロージョンの防止、缶外面に対しては貯蔵
時に塗膜下で発生する糸状錆いわゆるフィリフォームコ
ロージョンなどの耐錆性の向上に非常に効果がある。こ
のようなクロメート被膜が形成されていることにより、
長時間にわたり塗膜の密着性が劣化せず、良好な耐食
性、耐錆性が保持される。また、クロメート被膜は硫黄
化合物を含む食品、例えば魚肉畜産物などの場合に見ら
れる鋼板の表面の黒変即ち硫化黒変を防止する効果が大
きい。このように、クロメート被膜は特に塗装されて用
いられる場合には性能向上に効果が大きいが、溶接性に
対してはマイナス要因である。ここで言うクロメート被
膜とは水和酸化クロム単一の被膜即ち本来のクロメート
被膜と、いま一つは下層に金属クロム層、上層に水和酸
化クロム層の二層よりなる被膜の二つの場合を指してい
る。水和酸化クロム被膜は電気的に絶縁体のため電気抵
抗が非常に高く、金属クロムも融点が高くかつ電気抵抗
も高いので、両者とも溶接性を劣化せしめるマイナス要
因である。
Further, the plated steel sheet having such a coating layer is subjected to a chromate treatment in order to improve paint adhesion and coating corrosion resistance. The chromate coating prevents undercutting corrosion on the inner surface of the can, in which the contents of the can pass through the coating film to cause corrosion under the coating film, and on the outer surface of the can, the so-called filamentous rust that occurs under the coating film during storage. It is very effective in improving rust resistance such as filiform corrosion. By forming such a chromate film,
Adhesion of the coating film does not deteriorate over a long period of time, and good corrosion resistance and rust resistance are maintained. Further, the chromate film has a great effect of preventing the blackening of the surface of the steel sheet, that is, the sulfurization blackening, which is seen in the case of foods containing a sulfur compound, for example, fish and livestock products. As described above, the chromate coating has a great effect on the performance improvement when it is used after being coated, but it is a negative factor on the weldability. The chromate film mentioned here refers to two cases: a single film of hydrated chromium oxide, that is, the original chromate film, and another film consisting of a lower layer of metal chromium layer and an upper layer of hydrated chromium oxide layer. pointing. Since the hydrated chromium oxide film is an electrical insulator, it has a very high electric resistance, and since metallic chromium has a high melting point and a high electric resistance, both are negative factors that deteriorate the weldability.

【0022】そのため、良好な塗装性能と実用的に溶接
性を劣化せしめない適正なクロム付着量が非常に重要と
なる。本発明においてはクロム付着量は金属クロム換算
で片面当たり1〜50mg/m2が選定される。即ち、
クロム付着量が1mg/m2未満では、塗料密着性の向
上、アンダーカッティングコロージョンなどの塗膜下腐
食の防止に効果が得られないので、1mg/m2以上の
クロム付着量が望ましい。一方、50mg/m2を越え
ると接触抵抗が著しく増加し、局部的な発熱による散り
が発生し易くなり溶接性が劣化する。そのため、クロム
付着量は50mg/m2以下に規制される。クロメート
処理は各種のクロム酸のナトリウム塩、カリウム塩、ア
ンモニウム塩の水溶液による浸漬処理、スプレイ処理、
電解処理などいずれの方法で行っても良いが、特に陰極
電解処理が優れている。とりわけ、クロム酸にSO4 2-
イオン、F-イオン(錯イオンを含む)あるいはそれらの
混合物を添加した水溶液中での陰極電解処理が最も優れ
ている。クロム酸の濃度は特に規制しないが、20〜2
00g/lの範囲で充分である。
Therefore, a good coating performance and a proper amount of chromium deposition which does not deteriorate the weldability in practical use are very important. In the present invention, the amount of chromium deposited is selected to be 1 to 50 mg / m 2 per one surface in terms of metallic chromium. That is,
When the amount of deposited chromium is less than 1 mg / m 2 , the effect of improving paint adhesion and preventing undercoat corrosion such as undercutting corrosion cannot be obtained. Therefore, the amount of deposited chromium of 1 mg / m 2 or more is desirable. On the other hand, when it exceeds 50 mg / m 2 , the contact resistance is remarkably increased, and dispersion due to local heat generation is likely to occur to deteriorate weldability. Therefore, the chromium deposition amount is regulated to 50 mg / m 2 or less. Chromate treatment is immersion treatment with an aqueous solution of various chromic acid sodium salts, potassium salts, and ammonium salts, spray treatment,
It may be performed by any method such as electrolytic treatment, but cathodic electrolytic treatment is particularly excellent. In particular, SO 4 2-
Cathodic electrolysis in an aqueous solution containing added ions, F ions (including complex ions) or a mixture thereof is the best. Although the concentration of chromic acid is not particularly limited, it is 20 to 2
A range of 00 g / l is sufficient.

【0023】添加するアニオンの量はCr6+の1/30
0〜1/25好ましくは1/200〜1/50の時、最
良のクロメート被膜が得られる。アニオンの量がCr6+
の1/300以下では均質かつ均一で塗装性能に大きく
影響する良質のクロメート被膜が得られない。また、1
/25以上では、生成するクロメート被膜中に取り込ま
れるアニオンの量が多くなり、塗装性能特に塗料二次密
着性が劣化する。添加されるアニオンは硫酸、硫酸クロ
ム、弗化アンモン、弗化ソーダの化合物などの形態でク
ロム酸浴中へ添加される。浴温は特に規制するものでは
ないが、30〜70℃の範囲が作業性の点から適切な温
度範囲である。陰極電解電流密度は5〜100A/dm
2の範囲で充分である。処理時間は、前記処理条件の任
意の組み合わせにおいて、クロム付着量が前記に示した
1〜50mg/m2の範囲に入るように設定する。
The amount of anion added is 1/30 of Cr 6+
The best chromate film is obtained at 0 to 1/25, preferably 1/200 to 1/50. The amount of anion is Cr 6+
If the ratio is 1/300 or less, a high-quality chromate film that is homogeneous and uniform and that greatly affects the coating performance cannot be obtained. Also, 1
When the ratio is / 25 or more, the amount of anions incorporated in the resulting chromate coating increases, and the coating performance, particularly the secondary adhesion of the coating, deteriorates. The anions to be added are added to the chromic acid bath in the form of compounds of sulfuric acid, chromium sulfate, ammonium fluoride, sodium fluoride and the like. The bath temperature is not particularly limited, but a range of 30 to 70 ° C. is an appropriate temperature range from the viewpoint of workability. Cathode electrolysis current density is 5-100A / dm
A range of 2 is sufficient. The treatment time is set such that the chromium deposition amount falls within the range of 1 to 50 mg / m 2 shown above under any combination of the treatment conditions.

【0024】そして、上記付着量の範囲において二層型
クロメート皮膜における金属クロム層と水和酸化クロム
層の比は特に規制しないが0.6≦水和酸化クロム/金
属クロム≦3の範囲が好ましい。即ち、金属クロムに対
して水和酸化クロムの量が少ない場合、金属クロム層上
の水和酸化クロム層の均一被覆性が劣るため塗料密着性
が劣化する傾向にある。一方、金属クロム層に比べ水和
酸化クロム層が多い場合、水和酸化クロム層中に含有さ
れるアニオンおよびCr6+イオンが多くなり、塗装後高
温環境にさらされた場合にこれらイオンの溶出が起こ
り、塗膜下で微小膨れ(いわゆるブリスター)が発錆し
易くなるので好ましくない。従って、水和酸化クロムと
金属クロムの構成比率を上記のごとく0.6〜3の範囲
に設定するのが好ましい。
The ratio of the metal chromium layer to the hydrated chromium oxide layer in the two-layer chromate film is not particularly restricted within the above-mentioned range of the adhesion amount, but the range of 0.6≤hydrated chromium oxide / metal chromium≤3 is preferable. . That is, when the amount of hydrated chromium oxide is smaller than that of metallic chromium, the uniform coating property of the hydrated chromium oxide layer on the metallic chromium layer is inferior, so that the coating adhesion tends to deteriorate. On the other hand, when the amount of hydrated chromium oxide layer is larger than that of the metallic chromium layer, the amount of anions and Cr 6+ ions contained in the hydrated chromium oxide layer increases, and these ions are eluted when exposed to a high temperature environment after coating. Occurs, and minute swelling (so-called blisters) easily occurs under the coating film, which is not preferable. Therefore, it is preferable to set the composition ratio of hydrated chromium oxide and metallic chromium within the range of 0.6 to 3 as described above.

【0025】以下に本発明の実施例について述べ、その
結果を表1に示す。冷間圧延もしくは焼純後の2回圧延
により、所定の板厚に調整したメッキ原板を5%苛性ソ
ーダー中で電解脱脂し水洗後10%硫酸中で電解酸洗
し、表面活性後表面処理を行った。まず、(1)−
(A)〜(D)に示す条件でNi−Fe合金層あるいは
Ni−P合金メッキ層を形成させた。この際、Ni−F
e拡散合金層を形成させる場合は、冷間圧延材を使用し
拡散処理工程と焼純処理工程を兼ねた。次に(2)に示
す条件で粒状錫メッキを施し、引き続き(3)−(A)
〜(C)に示す処理浴でクロメート被膜を生成させたも
のを作成した。
Examples of the present invention will be described below, and the results are shown in Table 1. By cold rolling or double rolling after refining, the plated original plate adjusted to a predetermined plate thickness is electrolytically degreased in 5% caustic soda, washed with water, then electrolytically pickled in 10% sulfuric acid, and surface-treated after surface activation. went. First, (1)-
A Ni-Fe alloy layer or a Ni-P alloy plating layer was formed under the conditions shown in (A) to (D). At this time, Ni-F
When forming the e-diffusion alloy layer, a cold-rolled material was used for both the diffusion treatment step and the refining treatment step. Next, granular tin plating is applied under the conditions shown in (2), followed by (3)-(A).
What produced | generated the chromate film in the processing bath shown to-(C) was created.

【0026】 (1)Ni−Fe合金層あるいはNi−P合金メッキ条件 (A)Ni−Fe合金メッキ メッキ浴組成 NiSO4・6H2O 75g/l NiCl2・6H2O 140g/l FeSO4・7H2O 30〜150g/l (合金組成に応じて調整) H3BO3 30g/l メッキ浴温 50℃ 電流密度 20A/dm2(電解時間はメッキ量に応じて調整)[0026] (1) Ni-Fe alloy layer or the Ni-P alloy plating conditions (A) Ni-Fe alloy plating Plating bath composition NiSO 4 · 6H 2 O 75g / l NiCl 2 · 6H 2 O 140g / l FeSO 4 · 7H 2 O 30 to 150 g / l (Adjusted according to alloy composition) H 3 BO 3 30 g / l Plating bath temperature 50 ° C. Current density 20 A / dm 2 (Electrolysis time is adjusted according to plating amount)

【0027】 (B)Ni−Fe拡散合金層 Niメッキ条件 メッキ浴組成 NiSO4・6H2O 70g/l NiCl2・6H2O 160g/l H3BO3 30g/l メッキ浴温 50℃ 電流密度 20A/dm2(電解時間はメッキ量に応じて調整) 加熱処理 500℃〜800℃の温度で10〜40秒の熱処理を拡
散程度に応じて実施した。
[0027] (B) Ni-Fe diffusion alloy layer Ni plating conditions plating bath composition NiSO 4 · 6H 2 O 70g / l NiCl 2 · 6H 2 O 160g / l H 3 BO 3 30g / l plating bath temperature 50 ° C. Current density 20 A / dm 2 (electrolysis time is adjusted according to the plating amount) Heat treatment A heat treatment was performed at a temperature of 500 ° C. to 800 ° C. for 10 to 40 seconds depending on the degree of diffusion.

【0028】 (C)Ni−P合金メッキ(電解処理) メッキ浴組成 NiSO4・6H2O 60g/l NiCl2・6H2O 120g/l 亜リン酸 20〜100g/l (合金組成に応じ調整) H3BO3 30g/l メッキ浴温 常温〜70℃ 電流密度 20A/dm2(電解時間はメッキ量に応じて調整)[0028] (C) Ni-P alloy plating (electrolytic treatment) plating bath composition NiSO 4 · 6H 2 O 60g / l NiCl 2 · 6H 2 O 120g / l phosphorous acid 20 to 100 g / l (adjusted depending on the alloy composition ) H 3 BO 3 30 g / l Plating bath temperature Normal temperature to 70 ° C. Current density 20 A / dm 2 (electrolysis time is adjusted according to plating amount)

【0029】 (D)Ni−P合金メッキ(無電解処理) メッキ浴組成 NiSO4・6H2O 60g/l NiCl2・6H2O 120g/l 次亜リン酸ソーダ 20〜100g/l (合金組成に応じ調整) H3BO3 30g/l メッキ浴温 常温〜80℃ 浸漬時間 5〜60秒(浸漬時間はメッキ量に応じて調整)[0029] (D) Ni-P alloy plating (electroless process) plating bath composition NiSO 4 · 6H 2 O 60g / l NiCl 2 · 6H 2 O 120g / l sodium hypophosphite 20 to 100 g / l (alloy composition H 3 BO 3 30 g / l Plating bath temperature Normal temperature to 80 ° C. Immersion time 5 to 60 seconds (immersion time is adjusted according to the plating amount)

【0030】 (2)粒状錫メッキ処理 メッキ浴組成 SnSO4 10〜30g/l H2SO4 60g/l メッキ浴温 60℃ 電流密度 0.1〜30A/dm2 (電解時間はSnメッキ量に応じて調整) 錫メッキの粒径はSnSO4量および電流密度により調整(2) Granular tin plating treatment Plating bath composition SnSO 4 10-30 g / l H 2 SO 4 60 g / l Plating bath temperature 60 ° C. Current density 0.1-30 A / dm 2 (electrolysis time depends on Sn plating amount) Adjust the tin plating particle size according to the amount of SnSO 4 and the current density.

【0031】 (3)クロメート処理浴 (A) CrO3 100g/l SO4 2- 0.6g/l (B) Na2Cr27 24g/l pH 4.5 (C) CrO3 80g/l SO4 2- 0.05g/l Na2SiF6 2.5g/l NH4F 0.5g/l(3) Chromate treatment bath (A) CrO 3 100 g / l SO 4 2- 0.6 g / l (B) Na 2 Cr 2 O 7 24 g / l pH 4.5 (C) CrO 3 80 g / l SO 4 2- 0.05g / l Na 2 SiF 6 2.5g / l NH 4 F 0.5g / l

【0032】上記処理材について、以下に示す(A)〜
(G)の項目について実施しその性能を評価した。 (A)接触抵抗の測定 シーム溶接性に大きな影響を与える接触抵抗値をCF型
電極のスポット溶接機を用いて測定した。測定用試験片
は、高温短時間での塗装焼き付けを想定して310℃ま
で20secで昇温する条件でbakingを行った。
CF型電極を用いた静抵抗測定方法を以下に示す。用い
た電極はクロム銅製で先端径4.5mmφのものであ
る。試験片2枚を電極間に配置し、エアーシリンダーに
より200kgfに加圧した状態で電極間に1Aの定電
流を通電し、その時の電極/電極間、電極/鋼板間、鋼
板/鋼板間の電圧降下をナノボルトメーターで測定する
ことで、冷間での静抵抗を求めた。
Regarding the above-mentioned treated material, the following (A) to
The item (G) was implemented and its performance was evaluated. (A) Measurement of contact resistance The contact resistance value that greatly affects the seam weldability was measured using a CF-type electrode spot welder. The test pieces for measurement were subjected to baking under the condition that the temperature was raised to 310 ° C. in 20 seconds on the assumption of baking at high temperature for a short time.
The static resistance measuring method using a CF type electrode is shown below. The electrodes used were made of chrome copper and had a tip diameter of 4.5 mmφ. Two test pieces are placed between the electrodes, and a constant current of 1 A is applied between the electrodes while being pressurized to 200 kgf by an air cylinder, and the voltage between the electrodes / electrodes, between the electrodes / steel plates, and between the steel plates / steel plates at that time. The static resistance in the cold was obtained by measuring the drop with a nanovoltmeter.

【0033】(B)シーム溶接性 試験片は、高温短時間での塗装続き付けを想定して32
0℃まで23secで昇温する条件でbakingを行
い、次の溶接条件でシーム溶接性を評価した。ラップ代
0.5mm、加圧力45Kgf、溶接ワイヤースピード
80m/minの条件で、電流を変更して溶接を実施
し、十分な溶接強度が得られる最小電流値と『散り』な
どの溶接欠陥が目立ち始める最大電流値からなる適正電
流範囲の広さ、および溶接欠陥の発生状況から総合的に
判断して評価した。
(B) Seam Weldability The test piece was designed to be 32 pieces on the assumption that the coating will be continued at high temperature for a short time.
Baking was performed under the condition that the temperature was raised to 0 ° C. in 23 seconds, and the seam weldability was evaluated under the following welding conditions. Welding is performed by changing the current under the conditions of a lapping margin of 0.5 mm, a pressing force of 45 kgf, and a welding wire speed of 80 m / min. The minimum current value that provides sufficient welding strength and welding defects such as "scattering" are conspicuous. The evaluation was performed by comprehensively judging from the width of the appropriate current range consisting of the maximum current value to start and the occurrence of welding defects.

【0034】(C)碁盤目テスト 試験片の缶内面に相当する面にエポキシフェノール系塗
料を55mg/dm2塗布し、更に缶外面に相当する面
にクリヤーラッカーを40mg/dm2塗布し、290
℃まで15secで昇温する焼き付け条件で乾燥硬化し
た。引き続き、各々の面に1mm間隔でスクラッチを入
れ、計100個の碁盤目を作成し速やかにテープ剥離
し、その剥離状況を評価した。
(C) Cross-cut test The surface of the test piece corresponding to the inner surface of the can was coated with 55 mg / dm 2 of epoxyphenol-based paint, and the surface of the outer surface of the can was coated with 40 mg / dm 2 of clear lacquer, and 290
Drying and curing were performed under baking conditions in which the temperature was raised to 15 ° C in 15 seconds. Subsequently, scratches were placed on each surface at 1 mm intervals, a total of 100 grids were prepared, and the tape was rapidly peeled off, and the peeled state was evaluated.

【0035】(D)UCC(アンダーカッティングコロ
ージョン)評価テスト 缶内面に相当する面の塗装後耐食性を評価するため、缶
内面側に相当する面に缶用エポキシフェノール(フェノ
ールリッチ)塗料を片面当たり50mg/dm 2塗布
し、310℃まで18secで昇温する条件で焼き付け
を行った。その後塗装板の鉄面に達するようにスクラッ
チを入れ、1.5%クエン酸〜1.5%食塩の混合液で
ある試験液中に大気開放下で55℃×4日間浸漬した。
試験終了後、速やかにスクラッチ部および平面部をテー
プ剥離して、スクラッチ部近傍の塗膜下腐食状況、スク
ラッチ部のピッティング状況および平面部の塗膜剥離状
況を判定して総合的に評価した。
(D) UCC (Under cutting roller
Evaluation test To evaluate the corrosion resistance after painting of the surface corresponding to the inner surface of the can,
Epoxy phenol for cans (pheno
50% / dm3 on one side 2Application
And bake under the condition that the temperature is raised to 310 ° C in 18 seconds.
I went. After that, scrub to reach the iron surface of the painted plate.
And add 1.5% citric acid to 1.5% salt.
It was immersed in a certain test liquid under the atmosphere at 55 ° C. for 4 days.
After the test is completed, quickly test the scratch and flat parts.
Peeled off to prevent corrosion under the coating film near the scratches.
Litting pitting status and flat surface coating peeling
The situation was judged and evaluated comprehensively.

【0036】(E)耐硫化黒変性テスト 缶内面側に相当する面に(E)と同様の塗装を行い、1
t曲げを施した試験片を市販の鯖水煮を均一化したもの
の中に入れ、115℃×90minのレトルト処理を行
った。試験後、曲げ加工部および平面部の硫化黒変状況
を評価した。 (F)フィリフォームコロージョンテスト 缶外面側に相当する面の糸状錆び性を評価するため、ク
リヤーラッカーを40mg/dm2塗布し、280℃ま
で17secで昇温する焼き付け条件で乾燥硬化した。
引き続き、ナイフで鉄面に達するスクラッチを入れ、3
5℃で5%の塩水噴霧を1時間施し、速やかに水洗乾燥
後25℃で相対湿度85%で2週間放置し、糸状錆び性
を評価した。
(E) Sulfuration blackening resistance test The same coating as (E) was applied to the surface corresponding to the inner surface of the can, and 1
The t-bent test piece was put into a homogenized commercial mackerel boiled product and subjected to retort treatment at 115 ° C. for 90 minutes. After the test, the sulfide blackening state of the bent portion and the flat portion was evaluated. (F) Philiform Corrosion Test In order to evaluate the thread-like rust resistance of the surface corresponding to the outer surface of the can, 40 mg / dm 2 of clear lacquer was applied and dried and hardened under the baking conditions of heating up to 280 ° C. for 17 seconds.
Next, insert a scratch that reaches the iron surface with a knife, and 3
A 5% salt water spray was applied at 5 ° C. for 1 hour, followed by rapid washing with water, drying, and then leaving at 25 ° C. and 85% relative humidity for 2 weeks to evaluate the filamentous rust property.

【0037】(G)実缶テスト 試験片の缶内面側に相当する面にエポキシフェノール系
塗料を55mg/dm 2散布し、更に缶外面に相当する
面にクリヤーラッカーを40mg/dm2塗布した後、
320℃まで22secで昇温する焼き付け条件で乾燥
硬化した。引き続き、シーム溶接機を用いて、缶胴を製
作し溶接部をエポキシ系樹脂で補修を行い、オレンジュ
ースとコーラを充填後#25ブリキ製の缶蓋を巻き絞
め、38℃で12ヶ月保管した。試験終了後、内容物を
取り出し鉄溶出量および缶内面側(平坦部と溶接部)の
腐食状況を観察評価した。 これらの結果を表に纏めて示すように、本発明が限定す
る範囲の溶接缶用材料は、本発明の範囲から逸脱したN
i系合金メッキ量、Snメッキの粒径とそのメッキの量
の比較材料に較べ、溶接性、塗装後の耐食性など溶接缶
用材に要求される特性が安定して得られている。
(G) Actual Can Test Epoxy phenol-based material on the surface of the test piece corresponding to the inner surface of the can
55 mg / dm of paint 2Disperse and further correspond to the outer surface of the can
40 mg / dm of clear lacquer on the surface2After applying
Dry under baking conditions that heat up to 320 ° C in 22 seconds
Cured. Then, using a seam welder,
Welded parts are repaired with epoxy resin and orange
# 25 tin can lid after squeezing the base and cola
Therefore, it was stored at 38 ° C. for 12 months. After the test,
The amount of iron taken out and the inner surface of the can (flat part and welded part)
The corrosion state was observed and evaluated. The present invention is limited as shown in the table showing these results.
Welding can materials in the range of N are outside the scope of the present invention.
i-based alloy plating amount, Sn plating particle size and its plating amount
Compared to other comparison materials, weldability, corrosion resistance after painting, etc.
The characteristics required for materials are stably obtained.

【0038】[0038]

【表1】 [Table 1]

【0039】[0039]

【表2】 [Table 2]

【0040】[0040]

【発明の効果】以上述べたように、本発明によって高速
シーム溶接性、耐食性、耐熱性および塗料密着性に優れ
た溶接缶用材料を得ることが出来た。
As described above, according to the present invention, a material for a welding can having excellent high speed seam weldability, corrosion resistance, heat resistance and paint adhesion can be obtained.

フロントページの続き (72)発明者 片山 俊則 福岡県北九州市戸畑区飛幡町1番1号 新 日本製鐵株式会社八幡製鐵所内Front page continuation (72) Inventor Toshinori Katayama 1-1 Tobahata-cho, Tobata-ku, Kitakyushu-shi, Fukuoka New Nippon Steel Co., Ltd. Yawata Works

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 鋼板表面に片面当たり、150〜250
0mg/m2のNi−Fe合金メッキ層あるいはNi−
P合金メッキ層を有し、その上に粒径0.2〜12.0
μのSnメッキ粒子を400/2800mg/m2で点
在したSnメッキ層、更にその上にクロム換算で1〜5
0mg/m2のクロメート被膜を形成されたことを特徴
とする高速シーム溶接性、耐食性、耐熱性および塗料密
着性に優れた溶接缶用材料。
1. 150 to 250 per surface of a steel plate
0 mg / m 2 Ni-Fe alloy plating layer or Ni-
It has a P alloy plating layer and a grain size of 0.2 to 12.0 on it.
Sn plating layer in which μ of Sn plating particles are scattered at 400/2800 mg / m 2 and further 1 to 5 in terms of chromium on it
A material for a welding can having a high-speed seam weldability, corrosion resistance, heat resistance, and paint adhesion, which is characterized by having a 0 mg / m 2 chromate film formed.
JP22311192A 1992-08-24 1992-08-24 Material for welded can excellent in high-speed seam weldability, resistance to corrosion and heat and coating adhesion Withdrawn JPH0665789A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22311192A JPH0665789A (en) 1992-08-24 1992-08-24 Material for welded can excellent in high-speed seam weldability, resistance to corrosion and heat and coating adhesion

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22311192A JPH0665789A (en) 1992-08-24 1992-08-24 Material for welded can excellent in high-speed seam weldability, resistance to corrosion and heat and coating adhesion

Publications (1)

Publication Number Publication Date
JPH0665789A true JPH0665789A (en) 1994-03-08

Family

ID=16793001

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22311192A Withdrawn JPH0665789A (en) 1992-08-24 1992-08-24 Material for welded can excellent in high-speed seam weldability, resistance to corrosion and heat and coating adhesion

Country Status (1)

Country Link
JP (1) JPH0665789A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103014681A (en) * 2012-12-12 2013-04-03 西安科技大学 Preparation method of Ni-P alloy gradient coating
CN104123988A (en) * 2014-08-14 2014-10-29 国家电网公司 Steel-cored aluminum strand with good fatigue resistance performance
CN110846643A (en) * 2019-11-22 2020-02-28 中国电子科技集团公司第五十八研究所 Method for enhancing reliability of parallel seam welding packaging salt fog

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103014681A (en) * 2012-12-12 2013-04-03 西安科技大学 Preparation method of Ni-P alloy gradient coating
CN103014681B (en) * 2012-12-12 2014-08-13 西安科技大学 Preparation method of Ni-P alloy gradient coating
CN104123988A (en) * 2014-08-14 2014-10-29 国家电网公司 Steel-cored aluminum strand with good fatigue resistance performance
CN110846643A (en) * 2019-11-22 2020-02-28 中国电子科技集团公司第五十八研究所 Method for enhancing reliability of parallel seam welding packaging salt fog

Similar Documents

Publication Publication Date Title
KR100455083B1 (en) Zn-Co-W alloy electroplated steel sheet with excellent corrosion resistance and welding property and electrolyte therefor
JPH0216397B2 (en)
JPS5930798B2 (en) Steel plate for welded can containers and its manufacturing method
US4790913A (en) Method for producing an Sn-based multilayer coated steel strip having improved corrosion resistance, weldability and lacquerability
JPS61223197A (en) Surface-treated steel plate
JPH0665789A (en) Material for welded can excellent in high-speed seam weldability, resistance to corrosion and heat and coating adhesion
JPH06293996A (en) Stock for welded can excellent in high speed seam weldability, corrosion resistance, heat resistance and adhesion of paint
JPH0140118B2 (en)
JPH05106091A (en) Material for welded can excellent in seam weldability and adhesive strength of paint
JP3224457B2 (en) Material for welding cans with excellent high-speed seam weldability, corrosion resistance, heat resistance and paint adhesion
JP2583297B2 (en) Ultra-thin welding can material with excellent seam weldability, paint adhesion and post-paint corrosion resistance
JPH06116790A (en) Stock for welded can excellent in high speed seam weldability, pitting corrosion resistance, heat resistance and adhesion of coating material
JPH06116747A (en) Blank for welded can having excellent high speed seam-weldability, corrosion resistance, heat resistance and coating adhesion
JPH0826477B2 (en) Manufacturing method of Sn-based multi-layered steel sheet with excellent paint adhesion
JPH0657491A (en) Welded can material excellent in high-speed seam weldability, heat resistance and coating adhesion
JPH06173086A (en) Base stock for welded can excellent in high speed seam weldability, corrosion resistance, heat resistance and adhesive property of coating material
JPH0431039B2 (en)
JP3270318B2 (en) Steel plate for welded cans with excellent weldability, corrosion resistance, appearance and adhesion
JP4452198B2 (en) Surface-treated steel sheet with excellent seam weldability
JPH05106090A (en) Material for welded can excellent in seam weldability and adhesive strength of paint
JPH06173035A (en) Base stock for welded can excellent in high speed seam weldability, corrosion resistance, heat resistance and aphesivity of coating material
JPS6353288A (en) Low-cost surface treated steel sheet having superior weldability
JP3822704B2 (en) Manufacturing method of steel sheet for welding can excellent in weldability, corrosion resistance, appearance and adhesion
JPS6396294A (en) Production of steel sheet having excellent weldability and corrosion resistance
JP2933815B2 (en) Manufacturing method of steel plate for welding can with excellent paint appearance

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19991102